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Abstract
The performance of Nearest Neighbor (NN) classifier is highly dependent on the distance (or similarity) function used to 
find the NN of an input test pattern. Many of the proposed algorithms try to optimize the accuracy of the NN rule using a 
weighted distance function. In this scheme, a weight parameter is learned for each of the training instances. The weights 
of training instances are used in the generalization phase to find the NN of an input test pattern. The Weighted Distance 
Nearest Neighbor (WDNN) algorithm attempts to maximize the leave-one-out classification rate of the training set by 
adjusting the weight parameters. The procedure simply leads to weights that overfit the train data, which degrades the 
performance of the method especially in noisy environments.
In this paper, we propose an enhanced version of WDNN, called Overfit Avoidance for WDNN (OAWDNN), that significantly 
outperforms the algorithm in generalization phase. The proposed method uses an early stopping approach to decrease 
instance weights specified by WDNN, which implicitly makes the class boundary smooth and consequently more 
generalized. 
In order to evaluate robustness of the algorithm, class label noise is added to a variety of UCI datasets. The experimental 
results show the supremacy of the proposed method in generalization accuracy. 

Keywords: Classification Nearest Neighbor (NN), Instance Weighting, Avoidance Overfit, Robustness, Environment 
Noisy

1.  Introduction
The Nearest Neighbor rule is one of the simplest and most 
attractive pattern classification methods. The basic ratio-
nale for the NN rule is both simple and intuitive: patterns 
close in feature space are likely to belong to the same class. 
Therefore, its performance relies on the locally constant 
class conditional probability1. Nearest Neighbor classifi-
cation was developed to perform discriminant analysis 
when reliable parametric estimates of probability densities 
are unknown or difficult to determine2. The NN classi-
fier has many advantages over some well known methods 
such as decision trees and neural nets3. It can learn from 
a small set of examples and it can incrementally add new 
examples as they become available.
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Nevertheless, nearest neighbor rule suffers from two 
major problems. First, the meaning of closeness various 
in different feature spaces. Therefore, customized dis-
tance functions should be used for each problem. Second, 
each query instance should be compared with all of the 
instances to find the nearest one. These cause scalability 
problems for large datasets. 

The first problem could be solved by means of a 
weight parameter for each instance. For example in4, a 
locally adaptive distance measure is used in which a heu-
ristic method specifies the parameters of the distance 
measure. Many researches have been done to incorporate 
different kinds of weights. In these methods, the weights 
may be specified for each class, feature, or individual 
instances5–8. 
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To tackle the second problem mentioned above (i.e., 
low execution speed and high storage requirement), 
instance reduction algorithms was proposed9, 10. Instance 
reduction techniques have different objectives: removing 
noisy instances from the training set, removing instances 
far from class boundary (i.e., instances that does not affect 
decision boundary) or removing instances located too 
near to class boundaries (to increase generalization)9, 11. 

Dealing with both of the mentioned problems, 
has been the subject of some recent researches. In12, a 
prototype reduction algorithm was proposed that simul-
taneously searches for a reduced subset of prototypes and 
a suitable local metric for these prototypes. 

The Weighted Distance Nearest Neighbor (WDNN) 
is a novel method, proposed to tackle both mentioned 
problems, simultaneously13. In this method a weight 
parameter is assigned to each training instance, which 
is used in the weighted distance function. The learning 
algorithm tries to maximize the leave one out (LOO) clas-
sification accuracy of the NN rule by tuning the weights 
of the training instances. At the same time, this algorithm 
tends to decrease the weight parameters which results in 
zero-weight instances, and consequently can be viewed as 
a powerful instance reduction technique.

However, in this method the parameters are tuned 
such that in most cases the distance measure overfits 
training data. The decision boundary becomes very com-
plex because all of the training instances are considered in 
adaptation of each parameter. Thus, the main limitation of 
WDNN is the lack of a mechanism to avoid overfitting. 

One way to avoid overfitting is by controlling model 
complexity14, 15. Intuitively, a simpler model is preferred 
to explain the data (Occam’s razor)16, 17. This is not appli-
cable in WDNN model since initially model complexity 
(i.e., the number of parameters) depend on the amount 
of training data. 

