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Abstract
A Nonlinear PID (NPID) controller tuning based on the Enhanced Artificial Bee Colony (E-ABC) algorithm is presented. 
The ABC algorithm uses the foraging behavior of honey bee swarm to find the optimal PID parameters kp, ki and kd. In this 
proposed E-ABC, the Particle Swarm Optimization (PSO) swarm intelligence behavior is inherited to ABC scout bee to get 
proper selection of food source. The convergence characteristics of the E-ABC based optimization shows that the proposed 
method provides better controller settings with minimum iteration. To show the effectiveness of the proposed method, it 
is presented to the nonlinear Continuous Stirred Tank Reactor (CSTR) process and the results are compared with the con-
ventional Internal Model Control (IMC) tuning method, and heuristic approaches viz., Genetic Algorithm (GA), Simulated 
Annealing (SA), PSO and other hybrid methods based PID performances. From the results of integral performance cri-
terions viz., ISE, IAE and ITAE, it is evident that the proposed E-ABC provides better tracking and improves closed loop 
accuracy.
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1.  Introduction 
In process industries, the PID controllers are widely pre-
ferred because of its simple architecture and robustness1. 
For linear systems, PID provides better servo and regula-
tory tracking performance, but for the complex nonlinear 
system doesn’t provide satisfactory performances1. Most 
of the processes such as CSTR, distillation column, pH 
process, etc., in industries are nonlinear in nature and 
has high dynamic process characteristics2. The controller 
design for such systems is very complex due to the pro-
cess behavior. 

The local linear model of the nonlinear process is 
derived around the steady state operating point and local 
PID controller is tuned by conventional tuning tech-
niques such as Ziegler-Nichols method, Internal Model 
Control method, etc2,3. The controller tuned for par-
ticular region will not provide satisfactory response for 

the other region. Therefore local PID is not suitable for 
shifted operating regions of nonlinear process and time 
varying process. The nonlinear PID controller designed 
through the multiple linear models overcomes this issue. 
The Takagi-Sugeno (T-S) fuzzy model2 network is used to 
formulate the multi model from the linear models. The 
interpolation of the local model using T-S fuzzy weight 
is termed as multiple model of the process. In T-S model, 
local model and its corresponding PID values are used to 
formulate the nonlinear PID which works in the varying 
operating region of the process2.

From the literatures3-5, it is observed that the conven-
tional PID tuning methods involves complex numerical 
computations to obtain controller gain values. The com-
plex computation leads to improper PID settings and 
provides poor closed loop performance for nonlinear 
process. The meta-heuristic approaches reported by 
Zwe-Lee Gaing6 are used for the proper tuning of PID 
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controllers in the complex process control. The GA, SA, 
ABC, PSO and Ant Colony Optimization (ACO) are some 
of the heuristic optimization techniques widely preferred 
to find the optimum settings of PID4-5,7-9.

The ABC swarm based heuristic algorithm proposed 
by Karaboga10, emulates the foraging behavior of honey 
bee swarms to get optimal N-PID settings. In recent 
years, ABC receives much attention among researchers 
due to its performance and simplicity11. In the bee colony 
optimization, the specialized bees are used to identify 
the food source of high nectar content in a self organized 
manner. From the responses of ABC, it is observed that 
it performs better than other heuristic techniques viz., 
GA, SA and PSO. However, it has poor local searching 
capability i.e., trapped in local minimum for the complex 
nonlinear optimization problems12. To overcome these 
issues, the ABC algorithm is modified with new search 
methods and many researchers reported the hybridiza-
tion of some Evolutionary Algorithm’s to get collective 
benefits of each12,13. 

In this paper, PSO is inherited with ABC and in this 
hybrid approach the proper selection of food source by 
scout bee is examined through knowledge of PSO bird 
flocking for food6. The scout bee’s initial food source posi-
tion is assumed randomly and made to move new position 
without colliding each other from PSO bird flocking algo-
rithm which improves scout bee searching capability. The 
fitness function of the new food source is calculated and 
the steps were repeated until the bee finds food source 
with high nectar value.

In this enhanced approach (E-ABC) the initial ran-
dom PID parameters (kp, ki and kd) are chosen as food 
source for scout bees and to find new improved food 
source, scout bees move into next food source position 
without colliding. The scout is moved until it gets the 
optimal PID settings with better nectar amount i.e., bet-
ter integral performance parameters ISE, IAE and ITAE2. 
To show the effectiveness of the proposed scheme, it is 
presented to CSTR system and an exhaustive compara-
tive study is carried out with the conventional method, 
heuristic tuning techniques and hybrid ACO-GA. The 
performance criterions viz., ISE, IAE and ITAE values of 
the proposed system shows that the E-ABC based N-PID 
provides better servo and regulatory performance than 
other methods.

