
Abstract 
To design and implement a task scheduling model which predicts a schedule for a new task set without actually  running 
a task scheduling algorithm. Generating an optimal schedule of tasks for an application is critical for obtaining high 
performance in a heterogeneous computing environment and it is a hard problem. This work attempts to optimize on 
the scheduling time by designing a task scheduling model. The task scheduling algorithm used in this work is based on 
ACO, a swarm intelligence model. The prediction is done after the training phase of the model. The model is validated 
by comparing the predicted schedule with the actual schedule obtained by running the ACO scheduling algorithm on 
the new task set. The parameters used for comparison are waiting time of tasks, average processor utilization and the 
scheduling time. The predicted schedule is comparable to the actual schedule with respect to waiting time of tasks and 
average processor utilization. The scheduling time is significantly reduced and the reduction in the scheduling time 
increases with the increase in the task set size.

Task Scheduling Model 
G. Umarani Srikanth1*, V. Uma Maheswari2, A. P. Shanthi3 and Arul Siromoney4

1S. A. Engineering College, Chennai, India; gmurani@saec.ac.in 
2Department of Information Science and Technology, Anna University, Chennai, India 

3, 4Department of Computer Science and Engineering, Anna University, Chennai, India

Keywords: ACO (Ant Colony Optimization), Ant Systems, Clustering, Heterogeneous Multiprocessors, Optimization 
Techniques, Task Scheduling

1. Introduction 

The heterogeneous architecture1 meets the computational 
demands of large number of emerging applications. One 
of the key challenges of such heterogeneous processor 
systems is effective tasks scheduling. The problem of 
scheduling tasks to processing units has a major impact 
on the performance of a system. The task scheduling 
problem2 deals with mapping each task of the application 
onto the available processors in order to optimize certain 
parameters like the length of the makespan, utilization 
of the processor, cache performance, power consump-
tion, workload balance, scheduling penalties and switch 
cost. The scheduling problem is a computationally hard 
problem and researchers have been working on applying 
non-conventional computing paradigms11 for solving this 
problem. 

Nature can be used as a source of inspiration for the 
development of new techniques for solving complex 

 computational and engineering problems3. Among all 
 natural computing approaches, bio-inspired systems4 
apply more heuristics or meta-heuristics to problems 
that could not be satisfactorily resolved by other more 
traditional techniques. The solutions they produce are 
approximate rather than precise, involve randomness 
for fault tolerance and unplanned change and provide 
probabilistic decision making. ACO is a swarm intel-
ligence model13 motivated by the foraging behaviour of 
real ants. The core of this behaviour is the indirect com-
munication between the ants by their pheromone trails 
that they deposit on their way to search for food sources. 
A major advantage of ACO is that it can be adapted to the 
 changing problem instances dynamically.

An approach based on ACO5,14 that explores different 
designs to determine an efficient hardware-software par-
titioning, to decide the task allocation and to establish the 
execution order of the tasks, dealing with different design 
constraints imposed by a reconfigurable heterogeneous 

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(S7), 33–42, April 2015
ISSN (Print) : 0974-6846 

ISSN (Online) : 0974-5645



Task Scheduling Model 

Indian Journal of Science and TechnologyVol 8 (S7) | April 2015 | www.indjst.org34

MPSoC was proposed by Ferrandi6. The methodology 
determines the mapping and scheduling of the input 
application on the target architecture minimizing its 
overall execution time.

An artificial immune system for heterogeneous multi-
processor scheduling with task duplication known as the 
Artificial Immune System with Duplication (AISD) was 
proposed by Lee7. It first generates and refines a set of 
schedules using a modified clonal selection algorithm and 
then improves the schedules with task duplication. The 
AISD algorithm schedules tasks in a task graph via three 
carefully designed phases: clonal selection, task duplica-
tion and ineffectual task removal. A heuristic algorithm 
for tasks scheduling based on an evolutionary method 
which embeds a fast technique called Elitism stepping 
to decrease the computation time for finding an optimal 
schedule was proposed by Rahmani8. 

An approach for mapping and scheduling task graphs 
for heterogeneous hardware/software computing sys-
tems12 using heuristic search was proposed by Lam9. Two 
techniques were proposed to enhance the speedup of map-
ping/scheduling solutions: one is an integrated technique 
combining task clustering, mapping, and scheduling, 
and a multiple neighbourhood function strategy which 
starts with a feasible solution and attempts to improve it 
by searching its neighbours. This process is repeated until 
a local optimum or the termination condition is reached 
and search ends when neither neighbourhood function 
produces better solutions.

2. Task Scheduling Problem 
The characteristics of the processors and tasks assumed in 
the scheduling problem considered are given below: 

2.1 Processor Characteristics 
The processors are assumed to be heterogeneous. •	
The heterogeneity of the processors is modelled by •	
the varied proportional utilization of the same task on 
 different processors. 
Many tasks can be scheduled on the same processor.•	

2.2 Tasks Characteristics 
Tasks are assumed to be non-real time and •	
 independent. 
There are no precedence constraints among them. •	
There is no inter-task communication. •	

The utilization of a processor by a task is known  apriori •	
and it does not change with time. 
All the tasks are assumed to arrive at the same •	
instant. 
There is no task migration. •	

Let the set P = {P1, P2,…, Pm} denote m heterogeneous 
processors with each Pj running at variable speed. T = {T1, 
T2,…, Tn}be the set that denote n tasks. Each task Ti is 
characterized by uij where uij is the worst case execution 
time of the task Ti on processor Pj and is given in a utiliza-
tion matrix U. The number of rows of the matrix U equals 
the number of tasks and the number of columns equals 
the number of processors. In other words, the order of the 
matrix is n∗m and the elements of U are real numbers in 
the range (0, 1). They specify the maximum proportional 
time of the processors used by the tasks. A sample utiliza-
tion matrix is shown in Table 1.

