
An Analysis on the Performance of Tree and Trie
based Dictionary Implementations with

Different Data Usage Models
M. Thenmozhi1* and H. Srimathi2

1Department of Information Technology, SRM University, Chennai, India; mozhi_2000@yahoo.com
2Department of Computer Applications, SRM University, Chennai, India; srimathi.h@ktr.srmuniv.ac.in

Abstract
Tree and Trie are the Abstract Data Types (ADTs) that provide efficient implementation of ordered dictionary. The
performance of a data structure will depend on hardware capabilities of the computing devices such as RAM size,
Cache memory size and even the speed of the physical storage media. Hence, an application which will be running on
real or virtualized hardware environment certainly will have restricted access to memory and other resources of
the real hardware. Further, the time taken for any operation on a data structure rely on the data usage model and the
most significant operations/tests are very much depend on the size of the “character payload objects” which we use in
dictionary like implementations. In this work, we do an analysis on the performance of Tree and Trie based Dictionary ADT
Implementations with different data usage models. We consider data usage models such as a typical electronic dictionary
with more than million of words or a typical electronic encyclopedia with large string data elements. In this work, we
studied the performance of three popular Tree based Dictionary Implementations rbtree, googlebtree, stxbtree, and three
Trie based Dictionary Implementations tommy-trie, tommy-trie-inplace, nedtrie under different hardware and software
configurations. Among all, tommy trie is proved to be the best for character payload objects with 16 bytes and 4096 bytes.
In some operations/tests googlebtree seems to be better. Our evaluation on different tree and trie structures shows tommy
trie implementations perform well irrespective of size of application.

Keywords: Cache, googlebtree, rbtree, stx btree, Tommy trie, Trie

1.  Introduction

A key Decision when computing applications is the choices
of a mechanism to store and retrieve strings. There are
two main types of data Structures available for this task
is categorized as In-memory and External Memory Data
Structures. Some of the In-memory DS are Array, Linked
List, Binary Search Tree, Hash Table. Tree and Trie Data
structures provide simple and efficient implementation of
an ordered dictionary. This paper evaluates some of the
popular in-memory Tree and Trie data structures which
are frequently refereed in earlier works and commonly
used in ordered dictionary like applications.

Simple in-memory data structures are basic building
blocks of programming, and are used to manage tempo-
rary data in scales ranging from a few items to gigabytes.
For the storage and retrieval of strings, the main data
structures are the varieties of hash table, trie, and binary
search tree1.

Different Tree and Trie implementations use different
approaches in their design. Here we study the perfor-
mance of Tree based Dictionary Implementations rbtree,
googlebtree, stxbtree, and three Trie based Dictionary
Implementations tommy-trie, tommy-trie-inplace,
nedtrie with two different string payload sizes. We will
evaluate the performance under different hardware and

Indian Journal of Science and Technology, Vol 8(4), 364–375, February 2015

*Author for correspondence

ISSN (Print) : 0974-6846
ISSN (Online) : 0974-5645

DOI : 10.17485/ijst/2015/v8i1/59865

M. Thenmozhi and H. Srimathi

Vol 8 (4) | February 2015 | www.indjst.org Indian Journal of Science and Technology 365

Operations of a Typical Dictionary ADT

(i)  Dictionary create()
creates empty dictionary

(ii)  boolean isEmpty(Dictionary d)
tells whether the dictionary d is empty

(iii)  put(Dictionary d, Key k, Value v)
associates key k with a value v
if key k already presents in the dictionary
old value is replaced by v

(iv)  Value get(Dictionary d, Key k)
returns a value, associated with key k
or null, if dictionary contains no such key

(v)   remove(Dictionary d, Key k)
removes key k and associated value

(vi)  destroy(Dictionary d)
destroys dictionary d

2.1.1  Existing Data Structures
2.1.1.1  Binary Search Trees
In a Binary Search Tree (BST), each tree node stores
a string and two pointers to left and right child nodes.
A search will be done by comparing the root value every
time and branch will be taken either right or left. As the
search progresses, the number of characters inspected at
each string comparison gradually increases.

Although the allocation of strings to nodes is
determined by the insertion order, for a skew distribution
it is reasonable to expect that common words occur close
to the beginning of the text collection and are therefore
close to the root of the BST. Assuming the distribution is
stable, accesses to a common term should be fast, since the
first levels of the tree are usually kept in cache and only a
few string comparisons are required. On the other hand,
if strings are inserted in sorted order or the distribution
changes the behavior of a BST can be extremely poor. The
BST is of limited use in practice for vocabulary accumula-
tion. However, it is included in our discussion, since they
are common data structure and serve as a yardstick in our
experiments.