The rest of the paper is organized as follows: Section.2 
explains about the Artificial Bee Colony algorithms. 
Section.3 discusses about the E-ABC optimization 

technique. Section.4 elaborates the nonlinear PID con-
troller design based on E-ABC for the nonlinear process. 
Section.5 discusses about the simulation results of the 
proposed scheme. The detailed conclusion of the work 
done is given in section.6.

2. Artificial Bee Colony Algorithm
Intelligent behavior of honey bees for searching food 
sources is the inspiration of ABC optimization algorithm 
developed by Dervis Karaboga to provide solution for 
complex nonlinear optimization problem3. ABC uses 
minimum number of algorithm parameters (colony size 
(Cs), maximum iteration count (Mi) and limit of trail (T)) 
than GA, PSO, and ACO14-19. Based on foraging behav-
ior of honey bee colonies searching for food source, the 
artificial optimization procedure consists of employed 
bees, onlooker and scout bees searching for food source 
(optimized values) with high nectar amount (fitness). 
The onlooker bees select the quality food source based 
on the employed bees information and searches for new 
variations of food sources. The scout bee replaces the 
unimproved food source or exhausted food source by 
random search and the whole search process for the food 
source is carried out until the maximum number of itera-
tion is reached. 

The steps involved in design of N-PID using ABC 
algorithm20-21 are expressed as;

Step.1: Initialization Phase
The maximum trail value (limit), number of food sources 
(NF), maximum iteration and initial PID gain values are 
taken as initial colony of artificial food sources. The initial 
food sources are calculated through the Equation (1)

= + × −, , , ,[0,1] ( )i j i j i j i jF lb r and up lb � (1)

Where
,i jF , denotes the ith food source and j refers dimension of 

the problem to be optimized.
,i jlb , denotes the lower bound of ith food source

,i jup , denotes the upper bound of ith food source 
[0,1]r and , indicates the random number between 0 and 1

Step.2: Employed Bees Phase
The employed bees are used to search neighbor food 
sources ,i jE  (New PID gain values) which is having high 
nectar value (fitness value) by the Equation (2). The par-
ent food source is replaced by the identified better food 
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source, otherwise increase the trail value of the bee cor-
responding to unimproved food source.

= + − × −, , , ,[ 1,1] ( )i j i j i j k jE F r and F F � (2)

i≠k
Where, 
k = {1, 2, . . . , NF}, 
j = {1, 2, . .  . , D} (D denotes the problem dimension), 

−[ 1,1]r and , uniform random number between [-1, 1],
,i jF , reference ith food source 
,k jF , randomly selected food source 

Step.3: Onlooker Bees Phase
The onlooker bee selects the food source based on the 
fitness function which is derived from the employed 
bee’s information. The food source which is having 
high nectar value has high probability for the selection 
by onlooker bees and it is explained in Equation (3). 
Onlooker bees search for neighbor food source around 
the selected food source using Equation (2). The fitness 
of new food source is determined and then greedy tech-
nique is employed between food sources. The trail value 
is increased for bees that correspond to unimproved 
food source. 

=

=

∑ 1

( )
( )

i NF

j

fitness ip
fitness j

� (3)

Step.4: Scout Bees Phase
In scout bee phase, the employee bee which is not able to 
find improved food (Trail value is greater than T) source 
is considered as scout bee and then search is carried out 
as shown in Equation (1).

Step.5: Stopping Condition 
If maximum iteration is reached then stop search process 
and return the best food source obtained so far, otherwise 
go to step 2; 

3.  Enhanced ABC Algorithm
From the numerous literatures collected, it is found that 
the ABC is trapped at local minimum12 i.e., within 200 
iteration. The fitness of all food sources is similar and 
there is no exploration of new food source having more 
nectar amount. If the scout bee replaces discarded food 
source with more quality food source by accessing search 
space then the convergence rate, quality of search will be 

improved. But the scout bee searches food source randomly 
which leads the slower convergence rate of ABC and pro-
vides poor global search capabilities. To overcome these 
issues, the ABC algorithm is modified with new search 
methods. In this paper, PSO6 based ABC viz., Enhanced 
ABC (E-ABC) is presented to get improved convergence 
and search. In E-ABC, the key idea is to inherit bird flock-
ing behavior to the scout bee. The scout bee in scout phase 
is assumed to be at random food source and then move 
the positions of scout bee based on simple mathematical 
relations without colliding with neighbor bee. The fitness 
function of the new food source is calculated and the fol-
lowing steps are repeated until the bee finds food source 
with high nectar value.