Task Scheduling Problem can now be formally stated as 
follows: Given T and P, determine a schedule that assigns 
each of the tasks in T to a specific processor in P, in such 
a way that the cumulative utilization of the tasks on any 
processor is no greater than the utilization bound of that 
processor which is 1.0. This problem is represented by a 
bipartite graph with the two classes of nodes, T and P. A 
task is mapped to a T node and a processor is mapped to a 
P node. The graph is a directed graph with the edges leav-
ing from the set of task nodes to the set of processor nodes. 
There is a directed edge from a T node to a P node, if and 
only if the corresponding task can be assigned to that pro-
cessor, without exceeding its available computing capacity. 

A schedule can be represented as n∗m binary matrix. 
A typical entry of this matrix is denoted as sij. The entry  
sij = 1 if task Ti is scheduled on processor Pj. It is noted that 
there are no two 1’s in the same row as a task is assigned to 
only one processor. A column can have many 1’s indicat-
ing that all the corresponding tasks are scheduled on that 
specific processor. But the proportional utilization of all 
the tasks on a processor should not exceed 1 as shown by 
the equations (1) and (2).

Table 1. Utilization matrix with 4 tasks and  
3 processors

P1 P2 P3

T1 u11 u12 u13

T2 u21 u22 u23

T3 u31 u32 u33

T4 u41 u42 u43



G. Umarani Srikanth, V. Uma Maheswari, A. P. Shanthi and Arul Siromoney

Indian Journal of Science and Technology 35Vol 8 (S7) | April 2015 | www.indjst.org

In other words,

 
m

ij
j 1

S
=
∑ = 1 for i = 1, 2, ... , n (1)

 
n

ij ij
i 1

u S
=

∗∑  ≤ 1 for j = 1, 2, ..., m (2)

3.  Task Scheduling Model using 
ACO

Ant System (AS) is the first ACO algorithm proposed 
in the literature10. Its main characteristic is that, at each 
iteration, the pheromone values are updated by all the m 
ants that have built a solution in the iteration itself. The 
algorithm is said to converge when all the ants arrive at 
the same solution and the iteration is terminated.

Given the sets T and P, an artificial ant stochastically 
assigns each task to one processor until each of the tasks 
is assigned to some specific processor. An artificial phero-
mone value τij is introduced with an edge between Ti and 
Pj that indicates the favorability of assigning the task Ti to 
the processor Pj. After each iteration, the pheromone value 
of each edge is reduced by a certain percentage to emulate 
the real-life behavior of evaporation of  pheromone count 
over time. 

The pheromone τij, associated with the edge assign-
ing task i to the processor j, is updated as given in 
Equation (3).

 
m

k
ij ij ij

k 1

(1 ).t t t
=

= − ρ + ∆∑  (3)

where, ρ is the evaporation rate, m is the number of ants, 
and ∆tij

k is the quantity of pheromone laid on edge (i, j) by 
ant k. When ant k is trying to schedule task i and has so 
far constructed the partial solution sp, the probability of 
choosing processor j is given by the equation (4).

 
il

ij p
ijpk

ilij c

if C N(s )
N(s )p

0 otherwise

τ
∈ ∈ τ= 




∑  (4)

where, N(sp) is the set of feasible components, that is 
edges (i, l) where, l is a processor that can be assigned to 
task i by the ant k. 

The feasibility of the schedule is verified after all 
the tasks are considered for scheduling by an ant. If the 

total utilization of a processor exceeds 1.0, the schedule 
 generated by that ant is infeasible. If the schedule is fea-
sible, its quality q is computed by considering the total 
utilization of all the processors in that schedule. This 
quality is used in the pheromone update of the next itera-
tion by this ant indicated by the equation (5).

 kk
ij

u if ant is assigned task to processor
0 otherwise
Q K i j

t
∗

∆ = 


 (5)

where, Q is a constant, and uk is the utilization of all the 
processors in the schedule generated by ant k. This pro-
cedure is repeated for all the ants. Then at the start of the 
next iteration, the pheromone update of the edges is done 
using the equation (3).

The ACO algorithm is adapted in this work to 
 incorporate the following features: 

The algorithm should take only a reasonable amount •	
of time to come up with a decisive answer, generat-
ing a feasible schedule if possible or indicating that no 
such schedule exists.
Negligible amount of pheromones are not used for •	
updation by an ant to avoid scattering of the search by 
the ants in that iteration. 