There are several well-known variants of BSTs that
maintain balance or approximate balance, in particular
AVL trees and red-black trees. With these techniques, the
tree is reorganised on every insertion or deletion, thus
ensuring that leaves are approximately at same depth.
On the one hand, use of rebalancing ensures that for n
nodes there is an O(log n) upper limit to the length of a
search path. On the other hand, the rebalancing does not

software configurations. The main tests will be made on
these data structures are Insert, Change, Hit, Miss and
Remove.

In this evaluation, time is considered as a main
metric which will be measured in nanoseconds for above
mentioned five operations/tests. All these five tests and
operations will be done using keys in Random Mode as
well as Forward mode.

2. � The Dictionary Adt
Implementation with Tree
and Trie Data Structure

ADT is a mathematical model for a certain class of data
structures that have similar behavior; or for certain data
types of one or more programming languages that have
similar semantics. A tree and trie are widely used Abstract
Data Type (ADT) or data structure implementing this
ADT that simulates a hierarchical tree structure, with a
root value and sub trees of children, represented as a set
of linked nodes.

2.1 � The Abstract Data Type/Structure
Dictionary

Dictionary is a data structure which can stores
key–element pairs. It allows “look-up” or find operation
and allows insertion/removal of elements. A dictionary
may be unordered or ordered and the key must support
equality operator. For ordered dictionary, the key also
supports comparator operator which will be useful for
finding neighboring elements. In most of the applications,
the keys are required to be unique.

Dictionary Examples

(i)   Natural language dictionary
word is key
element contains word, definition, pronunciation,
etc.

(ii)  Web pages
URL is key
html or other file is element

The dictionaries are also known as associative arrays
or maps. In programming, the abstract data structure
dictionary is represented by many aggregated pairs (key,
value) along with predefined methods for accessing the
values by a given key.

An Analysis on the Performance of Tree and Trie based Dictionary Implementations with Different Data Usage Models

Indian Journal of Science and TechnologyVol 8 (4) | February 2015 | www.indjst.org366

consider the frequency of access to each node, so common
words can be placed in leaves. We have experimented
with red-black trees2, and observed that the overall effect
is detrimental, with red-black trees slightly faster only for
data with low skew, and standard BSTs faster for typical
vocabulary accumulation.

2.1.1.2  Splay Trees
A splay tree4 is a variant of a BST, in which, on each search,
the node accessed is moved to the root by a series of node
rotations, an operation known as splaying. Intuitively,
commonly- accessed nodes should remain near the
root (and in the CPU cache), thus allowing them to be
accessed rapidly; the tree quickly adapts to local changes
in vocabulary; and the use of splaying guarantees that the
a mortised cost of accessing a tree of n nodes is at most
O(log n).

BST, a splay tree requires more memory, since an effi-
cient implementation of splaying requires that each node
have a pointer to its parent. Also, even a common word
such as “the” can be moved far from the root between
searches for it; even in data in which it is every seventeenth
word or so, it is often found deep in the tree. Moreover,
splaying is a rather expensive reorganisation technique.
We investigated variations of splaying2 and found that the
most efficient is to only splay after every after k accesses,
with say k = 11, thus moving common words close to the
root but reducing the total cost of reorganisation. We
report experiments with both splaying at all accesses and
intermittent splaying with an interval of 4 accesses, as this
value of k worked well on our data.

Another form of BST that reorganises on each access is
the Randomised Search Tree (RST)3, in which each node
uses an additional number r, initially zero. RSTs are main-
taining in order traversal and also heap property which
is maintained by the numbers r. So the number in a node
is at least as large as both of its children. The tree is then
reorganised using rotations to restore the treap property.

In the field of mathematics, the spanning tree T10 of an
undirected graph is a sub graph that includes all vertices
of G that is a tree. In general a graph will have several
spanning trees. This technique is used in applications
where minimum numbers of edges are required with
less cost.

Decision tree is another type of Tree, which is used in
applications where there are more chances of Decisions
and their possible consequences, and outcomes. It is a
way of displaying an algorithm11.

2.1.1.3  Tries and Ternary Search Trees
A trie is an alternative to a BST for storing strings in sort
order5. A node in a standard trie is an array of pointers,
one for each letter in the alphabet, with an additional
pointer for the empty string. A leaf is a record concerning
a particular string. A string is found in a trie by using
the letters of the string to determine which pointers to
follow. For example, if the alphabet is the letters from ‘a’
to ‘z’, the first pointer in the root corresponds to the letter
‘a’; the node T indicated by this pointer is for all strings
beginning “a-”. In node T, the pointer corresponding to
the letter ‘c’ is followed for all strings beginning “ac-”;
the pointer corresponding to the empty string is for the
record concerning the single-letter string “a”.

Search in a trie is fast, requiring only a single pointer
traversal for each letter in the query string. That is, the
search cost is bounded by the length of the query string.
With a small increase in complexity of implementation, a
trie can be substantially reduced in size by omitting nodes
that lead to a single leaf.