The convergence of a large number of parameters 
(i.e., instance weights) either needs an overall parameter 
determination method or an iterative parameter tuning. 
WDNN uses an iterative approach. In each iteration, the 
weight of one instance is determined, assuming that other 
parameters are fixed. To find the best weight, the classi-
fication improvement of at least one training instance is 
considered. Therefore, the final model normally overfit 
the training data and consequently for the most of appli-
cations it is not able to generalize to test data. 

In the WDNN implementation, the search for the 
weight parameters is repeated for a fixed number of 

passes over the entire training set. Increasing the number 
of passes has a tradeoff between increasing the accuracy 
and cause of overfit. Randomly reordering the patterns at 
the end of each training epoch reduces the effect of overfit 
in subsequent passes, but the experiments show that in 
WDNN, overfit is expected even in early epochs.

Another approach to prevent train data overfit is early 
stopping18, 19. In model training (usually Neural Networks) 
a validation set (which is independent of the training set) is 
used to evaluate the termination criterion of training phase. 
For example the training procedure is stopped when the 
result is not expected to have further significant improve-
ment on validation set. In fact, early stopping limits the 
used weights in the model and thus imposes regularization, 
effectively lowering the VC dimension14, 20, 21. 

On the other hand, regularization techniques or 
weight decay ensures that the estimated border is no more 
curved than necessary22. One possible form of weight 
learning comes from our experimental observations that 
an overfitted boundary mapped with regions of large cur-
vature requires large weights.

The NN classifier is not robust in noisy environments. 
Noisy instances (i.e., mislabeled training data) cause mis-
classification of neighboring instances. Therefore, the class 
label noise significantly degrades the NN performance23, 24.  
Although WDNN reduces the influence of noisy train-
ing instances, by assigning small weights to them, but 
these instances impact the weight of many other training 
instances. 

In this paper we propose an enhanced version of 
WDNN (called OAWDNN) to increase its robustness and 
generalization power. The proposed method has all of the 
advantages of WDNN over traditional NN. Moreover, its 
performance (i.e., classification accuracy and reduction 
rate) is significantly better in noisy environments. 

The proposed method uses an early stopping approach 
to decrease instance weights specified by WDNN, which 
implicitly causes a smoother and consequently more gen-
eralized class boundary.

In the other words, the weight parameter in WDNN 
may become a large value on benefit of correct classifi-
cation of few instances, while a much less value suffices 
for classification of majority of instances. In fact, the basic 
idea in OAWDNN is classification of few instances does 
not worth to increase the weight value, since this causes a 
complex decision boundary. 

The rest of this paper is organized as follows. Section 
2 describes the weighted similarity metric used in NN 
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classification. In Section 3, the learning method of the 
weight parameters is presented. Section 4 elaborates the 
proposed method for overfit prevention. In Section 5, 
experimental results are presented. Section 6 concludes 
the paper.

2.  The Weighted Similarity Metric
In the NN classification to identify the most similar 
pattern with a query instance, a similarity function is 
defined. The similarity measure is defined as follows:

	 m( , ) 1
(X X d Xi j =

i jX, ) � (1)

Where d is a distance function, and Xi, Xj belong to the 
set of training instances {(Xi, ci), i = 1, ..., n}. The feature 
space has d features, m classes and n training instances. 

Different types of distance functions have been 
introduced in the literature11. Most popular distance 
function is based on the Euclidean distance that defines 
the distance between two instances Xi and Xj as follows:

	 d X X j( , ) )i ik jk
k

d
X X= ( −∑

=
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The most similar pattern to a query instance Q 
(denoted as Xp) can be find by:

	 p
j n

=
≤ ≤

argmax
1

m( , )Q Xj{ } � (3)

This simple classification technique assumes that all 
training instances are reliable and has equal importance. 
The WDNN algorithm is based on the idea that some of 
the instances should have more influence in the classifi-
ers decision. It accomplishes this by assigning a weight wk 
to each training instance Xk. Therefore, the equation (3) 
should be extended to following form:

	 r
j n

=
≤ ≤

argmax
1

.w Q Xj jm( , ){ } � (4)

3. � Learning Weights of Training 
Instances

The WDNN method attempts to minimize LOO 
classification error rate on the given training set by 
specifying the weights of training instances. 