To ensure the first feature, both a predefined upper 
bound for the number of iterations as well as an admis-
sible deviation of quality between the multiple schedules 
generated by the ants are used and the second feature is 
implemented by using a simple rounding off procedure. 
The admissible deviation of quality between the multiple 
schedules is chosen heuristically to fit the experimental 
data. The ACO algorithm used in the proposed model is 
given below:

3.1 Procedure: Task Scheduling Algorithm 
do while ((number of iterations is less than a predefined 
value) and (standard deviation of the quality of the 
 schedules of all the ants is greater than a threshold))

{
 for each ant k
 {
  for each task i 
  {
    Se lect the processor stochastically using the τ 

matrix
  }



Task Scheduling Model 

Indian Journal of Science and TechnologyVol 8 (S7) | April 2015 | www.indjst.org36

  If the schedule is feasible, compute its quality. 
 }
  Up date the pheromone based on the quality of each 

feasible schedule 
 Generate the τ matrix for the next iteration
}
end while

Thus the iterations continue till the number of iterations 
exceed a particular predefined value or the standard 
deviation of the quality of the solutions obtained by the 
ants is less than a small threshold value. The initial value 
of the threshold is computed based on the quality of the 
solutions obtained by the ants in the first iteration. If 
the process terminates because the number of iterations 
exceeds a threshold value, it is assumed that a feasible 
schedule is not obtained. This ensures that if at all a sched-
ule is arrived at, it is done so within a reasonable amount 
of time. But, if the process terminates because the stan-
dard deviation is below the threshold value, then it means 
that the ants have come up with schedules that approxi-
mately have the same quality. If the standard deviation is 
zero, it means that all the ants come up with the same 
schedule. The schedule with the maximum quality, when 
the algorithms terminates, is chosen as the best approxi-
mate schedule. 

4. Task Scheduling Model 
Given a set of tasks and a set of processors, this model 
predicts how the given set of tasks can be scheduled on 
the set of processors. Initially, a task set model that cap-
tures the features of a set of tasks is defined. Then two 
phases, namely a training phase and a testing phase are 
used. In the training phase, a sample set of task sets are 
used to generate a task set model. In the test phase, when 
a new task set arrives, this is fitted into the model and an 
appropriate schedule is predicted.

4.1 Task Set Model
The task set T = {T1, T2, …, Tn}, the processor set P = {P1,  
P2, …, Pm} and the utilization matrix U are considered. 
Each task is modeled as a point in the m-dimensional 
space, where, each coordinate specifies the proportional 
utilization of the corresponding processor by that task. The 
features of a task set T of size n is obtained by clustering 
them using the Euclidean distance in the m- dimensional 
space, as the distance metric. Let {C1, C2, C3,…, Ck} be the 

k clusters obtained after the convergence of the clustering 
algorithm and let c1, c2, c3,…ck be the respective cluster 
heads. A task Ti belongs to a cluster Cr, with 1 ≤ r ≤ k, if 
and only if for |Ti – cr| < |Ti – cs| for 1 ≤ s ≤ k and s ≠ r. 
In other words, the task Ti is closer to the cluster head cr 
in the m-dimensional space, when compared to the other 
cluster heads. Tasks that belong to a cluster Cr are repre-
sented by the cluster head cr of Cr. Thus the task set T is 
now modeled by the k-cluster heads c1, c2, c3,…, ck. 

4.2 Training Phase
A problem set with a given number of tasks, say n, is 
considered. For each problem set, many different prob-
lem instances, say p, are used in the training phase. The 
different instances are obtained by generating different 
utilization matrices randomly. Clustering technique is 
applied on each problem instance to come up with k clus-
ters. Thus, p problem instances result in p sets of cluster 
heads, cij for 1≤ j≤ k and 1 ≤ i ≤ p. 

4.3 Testing Phase
When a new task set of the same size R = {R1, R2, …, 
Rn} arrives, its features are obtained by applying clus-
tering again and this results in R being modeled by the 
k  cluster heads, h1, h2,…, hk. The distance of this point 
(h1, h2, …, hk) from the other p points (c11, c12, …, c1k), 
(c21, c22 …, c2k), …, (cp1, cp2, …, cpk) in the k-dimensional 
space is computed and the closest point (cq1, cq2, …, cqk) is 
obtained. The schedule of that task set Tq = {Tq1, Tq2, …., 
Tqk) is used as the schedule for the new task set R. 

5. Experimental Illustration 
The artificial pheromone value τij associated with the edge 
between Ti and Pj indicates the favorability of assigning the 
task Ti to the processor Pj. Initially τij = 0.9 and is the same 
for all i, j. After each iteration, the pheromone value of each 
edge is reduced by a certain percentage to emulate the real-
life behavior of evaporation of pheromone count over time. 
The fraction ρ = 0.7 specifies the percentage of the τ value 
after evaporation. (ie) 0.3 is the evaporation rate. The num-
ber of artificial ants is 30. Each ant behaves as follows: From 
a node i in T an ant chooses a node j in P with a probability 
given by equation (6).

 m

j 1

(i, j)
p(i, j) =

(i, j)

t

t
=∑

 (6)



G. Umarani Srikanth, V. Uma Maheswari, A. P. Shanthi and Arul Siromoney

Indian Journal of Science and Technology 37Vol 8 (S7) | April 2015 | www.indjst.org

After all the tasks are considered and scheduled by 
an ant, the feasibility of the schedule is verified using the 
utilization value of individual processors. If any proces-
sor’s utilization exceeds 1.0, that schedule is infeasible. 
This procedure is repeated for all the ants. The quality q 
of a feasible schedule S generated by an ant in each itera-
tion is computed by considering the total utilization of all 
the processors in that schedule. This quality is used in the 
pheromone update of the next iteration by all the ants. 