There are several variant forms of tries with reduced
space requirements compared to standard tries, such
as Ternary Search Trees (TSTs)6 and compact tries. In a
TST, each node represents a single character c, and has
three pointers. The left (respectively, right) pointer is
for strings that start with a character that alphabetically
precedes (respectively, follows) c. Thus a set of TST nodes
connected by left and right pointers are a representation
of a trie node. These can be rebalanced on access. TSTs are
slower than tries, but more compact.

2.2  Dictionary Implementation with Tree
A tree data structure can be defined recursively (locally)
as a collection of nodes (starting at a root node), where
each node consisting of a value, together with a list of
references to nodes (the “children”), with the constraints
that no reference is duplicated, and none points to
the root.

Tree structures support various set operations
including Search, Predecessor, Successor, Minimum,
Maximum, Insert, and Delete in time proportional to the
height of the tree. Ideally, a tree will be balanced and the
height will be log n where n is the number of nodes in
the tree. To ensure that the height of the tree is as small
as possible and therefore provide the best running time, a
balanced tree structure like a red-black tree, AVL tree, or
b-tree must be used.

M. Thenmozhi and H. Srimathi

Vol 8 (4) | February 2015 | www.indjst.org Indian Journal of Science and Technology 367

When working with large sets of data, it is often not
possible or desirable to maintain the entire structure in
primary storage (RAM). Instead, a relatively small portion
of the data structure is maintained in primary storage, and
additional data is read from secondary storage as needed.
Unfortunately, a magnetic disk, the most common form
of secondary storage, is significantly slower than Random
Access Memory (RAM). In fact, the system often spends
more time retrieving data than actually processing data.

B-trees are balanced trees that are optimized for
situations when part or all of the tree must be ‘maintained
in secondary storage such as a magnetic disk. Since disk
accesses are expensive (time consuming) operations, a
b-tree tries to minimize the number of disk accesses. The
worst case height is O(log n). Since the “branchiness” of
a b-tree can be large compared to many other balanced
tree structures, the base of the logarithm tends to be large;
therefore, the number of nodes visited during a search
tends to be smaller than required by other tree structures.
Although this does not affect the asymptotic worst case
height, b-trees tend to have smaller heights than other
trees with the same asymptotic height.

2.2.1  Trie
Trie is a graph where each path is a string. When you
add a string to the trie you start with the first letter and
check if there’s a path that start from the beginning point
(the root) and goes to that letter, if there is you go to that
path and search again from that path, this time the next
letter and so on, if you find a letter that doesn’t have a path
you add it and from that on you add all the other letters.
Similarly build the rest of the path since it’s a new path.
At the end of each word path, you use a special sign to
designate it as end of path

Searching the trie is very similar to adding a word.
You start with the beginning of the trie and the word, and
search for a path with the first letter, and then you go to
that path and search again for a path for the next letter.
This continues until we find a end sign. The difference
between searching and adding is that when you don’t find
a path to the next letter you just quit. Because it means the
word does not appear in the trie.

Suffix tree-it is a way to use trie in order to build
something a bit different. You build trie for only one
word. But it’s not only the one word, it’s the word and all
the suffixes starting with 1 letter all the way to the whole
word (e.g. for Cola the trie will contain the words: Cola,
ola, la, a and empty word) this kind of database is used

when you want to check if a word is contained in another
word, you make suffix tree of the containing word and
search the contained word in it.

Trie, or prefix tree, is an ordered multi-way tree data
structure that is used to store strings over an alphabet.
Unlike a binary search tree, no node in the tree stores the
key associated with that node; instead, its position in the
tree shows what key it is associated with. Each node contains
an array of pointers, one pointer for each character in the
alphabet and all the descendants of a node have a common
prefix of the string associated with that node. The root is
associated with the empty string and values are normally
not associated with every node, only with leaves.

A trie is a tree data structure that allows strings with
similar character prefixes to use the same prefix data and
store only the tails as separate data. One character of
the string is stored at each level of the tree, with the first
character of the string stored at the root.

To access these information nodes, we follow a path
beginning from a branch node moving down each level
depending on the characters forming the key, until the
appropriate information node holding the key is reached.
Thus the depth of an information node in a trie depends
on the similarity of its first few characters (prefix) with
its fellow keys. Here, while AEROPLANE and TRAIN
occupy shallow levels (level 1 branch node) in the trie,
CAR, CARRIAGE, CARAVAN have moved down by 4
levels of branch nodes due to their uniform prefix “CAR”.

Prefix trees are a bit of an overlooked data structure
with lots of interesting possibilities. Trie is an interesting
data-structure used mainly for manipulating with Words
in a language. Trie has a wide variety of applications in

o	 Spell checking. Word completion
o	 Data compression
o	 Computational biology
o	 Routing table for IP addresses
o	 Storing/Querying XML documents etc.