Increasing the weight of an instance, assuming that 
the weights of all other instances are fixed, will increase 
its decision area and influence. In the WDNN algorithm, 

initially the weights of all instances are set to 1.0.  
The algorithm specifies the best weight wk (where wk is a 
number in the interval [0, ∞]) of a training instance Xk, 
assuming that the weights of all other instances are given 
and fixed13. Suppose that ck = class T and the classification 
is a two class problem in which all instances with label not 
equal to class T, belongs to. classT

The learning algorithm requires identifying instances 
that their correct/incorrect classifications depend on the 
value of wk. In the first step, the weight of Xk is set to zero. 
This effectively removes the Xk from feature space and it 
is not used to classify any training instances. Then, the 
algorithm removes two groups of instances that their 
classification do not depend on the value of wk : 

-  Correctly classified instances of ClassT
-  Misclassified instances of classT

The classification of remained instances depends on 
the value of wk. The WDNN algorithm defines a score for 
each of these instances, Xt:

	 S X
w

t( )
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Using any value wk > S(Xt) as the weight of Xk, makes 
Xk to be the nearest neighbour of Xt (i.e., Xk is the clas-
sifier of Xt). The following relation can be easily derived 
from (5).

	 w tk k j t jX X
j n

w X X j t. maxm( , ) . ( , ),>
≤ ≤

≠{ }1
m � (6)

This in turn means that using any value wk > S(Xt), 
pattern Xt is classified as ClassT. To find the optimal value 
of wk, remained instances are ranked in ascending order 
of their scores in a list denoted by Sk.

By choosing any value of wk between two consecutive 
scores (i.e., S(XP) < wk < S(XP+1)), all instances that their 
scores are smaller than wk will be classified as ClassT13. 

The best value of wk is the one minimizing LOO 
classification error rate. This algorithm is summarized in 
Figure 1. 

The overall classification rate of the algorithm could 
be improved using several passes of weight tuning over 
the training data. In fact, there is a trade-off between 
improvement of the classification rate on training data 
(by applying more iterations of the algorithm) and the 
overfit of learned weights. This kind of overfit could be 
avoided by limiting the number of passes (in practice 2 
to 5 iterations). Nevertheless, the experiments show that 
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the WDNN overfit is expected in early epochs. On the 
other hand, the overfit is caused by large values assigned 
to instance weights. To avoid this, a variation of WDNN 
algorithm is presented in the next section.

4.  Overfit Avoidance
In the basic WDNN algorithm, each different threshold 
(i.e., between any two consecutive scores in the sorted list 
Sk) is considered as a candidate for wk and consequently 
the accuracy is calculated. The threshold that results in the 
highest train accuracy is selected as the weight of instance 
Xk (i.e., wk). In the proposed technique, any candidate 
weight less than WDNN threshold is investigated by con-
sidering its impact on the expected overfit. Parameter wk 
may become a large value on benefit of correct classifi-
cation of few instances (located near decision boundary 
of Xk), while a small value of wk suffices for classification 
of majority of instances. Therefore, the generalization of 
classifier is improved. Weight decreasing will increase the 
chance of having large margin classifier which in turn 
results in a simplified decision boundary. 

On the other hand, in the original version of WDNN, 
a non-zero weight is assigned to the instance if it can 
improve the LOO classification of at least one training 
instance. This increases the complexity of the boundary. 
Here again, the weight decreasing technique is useful: An 
instance should be removed if its weight improves the 
classification of few instances. 

In the proposed algorithm shown in Figure 2, we 
consider a minimum value for the weight of Xk. This 
weight should improve the overall classification of at least 
G training instances. This means that the search for best 
threshold is limited, both from the beginning and the end 
of the list XU,k, using the G parameter and the original 
threshold of WDNN, respectively. 

