
A Robust Instance Weighting Technique for Nearest
Neighbor Classification in Noisy Environments

E. Parvinnia1*, M. R. Moosavi2, M. Zolghadri Jahromi2 and M. H. Sadreddini2

1Department of Computer Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran; eparvinnia@yahoo.com
2Department of Computer Science and Engineering, Shiraz University, Iran

Abstract
The performance of Nearest Neighbor (NN) classifier is highly dependent on the distance (or similarity) function used to
find the NN of an input test pattern. Many of the proposed algorithms try to optimize the accuracy of the NN rule using a
weighted distance function. In this scheme, a weight parameter is learned for each of the training instances. The weights
of training instances are used in the generalization phase to find the NN of an input test pattern. The Weighted Distance
Nearest Neighbor (WDNN) algorithm attempts to maximize the leave-one-out classification rate of the training set by
adjusting the weight parameters. The procedure simply leads to weights that overfit the train data, which degrades the
performance of the method especially in noisy environments.
In this paper, we propose an enhanced version of WDNN, called Overfit Avoidance for WDNN (OAWDNN), that significantly
outperforms the algorithm in generalization phase. The proposed method uses an early stopping approach to decrease
instance weights specified by WDNN, which implicitly makes the class boundary smooth and consequently more
generalized.
In order to evaluate robustness of the algorithm, class label noise is added to a variety of UCI datasets. The experimental
results show the supremacy of the proposed method in generalization accuracy.

Keywords: Classification Nearest Neighbor (NN), Instance Weighting, Avoidance Overfit, Robustness, Environment
Noisy

1.  Introduction
The Nearest Neighbor rule is one of the simplest and most
attractive pattern classification methods. The basic ratio-
nale for the NN rule is both simple and intuitive: patterns
close in feature space are likely to belong to the same class.
Therefore, its performance relies on the locally constant
class conditional probability1. Nearest Neighbor classifi-
cation was developed to perform discriminant analysis
when reliable parametric estimates of probability densities
are unknown or difficult to determine2. The NN classi-
fier has many advantages over some well known methods
such as decision trees and neural nets3. It can learn from
a small set of examples and it can incrementally add new
examples as they become available.

Indian Journal of Science and Technology, Vol 8(1), 70–78, January 2015

*Author for correspondence

Nevertheless, nearest neighbor rule suffers from two
major problems. First, the meaning of closeness various
in different feature spaces. Therefore, customized dis-
tance functions should be used for each problem. Second,
each query instance should be compared with all of the
instances to find the nearest one. These cause scalability
problems for large datasets.

The first problem could be solved by means of a
weight parameter for each instance. For example in4, a
locally adaptive distance measure is used in which a heu-
ristic method specifies the parameters of the distance
measure. Many researches have been done to incorporate
different kinds of weights. In these methods, the weights
may be specified for each class, feature, or individual
instances5–8.

ISSN (Print) : 0974-6846
ISSN (Online) : 0974-5645

DOI : 10.17485/ijst/2015/v8i1/56659

E. Parvinnia, M. R. Moosavi, M. Zolghadri Jahromi and M. H. Sadreddini

Indian Journal of Science and Technology 71Vol 8 (1) | January 2015 | www.indjst.org

To tackle the second problem mentioned above (i.e.,
low execution speed and high storage requirement),
instance reduction algorithms was proposed9, 10. Instance
reduction techniques have different objectives: removing
noisy instances from the training set, removing instances
far from class boundary (i.e., instances that does not affect
decision boundary) or removing instances located too
near to class boundaries (to increase generalization)9, 11.

Dealing with both of the mentioned problems,
has been the subject of some recent researches. In12, a
prototype reduction algorithm was proposed that simul-
taneously searches for a reduced subset of prototypes and
a suitable local metric for these prototypes.

The Weighted Distance Nearest Neighbor (WDNN)
is a novel method, proposed to tackle both mentioned
problems, simultaneously13. In this method a weight
parameter is assigned to each training instance, which
is used in the weighted distance function. The learning
algorithm tries to maximize the leave one out (LOO) clas-
sification accuracy of the NN rule by tuning the weights
of the training instances. At the same time, this algorithm
tends to decrease the weight parameters which results in
zero-weight instances, and consequently can be viewed as
a powerful instance reduction technique.