The E-ABC has the following steps:
/*step 1 to step 3 are similar to the existing ABC optimiza-
tion algorithm*/ 
Step.1 Initialization phase
Step.2 Employed Bees Phase 
Step.3 Onlooker Bees Phase
Step.4 Scout Bees Phase

If the food source fitness decrease below a level called 
‘limit’, the employed bee of respective food source is made 
as scout bee and then Scout bee is assigned at random 
food source, random velocities.  The social attraction 
(c1), cognitive attraction (c2), pbests and gbest are assigned as 
given in Table 1.

step.5 /*PSO phase of scout bee*/

The nectar value of food source that is identified by scout 
bees are determined and then compared with its pbests. The 
pbests is replaced by current nectar value if current food has 
more nectar value than the pbests value. Best nectar value 
among pbests is considered as gbest. [Zwe-Lee Gaing6]

Adjust the velocity of each scout bee “S” based on the 
Equation (4) 

Table 1.  PSO Initial parameters

PSO parameters Initial values

social attraction (c1) 0.5
cognitive attraction (c2) 1.25
Initial inertia Weight 0.9
Population size 20
No.of roam 50
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+

= + − + −
1 ( ) ( ) ( )

, 1 , , 2 , ,. * ( ) * *( )r r r r
j g j best j j g best j j gv q v c r and g s c r and p s

  
       +

= + − + −
1 ( ) ( ) ( )

, 1 , , 2 , ,. * ( ) * *( )r r r r
j g j best j j g best j j gv q v c r and g s c r and p s � (4)

Where,
j - Number of scout bees assigned to search for new food 
source.
g - {1, 2, . . . , D} (D denotes the problem dimension),
q - inertia weight. to increase convergence, it is decreased 
in each iteration by Equation (5)

 
−

= − ×
max min

max
max

q q
q q roam

roam � (5)

Where, 
maxroam  - Maximum number of generations carried out in 

modified scout bee phase
roam - denotes current generation in modified scout bee 
phase
qmax=maximum inertial weight
qmin=minimum inertial weight
the selection of c1 and c2 also has significance if c1 is more, 
the acceleration towards gbest increases and if c2 is  cho-
sen to larger value then the acceleration towards pbests 

increases.

Step.6 /*check to avoid collision*/
The velocity adjustment is made to obey following con-
straints to avoid collision.

if +

>
1 max

,
r
j g gv v  then +

=
1 max

,
r
j g gv v � (6)

if +

<
1 min

,
r
j g gv v  then +

=
1 min

,
r
j g gv v � (7)

Step.7 /*position update*/
The calculated velocity is added with each scout bee to 
update its position based on   Equation (8) and Equation 
(9)

+ +

= +
( 1) ( ) 1
, , ,
r r r

j g j g j gs s v � (8)

+

≤ ≤
(min) ( 1) (max)
, , ,

r
j g j g j gs s s � (9)

Step.8 : increment the roam.
Step.9 : If maximum roam (Mr) is reached, then latest food 
source belonging to latest gbest is treated as best fluctuated 
food source and go to step 10 else go to step 5
Step.9 : Stopping condition

If maximum iteration is reached then stop the algorithm for 
searching new food source and return the best food source 
obtained so far as global best parameter else go to step 2.

4.  �E-ABC Based NPID for CSTR 
Process

The Schematic diagram of the CSTR process used in 
this work is shown in Figure 11. Inlet coolant stream 
with a volumetric flow rate qc, and inlet temperature Tcf 
continuously takes out the heat to maintain the desired 
reaction temperature and concentration. The proposed 
E-ABC is presented to design proper controller for the 
process to get improved tracking and closed loop per-
formance. 

The nonlinear CSTR process is characterized by the 
nonlinear differential Equation (10) and Equation (11)8 
and its initial parameters are given in Table 2.

