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Abstract
The sliding mode control is one among the best techniques for analysing the dynamics as well as maintaining the stability 
of a system. The problem of lack of stability and robustness in a variable speed wind turbine can be resolved by using this 
sliding mode control technique. The desired sliding mode dynamics can be attained by a suitable design of the switching 
function and on the switching surface, the sliding occurs; following the system achieving its desired system dynamics. This 
paper presents the sliding mode control scheme to improve the overall stability of the variable speed wind turbine system. 
The proposed strategy is applied and the results are obtained using MATLAB. The results obtained demonstrate its effec-
tiveness in improving the overall system stability.
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1. Introduction
The increased worldwide demand for the energy requires 
alternatives for the depleting fossil fuels, so renewable 
resources, particularly wind energy, are called to play a 
vital role in the near future. This kind of energy harness 
from the wind requires particular type of turbines and 
generators. Variable Speed Wind Turbines (VSWT) using 
Doubly Fed Induction Generators (DFIG) are unceas-
ingly growing their market share now a day, since it is 
likely to track the changes in wind speed by adjusting 
the shaft speed and thus upholding the ideal power gen-
eration. Lack of stability and robustness in spite of model 
qualms and external instabilities are the main problems 
of the variable speed wind turbines. It can be resolved by 
using the sliding mode control technique.

In section II, the sliding mode control technique is 
elaborated. The steps involved in the design of a variable 
structure control are also included. The modelling of a 
small scale variable speed wind turbine is shown in sec-
tion III. The recognized model of the plant is necessary 

for the reaching law to synthesise the variable control law. 
In section IV, the variable structure controller is designed 
and a sliding mode control law is implemented to make 
the state variables to reach the desired steady state value. 
A convenient control law is proposed instead of apply-
ing classical sliding mode approaches such as the twisting 
or super twisting algorithms. The objective of the sliding 
mode controller design is the stabilisation of the vari-
able speed wind turbine. The simulation results obtained 
using MATLAB software package are shown in section V. 
The results show the convergence of the sliding variables 
to zero in a specific time, ensuring the system to reach the 
steady state values.

2. Sliding Mode Control
Sliding Mode Control (SMC) strategy also termed as 
variable structure control (VSC), is a dynamic system 
whose structure vicissitudes with the current value of 
its state1,4. The SMC system is comprised of independent 
structures, together with a switching logic between each 
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of the structures. With the proper switching logic, a vari-
able structure system can achieve the desired properties 
of each of the independent structures the system is com-
prised of. Also the system switches infinitely many times 
in a single time instant2.

Consider a plant described as,

X A x B u= +. .  (1)

y C x D u= +. .  (2)

Where x is an n-vector, u is a scalar, and A and B are of 
appropriate dimensions. The design of the variable struc-
ture control is recognised to have the following steps:

Determination of the switching function s(x) such that •	
the sliding mode on the switching plane is constantly 
stable. ie., s(x) = 0.
Determination of a control law such that a reaching •	
condition must be pleased. ie.,
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This infers that any state, starting from any initial 
state, will move toward the switching plane on the switch-
ing surface and attain the steady state in finite time1.

Instead of first establishing an analytical expression 
of a reaching condition and then designing a control law 
to meet the situation, here a different but much more 
convenient method is adopted, called the reaching law 
approach3,5. This reaching law unswervingly dictates the 
dynamics of the switching function s(x) = 0 and then, a 
VSC control law is created from the reaching law with 
recognized model of the plant and known constraints of 
perturbations. 

A convenient reaching law for the VSC of a plant is 
given by,

s q(t) qs(t) sign(t), ,= − −∈ ∈> >0 0  (4)

3.  Modelling of a Small Scale 
Variable Speed Wind Turbine

The system modelling is stimulated from the study in6. 
The mechanical equation for the generator is given by,

J N T K I Btot S G r G G. . .. . (s)Ω = + − Ω  (5)

where,

Jtot is the total inertia of the system [Kg/m2].
ΩG is the angular velocity of the generator [rad/s].
N is the gear ratio.
Tr is the force provided by the rotor [Nm].
KG is the generator’s torque constant [Nm/A].
I is the current through the generator coil [A].
B is the viscous friction coefficient for the system [Nm/
(rad/s)].
The electrical equation for the generator is given by,