In fact, a few instances placed in the beginning of the 
list XU,k should not be considered. This is achieved by lines 

11 and 12 of the algorithm. In line 12 the list element, q, is 
found based on the G parameter. Obviously, the parameter 
G should be a function of the number of instances in the 
training set rather than using a fixed value for all datasets. 
In the experiments, we used G equal to 9 percent of the 
number of training data. In fact, the WDNN algorithm 
is a special case where G = 0. The parameter G decreases 
the number of prototypes (i.e., having non-zero weight). 
When dealing with noisy datasets (i.e., include misla-
beled data), it is expected that it achieves better results by 
assigning zero weight to noisy instances. 

The OAWDNN algorithm, in the first step 
finds the original WDNN threshold (lines 5-10). 
Suppose that the best threshold to classify train-
ing instances is between two consecutive patterns  
Xbest-train-index and Xbest-train-index+1 in the list XU,k. 

Afterwards, the OAWDNN algorithm finds the best 
weight, in the list interval from element q to best_train_index. 
This interval is used in the main loop of the algorithm started 
in line 15. In this loop, the algorithm revisit the elements of 
list XU,k to find the first element before Xbest-train-index holding 

the condition (1− >S X best train indexp( ) / _ _ ) a . 
Using this criteria we seek to find a significantly 

smaller value for wk that could improve generalization and 
meanwhile results in correct classification of the majority 
of instances in the list XU,k .

This condition is illustrated by an example. Consider 
the WDNN algorithm is used to find the best weight of 
a training instance Xk. To do this, the patterns scores 
are sorted in Table 1. In this example, Xk is effective in 
classification of 9 patterns (i.e. |Xu,k | = 9). Since the 
marked instances are removed from the list, placing 
the split point after an instance Xj will cause a change 
in the classification of Xj. In other words, this change in 
the threshold, either cause a misclassified instance Xj to 
be classified correctly (signed “+” in Table 1), or a cor-
rectly classified instance Xj to be misclassified (signed “-“ 

 4
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Figure 1. Algorithm for finding the weight of training instances. 

 
4. Overfit Avoidance 

 
In the basic WDNN algorithm, each different threshold (i.e., between any two consecutive 
scores in the sorted list Sk) is considered as a candidate for wk and consequently the accuracy 
is calculated. The threshold that results in the highest train accuracy is selected as the weight 
of instance Xk (i.e., wk). In the proposed technique, any candidate weight less than WDNN 
threshold is investigated by considering its impact on the expected overfit. Parameter wk may 

1. for a number of iterations. 
2. for k = 1 to no. of train instances { assuming Xk  CLASST }. 
3. Assign zero to weight of Xk . 
4. Mark examples that have ClassT and classified correctly. 
5. Mark examples that have Tclass and are misclassified. 
6. Rank the score of unmarked training examples (i.e. kUt XX , ) in ascending order using (5). 
7. Choose the best value for weight of Xk by using the best-weight algorithm (see Figure 2).

Figure 1.  Algorithm for finding the weight of training instances.
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Figure 2.  AOWDNN algorithm for finding a weight for an instance.
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Figure 2. AOWDNN algorithm for finding a weight for an instance. 

 
This condition is illustrated by an example. Consider the WDNN algorithm is used to find 

the best weight of a training instance Xk. To do this, the patterns scores are sorted in Table 1. 
In this example, Xk is effective in classification of 9 patterns (i.e. |Xu,k | = 9). Since the marked 
instances are removed from the list, placing the split point after an instance Xj will cause a 
change in the classification of Xj. In other words, this change in the threshold, either cause a 
misclassified instance Xj to be classified correctly (signed “+” in Table 1), or a correctly 
classified instance Xj to be misclassified (signed “-“ in Table 1). The best threshold (i.e., the 
split point with minimum classification error) is between instances 7 and 8, which results in 
correct classification of 5 instances and misclassification of 2 others. 

 
Table 1. An example for explaining AOWDNN algorithm 

Example 
no. 