= − + −

  
+ − − −  

   

1

3
2

( ( )) ( )exp( )
( )

( ) 1 exp ( ( ))
( )

f
f

c cf
c

qdT ET T t K C t
dt V RT t

K
K q t T T t

q t

� (10)

 
= − − −

 
 

0( ( )) ( )exp
( )

f
f

qdC EC C t K C t
dt V RT t

 � (11)

The linear model of the CSTR is derived around the steady 
state operating point and PID controller is tuned for each 
identified operating point by IMC tuning method2. The 
locally tuned PID controllers are not suitable for the non-
linear process, due to the process condition variations. The 

Figure 1.  CSTR process.
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Nonlinear PID (NPID) controller tuned through multi 
model technique can eradicate these issues. The overall 
behavior of the nonlinear system can be described by 
combining the individual linear system behavior derived 
from the T-S model2. There are two methods used to 
obtain the linear model from the fuzzy model around the 
steady state operating point. The first one is based on the 
interpolation of T-S between linear models and second 
one is based on the Taylor series expansion of the linear 
model. In first method, the rule associated with particular 
local model of the system can be defined as,

−

= +


=



1 1 1 1: ( ) ..... ( )
( ) ( ) ( )
( ) ( )

i i

i i

i

Rule i IF Z t is M and Z t is M
x t A x t B u t

THEN
y t C x t

� (12)

i= 1,2,…..,r
where, ∈( ) nx t R is the state vector, ∈( ) mu t R is the input 
vector, ×

∈
n n

iA R , ×

∈
n m

iB R , ×

∈
q n

iC R  and {z1(t), z2(t),…
,zp(t)} are nonlinear functions derived from the nonlinear 
systems and Mij(zi)s are the degree of membership of zi(t) 
in a fuzzy set Mij. The output of the fuzzy model can be 
expressed as,

=

−

= +

=

∑

∑

 1
1

1
1

( )[ ( ) ( )]

( ) ( ) ( )

r

i i
i

r

i
i

x h z A x t B u t

y t h z C x t
� (13)

Where,

1
1

1
1

1
1
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r
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j

w z
h z

w z

w z M Z

=

=
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=

∑

∏

The grade of membership function is expressed as

=

∈ =∑
1

( ) [0,1]; ( ) 1
N

i i
i

h z and h z

The identified local operating regions and its correspond-
ing PID settings used in local PID and NPID are given in 
the Table 3.

The classical IMC tuning approach has limitations that 
the filter time constant (λ) value is chosen through trial 
and error method. It leads the poor tracking performance 
and closed loop performance. Recently, the modern opti-
mization technique ABC18-19 is used to find the optimal 
settings of the N-PID. The E-ABC is presented to the non-
linear CSTR process as shown in Figure 2.

The steps involved in E-ABC based NPID are,
Step.1: �Algorithm parameters initialization phase, ran-

domly generated PID gain values are taken as 
initial artificial food sources.

Table 2.  CSTR initial parameters

Inlet flow rate (qi),100 l/m Inlet temperature (Ti), 350K
Inlet concentration (Ci), 1mol/l Coolant temperature (Tcf), 350K
Volume of the tank (V),100 L Activation energy (E/R),104K
K1= 1.44xe13 Kl/min/mol K2= 0.01/l
K3= 700 l/m K0= 7.2e10

Table 3.  CSTR operating regions and Local PID settings

Operating point Kp,i Tr,i Td,i

At qc=97;Ca0= 0.0795;T0= 443.4566 119.4321/λ 0.3367 0.1926
At qc=100; Ca0=0.0885; T0= 441.1475 92.6928/ λ 0.2973 0.2546
At qc=103; Ca0=0.0989; T0= 38.7763 67.4294/ λ 0.2491 0.3601
At qc=106; Ca0=0.1110; T0= 436.3091 43.2812/ λ 0.1876 0.5792
At qc=109; Ca0=0.1254; T0= 433.6921 19.1813/ λ 0.1037 1.3124
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Step.2: �Employed bee phase-Search new PID gain values 
and replace the parent if it is better. Increase the 
trail value of the bee corresponding to the unim-
proved food source.

Step.3: �Scout bee phase-compute gbest and Pbest

Step.4: �Find new PID values (food source) from new 
velocity and avoid collision. 

Step.5: �go to step.3 if maximum roam is not reached else 
go to step.6.

Step.6: �Keep the best solution achieved and Increment the 
cycle.

Step.7: �If maximum iteration is not reached then go to 
step.2 otherwise stop the algorithm.

The cost function to be minimized by ABC and E-ABC is 
taken as ISE and IAE. The performance of the controller is 
verified by evaluating the integral performance functions 
described in Equation (14).
Integral Absolute Error

∞

= ∫
0

( )IAE e t dt

Integral Squared Error � (14)
∞

= ∫
2

0

( )ISE e t dt

5.  Simulation Results
The proposed E-ABC based NPID is presented to the CSTR 
process and the performance is compared with its counter 
parts viz., GA, SA, PSO, ABC and hybrid GA - ACO. From 
the convergence characteristics shown in Figure (3), it is 
found that E-ABC converges quickly within 100th itera-
tion compared to ABC which demonstrates optimization 
capabilities of E-ABC. The comparison results of mean, 
median and standard deviation of convergence character-
istics of E-ABC and ABC are given in Table 4.