A task set of size 100 is initially used in the experi-
ment. Five different instances of this task set are obtained 

by randomly generating five different utilization  matrices. 
The parameters considered in this experiment are utili-
zation of each processor, waiting time of all the tasks and 
time taken to schedule all the tasks. For each instance of 
the problem set, ten trials are run using the ACO sched-
uling algorithm and the average values of the parameters 
are taken. Table 2–6 give the individual processor utili-
zation for a task set of size 100 for all the five instances 
respectively. Table 7 and Table 8 show the waiting time 
of the tasks and time taken to generate the schedule in 
all the ten trials of each of the five problem instances 

Table 2. Individual processor utilization of a task set of size = 100 first instance

Rocessor Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Average 
utilization

1 0.413703 0.527835 0.759492 0.368078 0.818287 0.531584 0.656709 0.556856 0.550655 0.60811 0.579131
2 0.465838 0.716416 0.606374 0.361955 0.414037 0.845718 0.79616 0.715078 0.690003 0.961006 0.657259
3 0.346468 0.764075 0.563849 0.754195 0.76058 0.321832 0.352593 0.33897 0.670561 0.620627 0.549375
4 0.800592 0.661120 0.726056 0.638663 0.771742 0.673483 0.763649 0.935698 0.746938 0.553215 0.727116
5 0.939105 0.666653 0.767261 0.793756 0.54394 0.350056 0.542122 0.561706 0.345391 0.440268 0.595026
6 0.699677 0.648393 0.479349 0.993661 0.631545 0.620272 0.674913 0.928157 0.585322 0.556859 0.681815
7 0.659984 0.499031 0.570098 0.755576 0.703374 0.832122 0.761722 0.654445 0.937608 0.603846 0.697781
8 0.933425 0.538215 0.578458 0.554701 0.510611 0.922294 0.61252 0.401758 0.718417 0.806388 0.657679

Table 3. Individual processor utilization of a task set of size = 100 second instance

Processor Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Average 
utilization

1 0.731105 0.798559 0.734617 0.750054 0.726444 0.357452 0.516309 0.730192 0.50033 0.753086 0.659815
2 0.447411 0.715992 0.570651 0.359584 0.265511 0.924930 0.843706 0.749056 0.796321 0.737841 0.641101
3 0.572643 0.585837 0.719415 0.932287 0.627847 0.729305 0.573040 0.843833 0.888720 0.814273 0.728720

4 0.546675 0.722299 0.669631 0.304413 0.749396 0.997606 0.626001 0.520975 0.721247 0.499652 0.635790
5 0.713665 0.730978 0.563915 0.941972 0.874157 0.239742 0.631290 0.644438 0.490126 0.747638 0.657792
6 0.792016 0.253331 0.752405 0.673835 0.836839 0.533675 0.604147 0.412564 0.461671 0.501015 0.582150
7 0.815005 0.647274 0.622974 0.721718 0.641724 0.536861 0.912519 0.727163 0.694161 0.700773 0.702017
8 0.546834 0.640900 0.492352 0.461703 0.588611 0.773347 0.538767 0.715569 0.595334 0.614859 0.596828

Table 4. Individual processor utilization of a task set of size = 100 third instance

Processor Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Average 
utilization

1 0.944845 0.867274 0.999289 0.803829 0.474314 0.936325 0.836471 0.912032 0.579059 0.861971 0.821541
2 0.804091 0.598781 0.485220 0.768768 0.713901 0.584034 0.704375 0.534443 0.482748 0.747376 0.642374
3 0.678477 0.643900 0.737542 0.855079 0.754509 0.471878 0.681918 0.935404 0.605228 0.565322 0.692926
4 0.35286 0.723364 0.873899 0.315845 0.524152 0.325829 0.416450 0.382965 0.762690 0.620151 0.529821
5 0.639758 0.597195 0.252950 0.438664 0.818726 0.997745 0.517425 0.274078 0.739661 0.415433 0.569164
6 0.525891 0.54989 2 0.451679 0.380050 0.647040 0.577496 0.513544 0.671255 0.810786 0.662634 0.579027
7 0.773149 0.516663 0.633433 0.612384 0.795906 0.741715 0.691628 0.580420 0.798279 0.571460 0.671504
8 0.432872 0.799162 0.715053 0.794089 0.445922 0.555776 0.779642 0.805213 0.651113 0.910634 0.688948



Task Scheduling Model 

Indian Journal of Science and TechnologyVol 8 (S7) | April 2015 | www.indjst.org38

Table 5. Individual processor utilization of a task set of size = 100 fourth instance

Processor Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Average 
utilization

1 0.612214 0.771018 0.625425 0.741519 0.699507 0.464626 0.790185 0.549219 0.810997 0.436568 0.650128

2 0.494135 0.669769 0.887355 0.774805 0.674145 0.284716 0.761862 0.596420 0.580299 0.873629 0.659714

3 0.671951 0.681593 0.736429 0.507989 0.478969 0.716511 0.605460 0.742051 0.619422 0.741878 0.650225