2.3  As a Dictionary
Looking up if a word is in a trie takes O(n) operations,
where n is the length of the word. Thus - for array
implementations - the lookup speed doesn’t change with
increasing trie size. It has been used to store large diction-
aries of English words in spelling-checking programs and
in natural-language “understanding” programs.

Simple spell checkers operate on individual words
by comparing each of them against the contents of a

An Analysis on the Performance of Tree and Trie based Dictionary Implementations with Different Data Usage Models

Indian Journal of Science and TechnologyVol 8 (4) | February 2015 | www.indjst.org368

dictionary, possibly performing stemming on the word. If
the word is not found it is considered to be an error, and
an attempt may be made to suggest a word that was likely
to have been intended.

Word completion is straightforward to implement
using a trie: simply find the node corresponding to the
first few letters, and then collapse the subtree into a list
of possible endings. This can be used in auto completing
user input in text editors.

2.3.1  Tries and Web Search Engines
The index of a search engine (collection of all searchable
words) is stored into a compressed trie8. Each leaf of the
trie is associated with a word and has a list of pages (URLs)
containing that word, called occurrence list.

The trie is kept in internal memory. The occurrence
lists are kept in external memory and are ranked by
relevance. Boolean queries for sets of words (e.g. Java and
coffe) correspond to set operations (e.g. intersection) on
the occurrence lists.

3. � The Evaluated Tree and Trie
Implementations

The following are some of the Tree and Trie implementations
which we have evaluated for this study.

3.1  rbtree
rbtree is Red-black tree implementation. It implements
left-leaning 2-3 red-black trees as C preprocessor macros,
and is used extensively in jemalloc. Most of the similar
implementations require approximately four pointer-size
fields per node (left child, right child, parent, color),
whereas this requires only two (left child, right child +
color). The only notable disadvantage is that insertion/
removal are ~1.5X slower than the fastest implementa-
tions, due to extra overhead for maintaining the current
path through the tree.

3.2  B googlebtree
It is a C++ B-tree implementation of Google code project.
It is a template library that implements ordered in-memory
containers based on a B-tree data structure. Similar to
the STL map, set, multimap, and multiset templates, this
library provides btree_map, btree_set, btree_multimap
and btree_multiset. This C++ B-tree containers have a
few advantages compared with the standard containers,

which are typically implemented using Red-Black trees.
Nodes in a Red-Black tree require three pointers per entry
(plus 1 bit), whereas B-trees on average make use of fewer
than one pointer per entry, leading to significant memory
savings.

Google C++ B-tree containers make better use of the
cache by performing multiple key-comparisons per node
when searching the tree. Although B-tree algorithms are
more complex, compared with the Red-Black tree algo-
rithms, the improvement in cache behavior may account
for a significant speedup in accessing large containers.

However the google C++ B-tree containers are not
without drawbacks. Unlike the standard STL containers,
modifying a C++ B-tree container invalidates all
outstanding iterators on that container. For this reason,
the library also contains “safe” variations on the four
containers: iterators on safe B-tree containers keep a
copy of the current key and automatically reposition the
iterator whenever it is used.

3.3  C stx btree
The stx btree package is a set of C++ template classes
implementing a B tree key/data container in main mem-
ory. The classes are designed as drop-in replacements of
the STL containers set, map, multiset and multimap and
follow their interfaces very closely. By packing multiple
value pairs into each node of the tree the B tree reduces
heap fragmentation and utilizes cache-line effects better
than the standard red-black binary tree. The tree algo-
rithms are based on the implementation in Thomas H.
Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein, Inroduction into Algorithms, Jan Jannink’s
paper and other algorithm resources. The classes contain
extensive assertion and verification mechanisms to
ensure the implementation’s correctness by testing the
tree invariants.

3.4  D tommy-trie
It is a trie data structure well optimized for cache
utilization. It is a part of TommyDS in a C library.

TommyDS is a C library of hash tables and tries
designed to store objects with high performance.

It claims that it is faster than all the similar libraries
like rbtree, judy, googledensehash, googlebtree, stxbtree,
khash, uthash, nedtrie, judyarray and others. Tommy is
released with a 2-clause BSD license. In this paper, we
compared only the hash table implementations of Tommy

M. Thenmozhi and H. Srimathi

Vol 8 (4) | February 2015 | www.indjst.org Indian Journal of Science and Technology 369

library. TommyDS is said to be 100% portable in all the
platforms and operating systems. The Tommy containers
support multiple elements with the same key.

3.5  E tommy-trie-inplace
It is a trie implementation which is completely inplace.
This trie is a inplace implementation and does not need
any external allocation. Elements are not stored in order,
like tommy_trie, because some elements should be used
to represent the inner nodes in the trie. We can control
the number of branches and more branches imply more
speed, but a bigger memory occupation. Compared to
tommy_trie you should use a lower number of branches
to limit the unused memory occupation of the leaf nodes.
This imply a lower speed, but without the need of an
external allocator.