From table 4 it is clear that the proposed E-ABC has 
quick convergence as the meadian value is less than the 
mean value of ABC based optimisation. Lower standard 
deviation of E ABC convergence characteristics indicates 
that the search has more acceleration towards the global 
minimum.

The E-ABC based tuned PID parameters for the 
selected operating regions are further combined through 
fuzzy model to form the NPID. After obtaining the 
optimal controller value, the servo and regulatory track-
ing perfromances of the EABC are obtained. From the 
curves shown in Figure 4-6, it is observed that the E-ABC 
has better tracking and closed loop perfromance for the 
compex nonlinear system.

Table 4.  Mean, Median and Standard  
deviation of convergence characteristics

Optimization  
technique Mean Median

Standard  
deviation

ABC 2.514 2.48 2.514
E-ABC 2.423 2.327 2.423
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Figure 4.  Servo tracking perfromance of EABC.
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Figure 6.  Regulatory tracking perfromance of EABC.
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Figure 7.  Servo responses of EABC based NPID.

The integral performance criterions such as ISE, IAE 
and ITAE values for chosen PID parameters against 
sampling instants points are obtained to show the perfor-
mance of the propose scheme. The observed values listed 
in Table 5 used to evaluate the error during the valida-
tion. For proper PID settings, ISE, IAE and ITAE should 
be made lesser. The performance of designed non linear 
PID controller for different set point profile is shown in 
Figure 7 (a) to (d).

The obtained IAE values of E-ABC against different 
sampling instants are compared with its counterparts. 
From the comparison results given in Table 6, it is observed 
that the EABC provides better IAE = 1.8639e-6 and ISE = 
1.7576e-3 for 100 to 150 sampling instants. The graphical 
representation of the IAE values is given in Figure 8.

The white noise is injected to the system to show the 
effectiveness of the E-ABC. The noise rejection perfor-
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mance of proposed E-ABC based N-PID is compared 
with conventional ABC based N-PID is shown in Figure 9 
and the corresponding ISE, IAE and ITAE values given in 
Table 7 demonstrates the better noise rejection capabili-
ties of E-ABC based N-PID compared to its counterpart.  

The values of ISE and IAE for different sampling 
instants show that the effectiveness of the proposed 
scheme. Thus the proposed E-ABC provides much bet-
ter performances for the complex nonlinear systems than 
any other methods.

6.  Conclusion
In this paper, we have proposed a novel scheme for 
improving the searching ability of Artificial Bee Colony 
algorithm in designing a Nonlinear PID control (N-PID) 
scheme for the nonlinear CSTR plant. The proposed con-
troller has good set point tracking, disturbance rejection 
capabilities at nominal and shifted operated points and 
robustness properties. Further, the performance of the 
E-ABC based NPID is compared with other heuristic 
approaches. The proposed NPID helps to reduce the num-
ber of computations needed good servo and regulatory 
action. Hence the proposed ABC-PSO based optimiza-
tion can be considered as an alternative to conventional 
optimization algorithms.
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Figure 9.  Performance comparison of E-ABC and 
ABC based N-PID in the presence of measurement 
noise.

Table 7.  IAE Values of E-ABC based NPID  
corresponds to noise rejection

Sampling  
Instants

Type of  
Tuning

Integral  
Performances

100 - 150 ABC ISE 2.1778e-5
IAE 2.7449e-2

E-ABC ISE 1.6968e-5
IAE 2.3393e-2

200 – 250 ABC ISE 2.5169e-5
IAE 3.0045e-2

E-ABC ISE 1.3698e-5
IAE 2.1777e-2

Table 6.  IAE values comparison

Sampling Instants Type of Tuning IAE

300 - 350 IMC 3.0727e-4
GA 5.3003e-5
SA 2.9237e-4
PSO 1.9416e-5
EGA 3.1879e-5
ABC 8.7933e-5
E-ABC 7.1745e-6

Table 5.  ISE, IAE and ITAE values of the E-ABC

Sampling Instants Type of Tuning Integral Performances

0 - 50
ABC ISE 7.2817e-4

IAE 7.2817e-4

E-ABC ISE 6.6905e-4
IAE 6.6905e-4

100 - 150
ABC ISE 1.7576e-3

IAE 1.5702e-1

E-ABC ISE 1.3952e-3
IAE 1.3132e-1

300 – 350
ABC ISE 5.0102e-10

IAE 8.7933e-5

E-ABC ISE 4.5727e-12
IAE 7.1746e-6
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