4 0.404957 0.674895 0.515171 0.329792 0.837037 0.603247 0.737038 0.836448 0.750020 0.659656 0.634826

5 0.861800 0.632520 0.956147 0.737529 0.508371 0.650479 0.667373 0.768223 0.683979 0.513034 0.697946

6 0.650784 0.546660 0.427914 0.683030 0.884145 0.941375 0.670779 0.436622 0.713392 0.619103 0.657380

7 0.512057 0.550765 0.556660 0.623390 0.554956 0.682246 0.617766 0.505315 0.463815 0.948338 0.601531

8 0.726130 0.764544 0.433677 0.615883 0.522790 0.730002 0.441989 0.662984 0.654819 0.512546 0.606536

Table 6. Individual processor utilization of a task set of size = 100 fifth instance

Processor Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Average 
utilization

1 0.719749 0.510794 0.567254 0.700115 0.892775 0.892775 0.717473 0.617559 0.862472 0.53964 0.702061

2 0.883496 0.822381 0.630889 0.945138 0.832658 0.832658 0.690349 0.747878 0.476908 0.731456 0.759381

3 0.818752 0.417144 0.801810 0.80304 0.677994 0.677994 0.98596 0.401228 0.424293 0.79695 0.680517

4 0.761083 0.685494 0.994338 0.565567 0.853777 0.853777 0.646977 0.935643 0.56519 0.739703 0.760155

5 0.649709 0.835244 0.486924 0.782676 0.405674 0.405674 0.341426 0.587329 0.652891 0.842251 0.598980

6 0.536061 0.399638 0.811698 0.248848 0.188748 0.188748 0.706742 0.485563 0.945826 0.641349 0.515322

7 0.368148 0.717534 0.425266 0.734474 0.787811 0.787811 0.674983 0.493009 0.606300 0.321399 0.591674

8 0.474365 0.815519 0.650012 0.513540 0.752264 0.752264 0.563674 0.809527 0.768574 0.550777 0.665052

Table 7. Waiting time of a task set of size = 100 for all 5 instances

Instances Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 0.345898 0.290868 0.308291 0.350713 0.305333 0.314591 0.3098 0.338039 0.328943 0.330861
2 0.326957 0.333458 0.283039 0.333556 0.307403 0.328069 0.315484 0.323964 0.322055 0.333663
3 0.293618 0.298907 0.325333 0.307282 0.328464 0.308047 0.28521 0.316875 0.297353 0.288269
4 0.300422 0.320143 0.316751 0.297545 0.304444 0.320602 0.321953 0.322758 0.311316 0.331571
5 0.302223 0.312427 0.309568 0.320378 0.339915 0.339915 0.323188 0.309714 0.284431 0.302617

Table 8. Scheduling time of a task set of size = 100 for 5 instances

Instances Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 0.43956 0.824176 0.604396 0.494505 0.604396 0.549451 0.494505 0.549451 0.494505 0.549451
2 0.659341 0.604396 0.549451 0.549451 0.549451 0.604396 0.659341 0.604396 0.714286 0.549451
3 0.714286 0.604396 0.604396 0.714286 0.659341 0.549451 0.549451 0.604396 0.494505 0.494505
4 0.659341 0.494505 0.604396 0.714286 0.714286 0.824176 0.659341 0.714286 0.494505 0.494505
5 0.604396 0.604396 0.604396 0.549451 0.494505 0.494505 0.549451 0.659341 0.604396 0.714286

respectively. The schedule with maximum quality out 
of the ten approximate schedules generated in the ten 
trials is assumed to be the schedule for that problem 
instance. 

The characteristics of each instance of the problem 
set is arrived at by applying k-means clustering algorithm 
with k = 4. The set of four cluster heads describe each 
instance of the problem set. So the five instances of the 



G. Umarani Srikanth, V. Uma Maheswari, A. P. Shanthi and Arul Siromoney

Indian Journal of Science and Technology 39Vol 8 (S7) | April 2015 | www.indjst.org

problem set generate five sets of four cluster heads. This 
completes the training phase. 

In the testing phase, a new problem instance of a 
set of 100 tasks is obtained by generating another utili-
zation matrix randomly. Its characteristics are obtained 
by forming them into four clusters. Then the schedule of 
that instance of the training set, that resembles this task 
set most closely, is predicted as the schedule for this new 
task set. Then the ACO scheduling algorithm is run on 
the new problem instance and the parameter values and 
the schedule are obtained. A comparison between the 
schedule predicted and the actual schedule obtained by 
running ACO is done based on the parameters: time taken 
to arrive at the schedule and the quality of the schedule 
and the results are tabulated. ACO scheduling algorithm 
is run on the new task set of size 100 and the individual 
processor utilization of the actual schedule obtained is 
shown in Table 9. Table 10 shows the individual proces-
sor utilization for that problem instance of the task set 
of size 100 that most closely resembles the new task set.  
A comparison between the two tables illustrates how 

closely the predicted schedule is to the actual schedule 
based on individual processor utilization.

The above process is done for three more problem sets 
of sizes 120, 140 and 160 and the results are tabulated. 
Tables 11–16 show the individual processor utilization for 
the actual and predicted schedules for the task sets of sizes 
120, 140 and 160 respectively. Table 17 compares all the 
three parameters of the actual and predicted schedules for 
all these 4 problem sets. 