3.6  F nedtrie
It is a binary trie inplace implementation by Niall
Douglas. The most interesting characteristic of bitwise
tries are insertion, deletion and finds, all take about the
same amount of time.

It works by constructing a binary tree based on
individual bit difference, so higher the entropy (disorder)
between key bits, the faster nedtries. Hence it has a
complexity for a given key of O(1/DKL(key||average key))
Its worst case complexity - where all keys are almost identical -
is O(log2 N). This implies that for well distributed keys
that average complexity will always be a lot better than
red-black trees, but somewhat worse than O(1) because
for obvious reasons, more keys means more unique
information and therefore there is always some scaling
relation to the number of keys in the tree

There is a C macro based implementation as well as
a C++ template-through-the-C-macros implementation
are available.

4.  The Analysis and Result
In this research we used our customized version of
TommyDS7 benchmark program. We have developed
customized benchmark scripts which will run the
benchmark tests with different hardware and software
Configurations.

In this evaluation we store a set of N pointers to
“character/string payload objects” and searching them
using a key. This scenario is equivalent to that of a typical

dictionary implementation. This scenario is different
than the simpler case of mapping integers to integers,
as pointers to objects are also de-referenced result-
ing in additional cache misses in such dictionary like
implementations.

This evaluations made are much suitable for
implementations like dictionary ADT, that stores
information in the objects itself, as the additional cache
misses are already implicit.

4.1  The Metric Used for Evaluation
In this evaluation, the important metric is time. Times are
expressed in nanoseconds since it is measured for a single
element operation/test. The following are the operations/
tests made during the evaluation. Since the time is the
metric, lower is always considered as better.

4.2  The Important Test Made are
(a) � Insert: Insert one element in the container. In this

evaluation, the Insert test starts with an empty
container and ends after inserting N “character
payload objects”.

(b) � Change: Change is searching, removing and reinsert
it with a different key value. That is, find and remove
one character payload objects and reinsert it with
a different key. In this evaluation, the Change tests
operate when N character payload objects are in the
containers.

(c) � Hit: Hit is searching an object with success. In this
evaluation, the Hit tests are made when N character
payload objects are in the containers.

(d) � Miss: Miss is a scenario where a find operation ends
with a failure. In this evaluation, the Hit tests are
made when N character payload objects are not in
the containers.

(e) � Remove: In this evaluation we remove all the N
objects and dereference them. So this evaluation ends
with an empty container.

The character payload objects are always de-referenced,
as we are assuming to use them during the operation. This
happens even in the remove case, as we are supposing to
deallocate them.

In all these tests, the time is measured in nanoseconds
because, we are measuring it for one single operation –
like the time needed to insert/delete one single object
from the container.

An Analysis on the Performance of Tree and Trie based Dictionary Implementations with Different Data Usage Models

Indian Journal of Science and TechnologyVol 8 (4) | February 2015 | www.indjst.org370

As in the original benchmark7, all the objects are
pre allocated in the heap, and this allocation time is not
included in the test. The objects are identified and stored
using integer and unique keys. The key domain used is
dense, and it’s defined by the set of N even numbers start-
ing from 0x80000000 to 0x80000000 + 2*N. The use of
only even numbers allows to have missing keys inside the
domain for the Change test. In such tests it is used the
key domain defined by the set of N odd numbers starting
from 0x80000000 + 1 to 0x80000000 + 2*N + 1. Note that
using additional keys at the corners of the domain would
have pushed tries and trees as they implicitly keep track
of the maximum and minimum key values inserted. The
use of the 0x80000000 base, allows to test a key domain
not necessarily starting at 0. Using a 0 base would have
pushed some tries managing it as a special case.

As in the original benchmark7, in our evaluations, tests
are repeated using keys in Random mode and in Forward
mode. In the forward mode the key values are used in
order from the lowest to the highest. In the random mode
the key values are used in a completely random order. In
the forward mode of Change test, each object is reinserted
using the previous key incremented by 1. In random mode
each object is re-inserted using a completely different and
uncorrelated key. The forward order pushes tries and trees
as they use the key directly and they have a cache advan-
tage on using consecutive keys. The random order pushes
hash tables, as the hash function already randomizes the
key. Usually real use cases are in between and the random
one is the worst one.

4.3  The Parameters of the Evaluation
By default, in this benchmark framework code, the objects
contain an integer value field used for consistency checks,
and 16 bytes of characters to simulate payload field, and
any other data required by the data structure.

For this evaluation we used dictionary word with
string payloads of two sizes 16 and 4096. A 16 byte pay-
load to simulate lower stress and a 4096 bytes payload to
simulate high stress on the memory.