Impact on 
Classification Score List 1- (score/best_train_th ) 

overfit 
criterion 

1 + 0.20 0.753086 TRUE 
2 + 0.20 0.753086 TRUE 
3 - 0.25 0.691358 TRUE 
4 - 0.30 0.62963 TRUE
5 + 0.35 0.567901 TRUE 
6 + 0.76 0.061728 FALSE 
7 + 0.80 0.012346 FALSE 
8 - 0.82 -0.01235 FALSE

Inputs: Xk, XU,k, S    
Xk: the pattern for which the weight parameter should be determined 
XU,k: unmarked patterns, assume that Xt and Xt+1 are two successive patterns in the ranked list of XU,k 
S: list of scores for unmarked patterns   
Output: wk  
wk: the best weight for Xk  
1. current = accuracy (leave one out classification rate) corresponding to the wk = 0 
2. optimum = current 
3. best-train-index = 0 
4. best_train_th = 0 
     {assume that S(Xlast) is the score of the last pattern in the ranked list and  is a very small  
       positive number} 
5. for each different threshold th = (S(Xt)+S(Xt+1))/2, and th =( S(Xlast)+  ) 
6. current = train accuracy assuming wk = th 
7. if current > optimum then 
8. optimum = current 
9. best-train-index = t 
10. best_train_th = th 
11. G = 0.09 × (no of training data in ClassT) 
      {Determine parameter G according to number of instances in ClassT} 
12. Find first instance ,q U kX X such that assuming wk = S(Xq) +  improves the classification of at least 
G patterns 
13. optimum = 0 
14. new-weight = 0 
15. for each p in [q.. best-train-index] {p is a train index} 
16. if (1 ( ) / _ _ )pS X best train index

          
 

17. current = train accuracy assuming wk =( S(Xp)+S(Xp+1) ) / 2    
18. if current > optimum then 
19. optimum = current 
20. new-weight = (S(Xp)+S(Xp+1) ) / 2      
21. return wk= new-weight 

Table 1.  An example for explaining AOWDNN algorithm

Example no. Impact on Classification Score List 1- (score/best_train_th ) overfit criterion

1 + 0.20 0.753086 TRUE

2 + 0.20 0.753086 TRUE

3 - 0.25 0.691358 TRUE

4 - 0.30 0.62963 TRUE

5 + 0.35 0.567901 TRUE

6 + 0.76 0.061728 FALSE

7 + 0.80 0.012346 FALSE

8 - 0.82 −0.01235 FALSE

9 + 0.90 −0.11111 FALSE
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in Table 1). The best threshold (i.e., the split point with 
minimum classification error) is between instances 7 and 
8, which results in correct classification of 5 instances and 
misclassification of 2 others.

In the example of Table 1, the best weight for wk is 0.81 
(i.e., average value of S(X7) and S(X8)). However, improv-
ing the classification of few instances (i.e., instances 6 
and 7) does not worth considering. Since increasing the 
weight of Xk may cause a complex decision boundary. It 
is apparent from the sorted list that the greatest difference 
between scores of two consecutive examples is between 
instances 5 and 6. 

Overfit criterion (used in line 16 of overfit avoidance 
algorithm presented in Figure 2) is considered to find 
which instances increased the threshold more than 
expected. In this example, supposing the overfit parame-
ter α is 0.1, the Xk weight is significantly decreased to 0.56. 
In Table 1, the horizontal dashed lines are used to depict 
the threshold displacement caused by overfit avoidance 
algorithm.

Normally, the parameter α is a very small positive 
value and is proportional to the amount of noise. An easy 
way to find out a proper value for α is a cross-validation 
technique. In this technique, the dataset is partitioned 
into three parts, training set, validation set and test set. 
The validation set is used to get an unbiased estimate of 
the generalization (i.e., to estimate the value of α). To 
determine the value of a parameter, different values for 
the parameter is used in the learning phase and then the 

best one (i.e., provides the best result on the validation 
data) is chosen. 