Figure 1 represents pictorially the individual proces-
sor utilization of the actual and predicted schedules for 
the task sets of sizes 100, 120, 140 and 160. It is found 
from Figure 1 that the total processor utilization is almost 
the same for the predicted and actual schedules. Figure 2 
gives a comparison of utilization of each processor, the 
waiting time of all the tasks and the time taken to schedule 
all the tasks for the actual and the predicted schedules for all 
the four problem sets. 

The results show that all the three parameters are 
almost equal for the predicted and actual schedules. The 
prediction of a schedule for a new instance of a problem 

Table 9. Individual processor utilization of a task set of size = 100(actual)

Processor Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Average 
utilization

1 0.548633 0.524398 0.313916 0.648265 0.654898 0.640466 0.918396 0.760246 0.819619 0.377237 0.620607

2 0.627619 0.731921 0.822067 0.701193 0.353306 0.776318 0.242119 0.725384 0.375631 0.819094 0.617465

3 0.977234 0.543839 0.559451 0.450179 0.712966 0.293200 0.689102 0.434565 0.867999 0.566503 0.609504

4 0.760411 0.644109 0.826027 0.662171 0.406152 0.643019 0.642746 0.855257 0.780342 0.764999 0.698523

5 0.536226 0.448079 0.611148 0.588918 0.854119 0.690780 0.557881 0.743040 0.694269 0.595103 0.631956

6 0.592752 0.964651 0.613521 0.720135 0.510047 0.712633 0.931270 0.386495 0.714789 0.921940 0.706823

7 0.596330 0.994327 0.379002 0.478390 0.663218 0.853952 0.537079 0.770122 0.605968 0.866103 0.674449

8 0.767240 0.604499 0.979770 0.806445 0.794023 0.717985 0.469138 0.636168 0.421051 0.323712 0.652003

Table 10. Individual processor utilization of a task set of size = 100 (predicted)

Processor Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Average 
utilization

1 0.719749 0.510794 0.567254 0.700115 0.892775 0.892775 0.717473 0.617559 0.862472 0.539640 0.702061

2 0.883496 0.822381 0.630889 0.945138 0.832658 0.832658 0.690349 0.747878 0.476908 0.731456 0.759381

3 0.818752 0.417144 0.801810 0.803040 0.677994 0.677994 0.985960 0.401228 0.424293 0.796950 0.680517

4 0.761083 0.685494 0.994338 0.565567 0.853777 0.853777 0.646977 0.935643 0.565190 0.739703 0.760155

5 0.649709 0.835244 0.486924 0.782676 0.405674 0.405674 0.341426 0.587329 0.652891 0.842251 0.598980

6 0.536061 0.399638 0.811698 0.248848 0.188748 0.188748 0.706742 0.485563 0.945826 0.641349 0.515322

7 0.368148 0.717534 0.425266 0.734474 0.787811 0.787811 0.674983 0.493009 0.606300 0.321399 0.591674

8 0.474365 0.815519 0.650012 0.513540 0.752264 0.752264 0.563674 0.809527 0.768574 0.550777 0.665052



Task Scheduling Model 

Indian Journal of Science and TechnologyVol 8 (S7) | April 2015 | www.indjst.org40

Table 11. Individual processor utilization of a task set of size = 120(actual)

Processor Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
Average 

utilization
1 0.641667 0.728053 0.757178 0.680856 0.866961 0.674112 0.490531 0.809130 0.419784 0.743614 0.681188
2 0.879733 0.849649 0.403386 0.923163 0.500992 0.753723 0.561881 0.885043 0.971135 0.427677 0.715638
3 0.584729 0.764064 0.836533 0.552011 0.575890 0.516873 0.655009 0.540118 0.732240 0.807536 0.656500
4 0.636853 0.612431 0.441541 0.672805 0.767690 0.882250 0.504391 0.642926 0.970929 0.880296 0.701211
5 0.838034 0.605933 0.811058 0.631690 0.912801 0.852561 0.745007 0.796077 0.634340 0.333096 0.716059
6 0.958754 0.574961 0.481241 0.695692 0.355171 0.762218 0.860330 0.212076 0.506186 0.628586 0.603521
7 0.353472 0.725902 0.852056 0.483016 0.772710 0.623811 0.706372 0.872567 0.521190 0.951223 0.686231
8 0.566224 0.487517 0.726582 0.693374 0.825012 0.543440 0.994974 0.602885 0.747576 0.577707 0.676529

Table 12. Individual processor utilization of a task set of size = 120(predicted)

Processor Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
Average 

utilization
1 0.614637 0.707766 0.317366 0.715138 0.500589 0.445023 0.830471 0.460145 0.475165 0.860045 0.592634
2 0.713264 0.451405 0.593324 0.827173 0.797708 0.851259 0.810266 0.889658 0.806706 0.847413 0.758817
3 0.607738 0.591765 0.656522 0.740733 0.641253 0.729219 0.635845 0.788455 0.426330 0.836795 0.665465
4 0.656924 0.719865 0.808505 0.708724 0.531950 0.761453 0.799918 0.727841 0.481148 0.813811 0.701013
5 0.526202 0.685226 0.691633 0.823143 0.624619 0.769752 0.585168 0.753602 0.800966 0.387502 0.664781
6 0.727964 0.595835 0.838054 0.726453 0.714116 0.938764 0.679191 0.568009 0.432616 0.661523 0.688252
7 0.673574 0.918848 0.745747 0.582955 0.857890 0.354774 0.435131 0.740297 0.977246 0.192114 0.647857
8 0.992352 0.730539 0.773438 0.428505 0.462343 0.530835 0.604835 0.762020 0.877954 0.608734 0.677155