However, in this method the parameters are tuned
such that in most cases the distance measure overfits
training data. The decision boundary becomes very com-
plex because all of the training instances are considered in
adaptation of each parameter. Thus, the main limitation of
WDNN is the lack of a mechanism to avoid overfitting.

One way to avoid overfitting is by controlling model
complexity14, 15. Intuitively, a simpler model is preferred
to explain the data (Occam’s razor)16, 17. This is not appli-
cable in WDNN model since initially model complexity
(i.e., the number of parameters) depend on the amount
of training data.

The convergence of a large number of parameters
(i.e., instance weights) either needs an overall parameter
determination method or an iterative parameter tuning.
WDNN uses an iterative approach. In each iteration, the
weight of one instance is determined, assuming that other
parameters are fixed. To find the best weight, the classi-
fication improvement of at least one training instance is
considered. Therefore, the final model normally overfit
the training data and consequently for the most of appli-
cations it is not able to generalize to test data.

In the WDNN implementation, the search for the
weight parameters is repeated for a fixed number of

passes over the entire training set. Increasing the number
of passes has a tradeoff between increasing the accuracy
and cause of overfit. Randomly reordering the patterns at
the end of each training epoch reduces the effect of overfit
in subsequent passes, but the experiments show that in
WDNN, overfit is expected even in early epochs.

Another approach to prevent train data overfit is early
stopping18, 19. In model training (usually Neural Networks)
a validation set (which is independent of the training set) is
used to evaluate the termination criterion of training phase.
For example the training procedure is stopped when the
result is not expected to have further significant improve-
ment on validation set. In fact, early stopping limits the
used weights in the model and thus imposes regularization,
effectively lowering the VC dimension14, 20, 21.

On the other hand, regularization techniques or
weight decay ensures that the estimated border is no more
curved than necessary22. One possible form of weight
learning comes from our experimental observations that
an overfitted boundary mapped with regions of large cur-
vature requires large weights.

The NN classifier is not robust in noisy environments.
Noisy instances (i.e., mislabeled training data) cause mis-
classification of neighboring instances. Therefore, the class
label noise significantly degrades the NN performance23, 24.
Although WDNN reduces the influence of noisy train-
ing instances, by assigning small weights to them, but
these instances impact the weight of many other training
instances.

In this paper we propose an enhanced version of
WDNN (called OAWDNN) to increase its robustness and
generalization power. The proposed method has all of the
advantages of WDNN over traditional NN. Moreover, its
performance (i.e., classification accuracy and reduction
rate) is significantly better in noisy environments.

The proposed method uses an early stopping approach
to decrease instance weights specified by WDNN, which
implicitly causes a smoother and consequently more gen-
eralized class boundary.

In the other words, the weight parameter in WDNN
may become a large value on benefit of correct classifi-
cation of few instances, while a much less value suffices
for classification of majority of instances. In fact, the basic
idea in OAWDNN is classification of few instances does
not worth to increase the weight value, since this causes a
complex decision boundary.

The rest of this paper is organized as follows. Section
2 describes the weighted similarity metric used in NN

A Robust Instance Weighting Technique for Nearest Neighbor Classification in Noisy Environments

Indian Journal of Science and TechnologyVol 8 (1) | January 2015 | www.indjst.org72

classification. In Section 3, the learning method of the
weight parameters is presented. Section 4 elaborates the
proposed method for overfit prevention. In Section 5,
experimental results are presented. Section 6 concludes
the paper.

2.  The Weighted Similarity Metric
In the NN classification to identify the most similar
pattern with a query instance, a similarity function is
defined. The similarity measure is defined as follows:

	 m(,) 1
(X X d Xi j =

i jX,) � (1)

Where d is a distance function, and Xi, Xj belong to the
set of training instances {(Xi, ci), i = 1, ..., n}. The feature
space has d features, m classes and n training instances.