The size of the dictionary is started with minimum
number of elements and increased to a maximum size in
a predefined step multiplication factor. And the average
performance of the data structures during each size of
the dictionary is logged on separate files (one file for each
test) for further analysis.

We did the experiments with dictionary size of 100 to
8,00,000 elements (8lakhs or 0.8 Million).

4.4  The Result
4.4.1 � Results with Random Mode Operations/

Tests with String Payload Size of 16 and
4096 Characters

The following line charts shows the performance of
random mode Insert, Change and Hit operation/tests
made with different payload sizes 16 Characters/Element
(3 Left column Images) and 4096 Characters/Element
(3 Right column Images)

If we compare the above three Left column line
charts with the three Right column line charts we can
see that two Tommy trie implementations perform good
at smaller string object size of 16 as well as larger string
object size of 4096. But with the payload size of 4096, the
performance of google tree is good in most of the tests
and comparatively better than tommy_trie_implace.
Rbtree and Nedtrie are performed very poor both in the
case of smaller string object size of 16 as well as larger
string object size of 4096.

The following line charts shows the performance of
Random Mode Remove, and Miss operation/tests made
with different payload sizes 16 Characters/Element
(2 Left column Images) and 4096 Characters/Element
(2 Right column Images)

If we compare the two Left column line charts with
the two Right column line charts of the two Random
Mode operations Remove and Miss, we can see that
both the two Tommy trie implementations perform
good at smaller string object size of 16 as well as larger
string object size of 4096. googlebtree implementations
perform good at smaller string object size of 16. Rbtree
and Nedtrie are performed very poor both in the case
of smaller string object size of 16 as well as larger string
object size of 4096.

4.4.2 � Results With Forward Mode Operations/
Tests with String Payload Size of 16 and
4096 Characters

The following line charts shows the performance of
Forward Mode Insert, Change and Hit operation/tests
made with different payload sizes 16 Characters/Element
(3 Left column Images) and 4096 Characters/Element
(3 Right column Images)

If we compare the above three Left column line
charts with the three Right column line charts we can
see that two Tommy trie implementations perform good

M. Thenmozhi and H. Srimathi

Vol 8 (4) | February 2015 | www.indjst.org Indian Journal of Science and Technology 371

at smaller string object size of 16 as well as larger string
object size of 4096. But with the payload size of 4096,
the performance of google tree also good in most of the
tests and comparatively better than tommy_trie_implace.
Rbtree and Nedtrie are performed very poor both in the
case of smaller string object size of 16 as well as larger
string object size of 4096.

The following line charts shows the performance of
Random Mode Remove, and Miss operation/tests made
with different payload sizes 16 Characters/Element
(2 Left column Images) and 4096 Characters/Element
(2 Right column Images)

If we compare the above two Left column line charts
with the two Right column line charts of the two Random
Mode operations Remove and Miss, we can see that
both the two Tommy trie implementations perform
good at smaller string object size of 16 as well as larger
string object size of 4096. google tree implementations
perform good at smaller string object size of 16. Rbtree
and Nedtrie are performed very poor both in the case
of smaller string object size of 16 as well as larger string
object size of 4096.

4.4.3 � Comparison of Random Mode and
Forward Mode Operations/Tests with High
String Payload Size 4096 Characters

The following bar charts shows the performance of
random mode (3 Left column Images) and forward mode
(3 Right column Images) Insert, Change and Hit
operation/tests made with High payload size of 4096
Characters/Element.

If we compare the above three Left column bar charts
with the three Right column bar charts of Random mode
and Forward Mode operations Insert, Change and Hit, It
is obvious that the performance of tommy trie with high
payload size is significantly better than all other compared
methods. In some tests the performance of googlebtree is
comparatively better than tommy_trie_implace, Rbtree
and Nedtrie. The two methods Rbtree and Nedtrie are
performed very poor both in random as well as forward
mode operations with string object size of 4096.

The following bar charts shows the performance of
Random Mode (2 Left column Images) and Forward Mode
(2 Right column Images) Remove and Miss operation/
tests made of payload size of 4096 Characters/Element

If we compare the above two Left column bar
charts (Random Mode) with the two Right column bar

charts(Forward Mode) of operations Remove and Miss,
It is obvious that the performance of tommy trie with
high payload size is significantly better than all other
compared methods. In some tests the performance of
googlebtree comparatively better than tommy_trie_
inplace, Rbtree and Nedtrie. The two methods Rbtree
and Nedtrie are performed very poor both in random as
well as forward mode operations with string object size
of 4096.