5.  Experimental Results
The effectiveness of the AOWDNN algorithm has been 
evaluated through two different types of experiments. In 
the first one, a 2-dimensional dataset was generated to 
illustrate the decision boundaries created by the WDNN 
and AOWDNN algorithms. In the second, a number of 
UCI datasets is used to evaluate the classification accuracy 
of the algorithm. The aim of these experiments is to show 
the robustness and generalization power of AOWDNN in 
noisy environments. 

4.1  Artificial Data
An artificial 2-class dataset was generated in a 
2-dimensional feature space bounded to the region of 0,1 

in each dimension. The instances are generated from a 
Gaussian distribution for each of the classes. 

Figure 3(a), (b) show the training data points and 
the selected prototypes by WDNN and AOWDNN algo-
rithms, respectively. In this figure the straight line shows 
the optimal class boundary and the selected prototypes 
are denoted with star. Using these weighted prototypes, 
the decision boundary between two classes is also shown 
in the figures. As seen in (a) the WDNN decision bound-
ary is very complex and curved on behalf of few instances. 

(a) (b)
Figure 3.  The results of applying the (a) WDNN and (b) AOWDNN algorithms on an artificial dataset. The decision boundaries 
between the classes are shown with two algorithms.
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In contrast, as seen in (b) the distance of the prototypes 
from the optimal boundary is much more than the dis-
tance between WDNN prototypes and the boundary. In 
addition, the number of selected prototypes is reduced in 
AOWDNN in comparison to WDNN. This experiment 
shows that a complex decision boundary can be effectively 
simplified using the modified AOWDNN.

4.2  Real World Problems
We used 10 datasets from UCI repository to evaluate the 
performance of the proposed scheme. Table 2 gives a short 
summary of the datasets used in the experiments. 

In the preprocessing phase, each categorical attribute 
was replaced by P binary attributes, where P is the num-
ber of different values that the attribute can assume. Then 
the feature vectors normalized to the interval0, 1. In data 
sets having missing values (i.e., Heart), missing values 
were replaced by the average value of that attribute in the 
dataset. 

The impact of the proposed method is more significant 
in noisy environments, where a number of observations 
are mislabeled. In this situation, the mislabeled instances 
located near the decision boundary of a prototype increase 
the weight of the prototype, significantly. The OAWDNN 
method decreases the impact of these noisy instances 
by decreasing the weight of the prototypes. The weight 
decay simplifies the decision boundary and increases the 
generalization power. In the UCI repository many of the 
datasets are created by experts and the training examples 
could be classified accurately by well-chosen relevant fea-
tures. Therefore, we uniformly changed the class label of 
20% of the training data. 

To measure the performance of the OAWDNN 
algorithm, ten-fold cross validation (10-CV) was used. 
To provide a better estimate of the accuracy, the 10-CV 
test was repeated 20 times and the average classification 
rate on test data is calculated as the performance of the 
scheme. For tuning the parameter α, the training data 
is randomly separated into two parts. One third of the 
instances in the training data is separated as validation 
data. Different values for the parameter α are used for the 
prototype weighting. 

The validation data is used to determine which of 
these values performs the best result. Finally, the proto-
type weights (that are found using the best value of α) 
are used to evaluate the generalization performance of 
AOWDNN algorithm using the test data. In the reported 
experiments, the parameter α is examined in the interval 
[.001,3] step by .005. The classification rate on validation 
data is calculated to determine the best value (i.e. the one 
which maximizes the accuracy on validation data). 

Figure 4 shows the average classification rate of all 
examined data sets. This figure reports the train and test 
accuracy of both the WDNN and AOWDNN methods 
during the 5 iterations of learning process. In each itera-
tion of the WDNN method, the classification rate of the 
training data is slightly increased while the classification 
of the test data is decreased. In the iterations, the proto-
type weights are more and more fitted to the training data 
which causes the test accuracy to be degraded. 