Different types of distance functions have been
introduced in the literature11. Most popular distance
function is based on the Euclidean distance that defines
the distance between two instances Xi and Xj as follows:

	 d X X j(,))i ik jk
k

d
X X= (−∑

=

2

1
� (2)

The most similar pattern to a query instance Q
(denoted as Xp) can be find by:

	 p
j n

=
≤ ≤

argmax
1

m(,)Q Xj{ } � (3)

This simple classification technique assumes that all
training instances are reliable and has equal importance.
The WDNN algorithm is based on the idea that some of
the instances should have more influence in the classifi-
ers decision. It accomplishes this by assigning a weight wk
to each training instance Xk. Therefore, the equation (3)
should be extended to following form:

	 r
j n

=
≤ ≤

argmax
1

.w Q Xj jm(,){ } � (4)

3. � Learning Weights of Training
Instances

The WDNN method attempts to minimize LOO
classification error rate on the given training set by
specifying the weights of training instances.

Increasing the weight of an instance, assuming that
the weights of all other instances are fixed, will increase
its decision area and influence. In the WDNN algorithm,

initially the weights of all instances are set to 1.0.
The algorithm specifies the best weight wk (where wk is a
number in the interval [0, ∞]) of a training instance Xk,
assuming that the weights of all other instances are given
and fixed13. Suppose that ck = class T and the classification
is a two class problem in which all instances with label not
equal to class T, belongs to. classT

The learning algorithm requires identifying instances
that their correct/incorrect classifications depend on the
value of wk. In the first step, the weight of Xk is set to zero.
This effectively removes the Xk from feature space and it
is not used to classify any training instances. Then, the
algorithm removes two groups of instances that their
classification do not depend on the value of wk :

-  Correctly classified instances of ClassT
-  Misclassified instances of classT

The classification of remained instances depends on
the value of wk. The WDNN algorithm defines a score for
each of these instances, Xt:

	 S X
w

t()
max

1= ≤ ≤
≠{ }j n

X X j t

X X

j t j

t k

. (,),

(,)

m

m
� (5)

Using any value wk > S(Xt) as the weight of Xk, makes
Xk to be the nearest neighbour of Xt (i.e., Xk is the clas-
sifier of Xt). The following relation can be easily derived
from (5).

	 w tk k j t jX X
j n

w X X j t. maxm(,) . (,),>
≤ ≤

≠{ }1
m � (6)

This in turn means that using any value wk > S(Xt),
pattern Xt is classified as ClassT. To find the optimal value
of wk, remained instances are ranked in ascending order
of their scores in a list denoted by Sk.

By choosing any value of wk between two consecutive
scores (i.e., S(XP) < wk < S(XP+1)), all instances that their
scores are smaller than wk will be classified as ClassT13.

The best value of wk is the one minimizing LOO
classification error rate. This algorithm is summarized in
Figure 1.

The overall classification rate of the algorithm could
be improved using several passes of weight tuning over
the training data. In fact, there is a trade-off between
improvement of the classification rate on training data
(by applying more iterations of the algorithm) and the
overfit of learned weights. This kind of overfit could be
avoided by limiting the number of passes (in practice 2
to 5 iterations). Nevertheless, the experiments show that

E. Parvinnia, M. R. Moosavi, M. Zolghadri Jahromi and M. H. Sadreddini

Indian Journal of Science and Technology 73Vol 8 (1) | January 2015 | www.indjst.org

the WDNN overfit is expected in early epochs. On the
other hand, the overfit is caused by large values assigned
to instance weights. To avoid this, a variation of WDNN
algorithm is presented in the next section.

4.  Overfit Avoidance
In the basic WDNN algorithm, each different threshold
(i.e., between any two consecutive scores in the sorted list
Sk) is considered as a candidate for wk and consequently
the accuracy is calculated. The threshold that results in the
highest train accuracy is selected as the weight of instance
Xk (i.e., wk). In the proposed technique, any candidate
weight less than WDNN threshold is investigated by con-
sidering its impact on the expected overfit. Parameter wk
may become a large value on benefit of correct classifi-
cation of few instances (located near decision boundary
of Xk), while a small value of wk suffices for classification
of majority of instances. Therefore, the generalization of
classifier is improved. Weight decreasing will increase the
chance of having large margin classifier which in turn
results in a simplified decision boundary.