4.5  Observation and Finding
For a dictionary with small word size of 16 bytes •	
(string payload size) as well as 4096 bytes, and around
a million words, the two Tommy trie implementations
competed the other four implementations googlebtree,
stxbtree, Rbtree and Nedtrie.
At the dictionary size of 8,00,000 words of 4096 byte •	
words, without any doubt, tommy_trie is the compet-
ing method since it gave best performance in most of
the tests. If we compare the right and left line chars of
Figure 1, 2, 3 and 4, we can realize it.
In some tests with 4096 bytes, even the performance •	
of googlebtree seems to be better than tommy_trie_
inplace implementations.
The two methods Rbtree and Nedtrie are performed •	
very poor both in random as well as forward mode
operations with string object size of 4096 as well as 16.
If see the line chars of Figure 1, 2, 3 and 4 and the bar
chars of Figure 5 and 6 we can obviously see it.
Undoubtedly, Tommy trie implementations are much •	
suitable for ordered dictionary implementation with
small word size as well as larger word size.

5.  Conclusion
Hash table implementations of TommyDS7 claims that
it is designed for high performance and faster than all
the similar libraries like rbtree, judy, goodledensehash,.
In our previous evaluation with different hash tables, we
found that the Tommy DS implementation of hash table
performed poor in dictionary implementation with big
word size.

But, without any doubt, the performance of the trie
implementations of Tommy DS was significantly better
than trie and tree implementations.

In this work, we have evaluated some of the tree
and trie implementations. In future we may address the

An Analysis on the Performance of Tree and Trie based Dictionary Implementations with Different Data Usage Models

Indian Journal of Science and TechnologyVol 8 (4) | February 2015 | www.indjst.org372

4.4 The Result
4.4.1 Results with Random Mode Operations/Tests with String Payload Size of 16 and 4096 Characters

The following line charts shows the performance of random mode Insert, Change and Hit operation/tests made with different
payload sizes 16 Characters/Element (3 Left column Images) and 4096 Characters/Element (3 Right column Images)

Payload Size of 16 Characters / Element Payload Size of 4096 Characters / Element

Figure 1. Comparison of Random Mode Insert, Change and Hit Operations/Tests.

If we compare the above three Left column line charts with the three Right column line charts we can see that two Tommy
trie implementations perform good at smaller string object size of 16 as well as larger string object size of 4096. But with the
payload size of 4096, the performance of google tree is good in most of the tests and comparatively better than

Figure 1.  Comparison of Random Mode Insert, Change and Hit Operations/Tests.

Figure 2.  Comparison of Random Mode Remove, and Miss Operations/Tests.

tommy_trie_implace. Rbtree and Nedtrie are performed very poor both in the case of smaller string object size of 16 as well as
larger string object size of 4096.

The following line charts shows the performance of Random Mode Remove, and Miss operation/tests made with different
payload sizes 16 Characters/Element (2 Left column Images) and 4096 Characters/Element (2 Right column Images)

Payload Size of 16 Characters / Elements Payload Size of 4096 Characters / Elements

Figure 2. Comparison of Random Mode Remove, and Miss Operations/Tests.

If we compare the two Left column line charts with the two Right column line charts of the two Random Mode operations
Remove and Miss, we can see that both the two Tommy trie implementations perform good at smaller string object size of 16 as
well as larger string object size of 4096. googlebtree implementations perform good at smaller string object size of 16. Rbtree
and Nedtrie are performed very poor both in the case of smaller string object size of 16 as well as larger string object size of
4096.

M. Thenmozhi and H. Srimathi

Vol 8 (4) | February 2015 | www.indjst.org Indian Journal of Science and Technology 373

4.4.2 Results With Forward Mode Operations/Tests with String Payload Size of 16 and 4096 Characters
The following line charts shows the performance of Forward Mode Insert, Change and Hit operation/tests made with

different payload sizes 16 Characters/Element (3 Left column Images) and 4096 Characters/Element (3 Right column Images)

Payload Size of 16 Characters / Elements Payload Size of 4096 Characters / Elements

Figure 3. Comparison of Forward Mode Insert, Change and Hit Operations/Tests.

Figure 3.  Comparison of Forward Mode Insert, Change and Hit Operations/Tests.

If we compare the above three Left column line charts with the three Right column line charts we can see that two Tommy
trie implementations perform good at smaller string object size of 16 as well as larger string object size of 4096. But with the
payload size of 4096, the performance of google tree also good in most of the tests and comparatively better than
tommy_trie_implace. Rbtree and Nedtrie are performed very poor both in the case of smaller string object size of 16 as well as
larger string object size of 4096.

The following line charts shows the performance of Random Mode Remove, and Miss operation/tests made with different
payload sizes 16 Characters/Element (2 Left column Images) and 4096 Characters/Element (2 Right column Images)

Payload Size of 16 Characters / Elements Payload Size of 4096 Characters / Elements

Figure 4. Comparison of Forward Mode Remove, and Miss Operations/Tests.