Table 13. Individual processor utilization of a task set of size = 140(actual)

Processor Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
Average 

utilization
1 0.592202 0.598846 0.425825 0.525398 0.929518 0.629092 0.444884 0.546656 0.578397 0.576656 0.584747
2 0.610233 0.651190 0.587524 0.655990 0.523561 0.813353 0.807617 0.670819 0.633364 0.862170 0.681582
3 0.752055 0.949435 0.499202 0.639077 0.845557 0.557578 0.516255 0.838723 0.818435 0.757629 0.717394
4 0.565612 0.669207 0.788387 0.880267 0.637155 0.543963 0.553181 0.608492 0.660573 0.787840 0.669467
5 0.433311 0.766383 0.842371 0.714930 0.501425 0.678371 0.760227 0.868792 0.626579 0.532654 0.672504
6 0.581491 0.577676 0.667474 0.617129 0.794543 0.565321 0.769178 0.671412 0.598780 0.564729 0.640773
7 0.970833 0.549449 0.829366 0.604235 0.621715 0.596417 0.827079 0.533776 0.555248 0.554661 0.664277
8 0.667174 0.686860 0.536585 0.722455 0.481705 0.847393 0.577933 0.485001 0.891952 0.796945 0.669400

Table 14. Individual processor utilization of a task set of size = 140 (predicted)

Processor Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
Average 

utilization
1 0.676914 0.488895 0.497442 0.505466 0.788556 0.550622 0.718123 0.650181 0.905267 0.734003 0.651546
2 0.581312 0.696232 0.349132 0.487800 0.833656 0.703045 0.736042 0.887146 0.650243 0.772416 0.669702
3 0.647346 0.510642 0.759288 0.674998 0.547117 0.639196 0.475649 0.722762 0.617615 0.428162 0.602277
4 0.713803 0.929059 0.913572 0.570482 0.404193 0.826175 0.636084 0.622461 0.660488 0.810253 0.708657
5 0.761575 0.689142 0.710068 0.676610 0.884099 0.329650 0.482839 0.614852 0.544148 0.767019 0.646000
6 0.517670 0.607994 0.752379 0.797626 0.606368 0.856955 0.766532 0.864538 0.719311 0.742679 0.723205
7 0.535379 0.862057 0.571691 0.784520 0.827862 0.712601 0.565676 0.380452 0.681503 0.494952 0.641669
8 0.577659 0.382800 0.673831 0.709263 0.424488 0.641057 0.751971 0.432419 0.417778 0.519894 0.553116



G. Umarani Srikanth, V. Uma Maheswari, A. P. Shanthi and Arul Siromoney

Indian Journal of Science and Technology 41Vol 8 (S7) | April 2015 | www.indjst.org

Figure 1. Comparison of average processor utilization of 
the actual and predicted schedules for 4 problem sets.

Figure 2. Comparison of average processor utilization, 
waiting and scheduling time of the actual and predicted 
schedules for 4 problem sets.

Table 15. Individual processor utilization of a task set of size = 160(actual)

Processor Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Average 
utilization

1 0.988679 0.803435 0.791433 0.760569 0.697116 0.904263 0.805188 0.435572 0.831855 0.605004 0.762311

2 0.766847 0.828376 0.853372 0.868316 0.576013 0.774109 0.434449 0.608197 0.397727 0.829711 0.693711

3 0.312381 0.887356 0.519111 0.667715 0.747089 0.695413 0.680535 0.567489 0.557100 0.873245 0.650743

4 0.827140 0.588504 0.651463 0.543773 0.433338 0.676612 0.555132 0.939688 0.769847 0.679477 0.666497

5 0.855343 0.710790 0.863887 0.858270 0.754759 0.796293 0.885367 0.711493 0.804189 0.671282 0.791167

6 0.729636 0.542444 0.472638 0.713516 0.544405 0.688123 0.811834 0.580099 0.626074 0.519420 0.622819

7 0.294579 0.279820 0.700599 0.384375 0.659658 0.433324 0.655689 0.672560 0.512446 0.703858 0.529691

8 0.614691 0.652855 0.396222 0.543804 0.944256 0.511776 0.568580 0.661736 0.755204 0.512809 0.616193

Table 16. Individual processor utilization of a task set of size = 160 (predicted)

Processor Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Average 
utilization

1 0.562295 0.478413 0.826563 0.878070 0.570400 0.880872 0.426639 0.607730 0.606602 0.594271 0.643186

2 0.619338 0.583407 0.573713 0.601034 0.579826 0.554614 0.728122 0.601737 0.624362 0.449276 0.591543

3 0.495760 0.676591 0.539877 0.885179 0.794528 0.564350 0.531969 0.559209 0.924024 0.599891 0.657138

4 0.675717 0.792475 0.792551 0.482393 0.841834 0.724846 0.787474 0.712459 0.797799 0.730787 0.733834