On the other hand, in the original version of WDNN,
a non-zero weight is assigned to the instance if it can
improve the LOO classification of at least one training
instance. This increases the complexity of the boundary.
Here again, the weight decreasing technique is useful: An
instance should be removed if its weight improves the
classification of few instances.

In the proposed algorithm shown in Figure 2, we
consider a minimum value for the weight of Xk. This
weight should improve the overall classification of at least
G training instances. This means that the search for best
threshold is limited, both from the beginning and the end
of the list XU,k, using the G parameter and the original
threshold of WDNN, respectively.

In fact, a few instances placed in the beginning of the
list XU,k should not be considered. This is achieved by lines

11 and 12 of the algorithm. In line 12 the list element, q, is
found based on the G parameter. Obviously, the parameter
G should be a function of the number of instances in the
training set rather than using a fixed value for all datasets.
In the experiments, we used G equal to 9 percent of the
number of training data. In fact, the WDNN algorithm
is a special case where G = 0. The parameter G decreases
the number of prototypes (i.e., having non-zero weight).
When dealing with noisy datasets (i.e., include misla-
beled data), it is expected that it achieves better results by
assigning zero weight to noisy instances.

The OAWDNN algorithm, in the first step
finds the original WDNN threshold (lines 5-10).
Suppose that the best threshold to classify train-
ing instances is between two consecutive patterns
Xbest-train-index and Xbest-train-index+1 in the list XU,k.

Afterwards, the OAWDNN algorithm finds the best
weight, in the list interval from element q to best_train_index.
This interval is used in the main loop of the algorithm started
in line 15. In this loop, the algorithm revisit the elements of
list XU,k to find the first element before Xbest-train-index holding

the condition (1− >S X best train indexp() / _ _) a .
Using this criteria we seek to find a significantly

smaller value for wk that could improve generalization and
meanwhile results in correct classification of the majority
of instances in the list XU,k .

This condition is illustrated by an example. Consider
the WDNN algorithm is used to find the best weight of
a training instance Xk. To do this, the patterns scores
are sorted in Table 1. In this example, Xk is effective in
classification of 9 patterns (i.e. |Xu,k | = 9). Since the
marked instances are removed from the list, placing
the split point after an instance Xj will cause a change
in the classification of Xj. In other words, this change in
the threshold, either cause a misclassified instance Xj to
be classified correctly (signed “+” in Table 1), or a cor-
rectly classified instance Xj to be misclassified (signed “-“

 4

other instances are given and fixed13. Suppose that kc classT and the classification is a two
class problem in which all instances with label not equal to classT , belongs to classT .

The learning algorithm requires identifying instances that their correct/incorrect
classifications depend on the value of wk. In the first step, the weight of Xk is set to zero. This
effectively removes the Xk from feature space and it is not used to classify any training
instances. Then, the algorithm removes two groups of instances that their classification do not
depend on the value of wk :

- Correctly classified instances of ClassT
- Misclassified instances of Tclass
The classification of remained instances depends on the value of wk. The WDNN

algorithm defines a score for each of these instances, Xt:
max . (,),

1()
(,)

w X X j tj t j
j nS Xt X Xt k

 (5)

Using any value wk > S(Xt) as the weight of Xk, makes Xk to be the nearest neighbour of Xt
(i.e., Xk is the classifier of Xt). The following relation can be easily derived from (5).

. (,) max . (,),
1

w X X w X X j tk t k j t j
j n

 (6)

This in turn means that using any value wk > S(Xt), pattern Xt is classified as ClassT. To
find the optimal value of wk, remained instances are ranked in ascending order of their scores
in a list denoted by Sk.

By choosing any value of wk between two consecutive scores (i.e., S(XP) < wk < S(XP+1)),
all instances that their scores are smaller than wk will be classified as ClassT13.