On the other hand, in the AOWDNN method, the 
classification rate of training data is less than the original 
WDNN. It is expected because the algorithm intentionally 
selects weight less than the best weight (i.e., in the interval 
[0, best_weight]) instead of the best weight. Meanwhile, 

Table 2.  Statistics of the data sets used in experiment

Data Set No. of Instances No. of Features No. of Classes No. of non numeric features
Cancer 685 9 2 0
Pima 768 8 2 0
Heart 294 13 2 7
Ionosphere 351 34 2 0
Iris 150 4 3 0
Bupa 347 6 2 0
Vote 435 16 2 16
Thyroid 215 5 3 0
Yeast 1484 8 10 0
Wine 178 13 3 0
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Figure 4.  Classification rates of Train and test data in 5 
weighting iterations with WDNN and OAWDNN methods.

0 1 2 3 4 5

70

75

80

85

90

Iterations

A
cc

ur
ac

y 
ra

te
s(

%
)

WDNN T rain

WDNN T es t

O AWDNN T rain

O AWDNN T es t

Figure 5.  Compression rates of AOWDNN method in 
comparison with the WDNN method.

Table 3.  Classification rate of OA_WDNN method in comparison with 1NN and WDNN methods

Dataset ALFA 1NN ± STD_DEV WDNN ± STD_DEV OAWDNN± STD_DEV
Bupa 0.001 56.60 ± 1.05 59.67 ± 1.38 60.41 ±1.04
Cancer 0.127 77.38 ± 2.09 93.52 ± 1.06 96.71 ±0.27
Heart 0.131 64.99 ± 3.33 73.28 ± 2.90 79.60 ±1.76
Ionosphere 0.058 71.68 ± 2.14 84.44 ± 2.67 87.07 ±1.20
Iris 0.054 75.29 ± 4.29 89.02 ± 2.57 92.80 ±0.88
Pima 0.064 57.77 ± 1.55 69.44 ± 0.98 72.63 ±1.07
Thyroid 0.056 76.13 ± 1.95 92.06 ± 2.14 93.90 ±1.54
Vote 0.104 75.57 ± 2.14 85.97 ± 1.12 88.67 ±1.11
Wine 0.057 76.08 ± 2.41 89.41 ± 1.83 93.61 ±1.57
Yeast 0.030 42.13 ± 1.05 54.77 ± 0.85 56.18 ±0.77
Average --- 67.36 ± 2.20 79.16 ± 1.75 82.16 ±1.12

the test accuracy is increased in comparison to the 
original method. 

Table 3 gives the average of 10-CV test accuracy overall 
20 times, for the proposed method, the WDNN algorithm 
and the basic 1-NN method. Next to each average accuracy 
value reported in Table 3, the standard deviation (calcu-
lated based on 20 runs of 10-CV) is given. The best value 
for parameter α is also reported in the table. As seen, the 
OAWDNN improves the generalization accuracy of the 
basic NN and WDNN method in all data sets. In the last 
row of this table, average generalization accuracy of each 
method over all datasets is reported. As seen in the result 
of Table 3, the OAWDNN method improves the average 
accuracy of the basic NN and the WDNN 14.8% and 3%, 

respectively. This verifies the effectiveness of the proposed 
method compared with the WDNN algorithm.

In Figure 5, the compression rates of the OAWDNN 
and WDNN methods are shown for various datasets. 
As seen, The AOWDNN algorithm achieves the best 
compression rates on all datasets. The reason is that the 
AOWDNN weight decay causes some prototypes be 
virtually removed as their weights decrease to zero.

5.  Conclusion
The WDNN algorithm is a method to learn nearest 
neighbor distance measure parameters. In this method 
a weight parameter is assigned to each training instance, 
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which is used in the weighted distance function. In each 
iteration, the WDNN learning algorithm maximizes the 
leave-one-out (LOO) classification rate of the NN rule 
by determining the best weight for one of the training 
instances, assuming that the weights of all other instances 
are given and fixed. This maximization is highly expected 
to cause weight parameters overfitting to the training 
data. In this paper we proposed a mechanism to avoid the 
overfit problem in the WDNN algorithm. This method 
decreases the instance weights to smooth decision bound-
ary. Experimental results show the effectiveness of the 
method. In new method, although the error rate is higher 
on the training data, but its generalization is increased, 
so test error is significantly lower than original version of 
WDNN.
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