If we compare the above two Left column line charts with the two Right column line charts of the two Random Mode
operations Remove and Miss, we can see that both the two Tommy trie implementations perform good at smaller string object
size of 16 as well as larger string object size of 4096. google tree implementations perform good at smaller string object size of
16. Rbtree and Nedtrie are performed very poor both in the case of smaller string object size of 16 as well as larger string object
size of 4096.

Figure 4.  Comparison of Forward Mode Remove, and Miss Operations/Tests.

An Analysis on the Performance of Tree and Trie based Dictionary Implementations with Different Data Usage Models

Indian Journal of Science and TechnologyVol 8 (4) | February 2015 | www.indjst.org374

4.4.3 Comparison of Random Mode and Forward Mode Operations/Tests with High String Payload Size
4096 Characters

The following bar charts shows the performance of random mode (3 Left column Images) and forward mode (3 Right
column Images) Insert, Change and Hit operation/tests made with High payload size of 4096 Characters/Element.

Random Mode Operations Forward Mode Operations

Figure 5. Comparison of Random Mode and Forward Mode Insert, Change and Hit Operations/Tests.
If we compare the above three Left column bar charts with the three Right column bar charts of Random mode and Forward

Mode operations Insert, Change and Hit, It is obvious that the performance of tommy trie with high payload size is significantly
better than all other compared methods. In some tests the performance of googlebtree is comparatively better than

Figure 5.  Comparison of Random Mode and Forward Mode Insert, Change and Hit Operations/Tests.

tommy_trie_implace, Rbtree and Nedtrie. The two methods Rbtree and Nedtrie are performed very poor both in random as well
as forward mode operations with string object size of 4096.

The following bar charts shows the performance of Random Mode (2 Left column Images) and Forward Mode (2 Right
column Images) Remove and Miss operation/tests made of payload size of 4096 Characters/Element

Random Mode Operations Forward Mode Operations

Figure 6. Comparison of Random Mode and Forward Mode Remove, and Miss Operations/Tests.

If we compare the above two Left column bar charts (Random Mode) with the two Right column bar charts(Forward Mode)
of operations Remove and Miss, It is obvious that the performance of tommy trie with high payload size is significantly better
than all other compared methods. In some tests the performance of googlebtree comparatively better than tommy_trie_inplace,
Rbtree and Nedtrie. The two methods Rbtree and Nedtrie are performed very poor both in random as well as forward mode
operations with string object size of 4096.

Figure 6.  Comparison of Random Mode and Forward Mode Remove, and Miss Operations/Tests.

M. Thenmozhi and H. Srimathi

Vol 8 (4) | February 2015 | www.indjst.org Indian Journal of Science and Technology 375

performance issues of these abstract data types on virtual
and cloud computing architecture.

An existing hash table data structure are computation-
ally efficient but uses large number of pointers to manage
string payload objects and other type of huge data objects.
Use of pointers in such dynamic data structure with huge
data payloads increases cache inefficiency as they lead to
RAM very often. Redesigning classical String based data
structures for cache friendly operation may be needed for
efficient performance. Future works may address the ways
to improve the existing hash table implementations for
cache friendly operations. Future works may address the
ways to improve a selected data structure for achieving
improved performance.

6.  References
1.	�� Askitis N, Zobel J. Redesigning the String Hash table, Burst

Trie, and BST to exploit cahe. JEA. 2011 Jan; 15.
2.	� Williams HE, Zobel J, Heinz S. Splay trees in practice for

large text collections. Software-Practice and Experience.

3.	� Martinez C, Roura S. Randomized binary search trees. Jour
of the ACM. 1998 Mar; 45(2):288–323.

4.	� Sleator DD, Tarjan R. Self-adjusting binary search trees.
J ACM. 1985; 32:652–86.

5.	� Morimoto AK, Sato T. An Efficient implementation of trie
structures. Software Pract Ex. 1992 Sep; 22(9):695–721.

6.	� McCreight EM. A space-economical suffix tree construction
algorithm. J ACM. 1976; 23(2):262–71.

7.	� Mazzoleni A. Tommy Benchmark, and Tommy DS 1.8,
A high performance C library of Hash tables and Tries.
Availaible from: https://github.com/amadvance/tommyds

8.	� Purdin TDM. Compressing tries for storing dictionaries. In:
Berghel H, Talburt J, Roach D, editors. Proceedings IEEE
Symposium on Applied Computing; Fayettville: IEEE: 1990
Apr. p. 336–40.

9.	� Jayalakshmi R, Baranidharan B, Santhi B. Attribute
based Spanning Tree Construction for Data Aggregation in
Heterogeneous, Wireless Sensor Networks. Indian Journal of
Science and Technology. 2014 Apr; 7(S4):76–9.

10.	� Alzahrani AS, Qureshi MS. Privacy preserving optimized
rules mining from decision tables and decision trees. Indian
Journal of Science and Technology. 2012 Jun; 5(6):2831–4.