The best value of wk is the one minimizing LOO classification error rate. This algorithm is
summarized in Figure 1.

The overall classification rate of the algorithm could be improved using several passes of
weight tuning over the training data. In fact, there is a trade-off between improvement of the
classification rate on training data (by applying more iterations of the algorithm) and the
overfit of learned weights. This kind of overfit could be avoided by limiting the number of
passes (in practice 2 to 5 iterations). Nevertheless, the experiments show that the WDNN
overfit is expected in early epochs. On the other hand, the overfit is caused by large values
assigned to instance weights. To avoid this, a variation of WDNN algorithm is presented in
the next section.

Figure 1. Algorithm for finding the weight of training instances.

4. Overfit Avoidance

In the basic WDNN algorithm, each different threshold (i.e., between any two consecutive
scores in the sorted list Sk) is considered as a candidate for wk and consequently the accuracy
is calculated. The threshold that results in the highest train accuracy is selected as the weight
of instance Xk (i.e., wk). In the proposed technique, any candidate weight less than WDNN
threshold is investigated by considering its impact on the expected overfit. Parameter wk may

1. for a number of iterations.
2. for k = 1 to no. of train instances { assuming Xk CLASST }.
3. Assign zero to weight of Xk .
4. Mark examples that have ClassT and classified correctly.
5. Mark examples that have Tclass and are misclassified.
6. Rank the score of unmarked training examples (i.e. kUt XX ,) in ascending order using (5).
7. Choose the best value for weight of Xk by using the best-weight algorithm (see Figure 2).

Figure 1.  Algorithm for finding the weight of training instances.

A Robust Instance Weighting Technique for Nearest Neighbor Classification in Noisy Environments

Indian Journal of Science and TechnologyVol 8 (1) | January 2015 | www.indjst.org74

Figure 2.  AOWDNN algorithm for finding a weight for an instance.

 6

Figure 2. AOWDNN algorithm for finding a weight for an instance.

This condition is illustrated by an example. Consider the WDNN algorithm is used to find

the best weight of a training instance Xk. To do this, the patterns scores are sorted in Table 1.
In this example, Xk is effective in classification of 9 patterns (i.e. |Xu,k | = 9). Since the marked
instances are removed from the list, placing the split point after an instance Xj will cause a
change in the classification of Xj. In other words, this change in the threshold, either cause a
misclassified instance Xj to be classified correctly (signed “+” in Table 1), or a correctly
classified instance Xj to be misclassified (signed “-“ in Table 1). The best threshold (i.e., the
split point with minimum classification error) is between instances 7 and 8, which results in
correct classification of 5 instances and misclassification of 2 others.

Table 1. An example for explaining AOWDNN algorithm

Example
no.

Impact on
Classification Score List 1- (score/best_train_th)

overfit
criterion

1 + 0.20 0.753086 TRUE
2 + 0.20 0.753086 TRUE
3 - 0.25 0.691358 TRUE
4 - 0.30 0.62963 TRUE
5 + 0.35 0.567901 TRUE
6 + 0.76 0.061728 FALSE
7 + 0.80 0.012346 FALSE
8 - 0.82 -0.01235 FALSE

Inputs: Xk, XU,k, S
Xk: the pattern for which the weight parameter should be determined
XU,k: unmarked patterns, assume that Xt and Xt+1 are two successive patterns in the ranked list of XU,k
S: list of scores for unmarked patterns
Output: wk
wk: the best weight for Xk
1. current = accuracy (leave one out classification rate) corresponding to the wk = 0
2. optimum = current
3. best-train-index = 0
4. best_train_th = 0
 {assume that S(Xlast) is the score of the last pattern in the ranked list and is a very small
 positive number}
5. for each different threshold th = (S(Xt)+S(Xt+1))/2, and th =(S(Xlast)+)
6. current = train accuracy assuming wk = th
7. if current > optimum then
8. optimum = current
9. best-train-index = t
10. best_train_th = th
11. G = 0.09 × (no of training data in ClassT)
 {Determine parameter G according to number of instances in ClassT}
12. Find first instance ,q U kX X such that assuming wk = S(Xq) + improves the classification of at least
G patterns
13. optimum = 0
14. new-weight = 0
15. for each p in [q.. best-train-index] {p is a train index}
16. if (1 () / _ _)pS X best train index