5 0.752332 0.893308 0.560355 0.738782 0.823378 0.730886 0.943927 0.572991 0.632883 0.723664 0.737251

6 0.926435 0.833910 0.568619 0.577955 0.653972 0.639156 0.851791 0.688707 0.624514 0.542977 0.690804

7 0.584015 0.691933 0.824436 0.539072 0.787497 0.858838 0.669141 0.677701 0.612726 0.692457 0.693782

8 0.730664 0.516451 0.531348 0.622979 0.536711 0.507571 0.754068 0.956100 0.548168 0.953799 0.665786

Table 17. Comparison of average processor utilization, waiting time of tasks and scheduling time of tasks in  
actual and predicted schedules

Task Parameters Tasks = 100
(actual)

Tasks = 100 
(predicted)

Tasks = 120 
(actual)

Tasks = 120 
(predicted)

Tasks = 140 
(actual)

Tasks = 140 
(predicted)

Tasks = 160 
(actual)

Tasks = 160 
(predicted)

Waiting time  
of  tasks(secs) 0.319822 0.314437 0.332466 0.326674 0.310669 0.313634 0.332732 0.325319
Scheduling time  
of tasks(secs) 0.571429 0.362640 0.824176 0.362640 1.587912 0.362640 1.945055 0.362640
Average processor 
utilization 0.651416 0.659143 0.679610 0.674498 0.662518 0.649522 0.666642 0.676665



Task Scheduling Model 

Indian Journal of Science and TechnologyVol 8 (S7) | April 2015 | www.indjst.org42

set reduces the time to come up with a feasible schedule 
by a considerable amount. It is shown experimentally that 
on the average, time taken to arrive at a feasible schedule 
for 100 tasks is reduced by 36.5%, 120 tasks is reduced 
by 56%, 140 tasks is reduced by 77.2% and 160 tasks is 
reduced by 81.4%. It is observed that the reduction in the 
scheduling time increases with the increase in the task set 
size since the convergence time increases in ACO with 
the increase in the task set size. 

6. Conclusion
A task scheduling model that uses the bio-inspired 
 paradigm ACO is designed and implemented. The pro-
posed model predicts a schedule for a new task set after 
the training phase. The study shows that the schedul-
ing time is considerably reduced without compromising 
much on the quality of the schedule generated. But the 
price that has to be paid is the time taken for training. 
This is not too much of an overhead considering the fact 
that the training is carried out only once.

7. References 
1.   Baruah SK. Partitioning real-time tasks among 

 heterogeneous multiprocessors. International Conference 
on Parallel Processing; 2004; p. 467–74. 

2.   Ijaz S, Munir E, Anwar W, Nasir W. Efficient scheduling 
strategy for task graphs in heterogeneous computing envi-
ronment. The Int Arab J Inform Tech, 2013; 10(5):386–492.

3.  De Castro LN. Fundamentals of natural computing: an 
overview. Phys Life Rev. 2007; 4(1):1–36. 

4.  Forbes N. Biologically inspired computing. J Comput Sci 
Eng. 2000; 2(6):83–7. 

 5.  Dorigo M, Gambardella LM. Ant colony system: a 
 cooperative learning approach to the travelling salesman 
problem. IEEE Trans Evol Comput. 1997; 1(1):53–66.

 6.  Ferrandi F, Pilato C, Tumeo C, Sciuto D. Mapping and 
scheduling of parallel c applications with ant colony 
 optimization onto heterogeneous reconfigurable MPSoCs. 
Proceedings of IEEE Asia and South Pacific Design 
Automation Conference; 2010; p. 799–804. 

 7.  Lee YC, Zomaya AY. An artificial immune system for 
 heterogeneous multiprocessor scheduling with task 
 duplication. Proceedings of the International Parallel and 
Distributed Processing Symposium; 2007; p.1–8. 

 8.  Rahmani AM, Vahedi MA. A novel task scheduling in 
 multiprocessor systems with genetic algorithm by using 
elitism stepping method. IJCTE. 2009; 1(1): 1–6.

 9.  Lam YM. Integrated task clustering, mapping and schedul-
ing for heterogeneous computing systems, Int J Comput Sci 
Inform Tech. 2012; 4(1):275–80. 

10.  Dorigo M, Maniezzo V, Colorni A. Ant system:  optimization 
by a colony of cooperating agents. IEEE Trans Syst Man 
Cybern B Cybern.1996; 23(1):29–41. 

11.  Ashwin Kumar Sarma V, Rahul Rajendra, Dheepan P, 
Sendhil Kumar KS. an optimal ant colony algorithm for 
efficient VM placement. Indian Journal of Science and 
Technology. 2015 Jan; 8(S2):156–59.

12.  Rishita Kalyani. application of multi-core parallel 
 programming to a combination of ant colony optimiza-
tion and genetic algorithm. Indian J Sci Technol. 2015 Jan; 
8(S2):138–42.

13.  Swapna B. Sasi, Sivanandam N. A survey on  cryptography 
using optimization algorithms in WSNs. Indian J Sci 
Technol. 2015 Feb; 8(3):216–21.

14.   Dizaji ZA, Gharehchopogh FS. A hybrid of ant colony 
optimization and chaos optimization algorithms approach 
for software cost estimation. Indian J Sci Technol 2015 Jan; 
8(2):128–33.