U KL G G G(s) I(s)R (s)= + Ω  (6)

where,
UL is the voltage provided by the load [V].
RG is the terminal resistance of the generator [Ω].
The servomechanism can be modelled by a first order lin-
ear differential equation as,

β
π

β

π

β= +
1 1. . ref  (7)

where,
β is the pitch duty cycle.
The state, which is wanted to control, together with the 
input and output of the system, has to be recognized, in 
order to derive a state model. They are listed below:
States: The angular velocity, ΩG and the pitch duty cycle, β.
Input: Voltage on the generator terminals, UL and pitch 
duty cycle, βref.

Output: The angular velocity, ΩG.

The state space model of the system is derived using (5) 
and (6) combined with (7). 
The equation can be solved with respect to I and is given 
by,

I
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R
L G G

G

=
− Ω.

 (8)

Inserting the above equation into the mechanical differ-
ential equation for the generator, it becomes

Ω = − Ω +G
G
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ie.,

Ω = −
+

Ω +G
G

G tot
L

G G

G tot
G

r

tot

K
R J

U
K B R

R J
N T
J. .

.
.

.
.2

 (10)

Tr is linearized around a specific operating point, as it is 
a nonlinear function of together wind speed, rotor speed 
and pitch angle. The linearization is done with respect to 
ΩG and β, thus resulting in the gradient at the operating 
point as,
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ie.,
  
T B Kr r G= Ω +. .

β
β  (12)

Replacing Tr with (10), we get
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Using the following matrix notation, 

X A x B u= +. .  (14)

y C x D u= +. .  (15)

The system can now be represented by the set of matrices 
as,
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β β  (17)

In order to verify whether this model is realistic, the 
poles are calculated and both are seem to be negative. The 
motor and gear parameters have been determined from 
the datasheet as follows:

4.  Design of Variable Structure 
Controller

Consider a plant,

x(t) A. x(t) b.u(t)= +  (18)

Where x is an n-vector, u is a scalar, and A and B are of 
appropriate dimensions7. 
Consider a linear switching function as,

s xT(t) c=  (19)

Then the linear switching plane is given by,

s xT(t) C (t)= = 0  (20)

On substituting equation in equation, we get

s c A x c b uT T(t) . . (t) . . (t)= +  (21)

Solving u(t), an appropriate control is obtained as

u c A xT T(t) (c .b) . . . (t)=
−1  (22)

5. Simulation Results
To prove the effectiveness of the SMC technique in VSWT, 
a small scale variable speed wind turbine system in [6] is 
used and the parameters of that system are,
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The initial condition assumed is x T( ) [ ]0 8 9= . With the 
overhead values, the system is simulated and the results 
attained are depicted in Figure 1, Figure 2 and Figure 3.

In Figure 1, the sliding surface is shown. As can be 
noticed, s(t) reach steady state irrespective of the initial 
perturbations.
In Figures 2 and 3, the state variables, viz., the speed and 
pitch angle of wind turbine are shown. It is clear from the 

Table 1. Motor and gear parameters

S.NO Parameters Value

1. Generator torque constant, KG 38.2*10-3Nm/A
2. Viscous force coefficient, B 42.4*10-6Nm/(rad/s)
3. Gear ratio, N 1/11
4. Speed coefficient, Br 0.773*10-3

5. Terminal resistance, RG 7.19Ω
6. Total inertia of system, Jtot 199*10-6Kgm2

7. Pitch coefficient, Kβ 38.4
8. Time constant, τ 0.02s
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figures that the two variables converge smoothly to steady 
state without any overshoot.

6. Conclusion
This paper dealt with the problem of lack of stability of 
the variable speed wind turbines using sliding mode con-
trol approach which ensures system stability. The results 
obtained clearly shows that the system reach the steady 
state irrespective of the initial perturbations. 
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Figure 2. Sliding variable, Ω vs. Time.
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Figure 3. Sliding variable, β vs. Time.
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Figure 1. Evolution of the sliding surface, s(t).

0 10 20 30 40 50 60 70 80 90 100
-120

-100

-80

-60

-40

-20

0

20

40

60
Sliding Surface

Time

s(
t)