17. current = train accuracy assuming wk =(S(Xp)+S(Xp+1)) / 2
18. if current > optimum then
19. optimum = current
20. new-weight = (S(Xp)+S(Xp+1)) / 2
21. return wk= new-weight

Table 1.  An example for explaining AOWDNN algorithm

Example no. Impact on Classification Score List 1- (score/best_train_th) overfit criterion

1 + 0.20 0.753086 TRUE

2 + 0.20 0.753086 TRUE

3 - 0.25 0.691358 TRUE

4 - 0.30 0.62963 TRUE

5 + 0.35 0.567901 TRUE

6 + 0.76 0.061728 FALSE

7 + 0.80 0.012346 FALSE

8 - 0.82 −0.01235 FALSE

9 + 0.90 −0.11111 FALSE

E. Parvinnia, M. R. Moosavi, M. Zolghadri Jahromi and M. H. Sadreddini

Indian Journal of Science and Technology 75Vol 8 (1) | January 2015 | www.indjst.org

in Table 1). The best threshold (i.e., the split point with
minimum classification error) is between instances 7 and
8, which results in correct classification of 5 instances and
misclassification of 2 others.

In the example of Table 1, the best weight for wk is 0.81
(i.e., average value of S(X7) and S(X8)). However, improv-
ing the classification of few instances (i.e., instances 6
and 7) does not worth considering. Since increasing the
weight of Xk may cause a complex decision boundary. It
is apparent from the sorted list that the greatest difference
between scores of two consecutive examples is between
instances 5 and 6.

Overfit criterion (used in line 16 of overfit avoidance
algorithm presented in Figure 2) is considered to find
which instances increased the threshold more than
expected. In this example, supposing the overfit parame-
ter α is 0.1, the Xk weight is significantly decreased to 0.56.
In Table 1, the horizontal dashed lines are used to depict
the threshold displacement caused by overfit avoidance
algorithm.

Normally, the parameter α is a very small positive
value and is proportional to the amount of noise. An easy
way to find out a proper value for α is a cross-validation
technique. In this technique, the dataset is partitioned
into three parts, training set, validation set and test set.
The validation set is used to get an unbiased estimate of
the generalization (i.e., to estimate the value of α). To
determine the value of a parameter, different values for
the parameter is used in the learning phase and then the

best one (i.e., provides the best result on the validation
data) is chosen.

5.  Experimental Results
The effectiveness of the AOWDNN algorithm has been
evaluated through two different types of experiments. In
the first one, a 2-dimensional dataset was generated to
illustrate the decision boundaries created by the WDNN
and AOWDNN algorithms. In the second, a number of
UCI datasets is used to evaluate the classification accuracy
of the algorithm. The aim of these experiments is to show
the robustness and generalization power of AOWDNN in
noisy environments.

4.1  Artificial Data
An artificial 2-class dataset was generated in a
2-dimensional feature space bounded to the region of 0,1

in each dimension. The instances are generated from a
Gaussian distribution for each of the classes.

Figure 3(a), (b) show the training data points and
the selected prototypes by WDNN and AOWDNN algo-
rithms, respectively. In this figure the straight line shows
the optimal class boundary and the selected prototypes
are denoted with star. Using these weighted prototypes,
the decision boundary between two classes is also shown
in the figures. As seen in (a) the WDNN decision bound-
ary is very complex and curved on behalf of few instances.

(a) (b)
Figure 3.  The results of applying the (a) WDNN and (b) AOWDNN algorithms on an artificial dataset. The decision boundaries
between the classes are shown with two algorithms.

A Robust Instance Weighting Technique for Nearest Neighbor Classification in Noisy Environments

Indian Journal of Science and TechnologyVol 8 (1) | January 2015 | www.indjst.org76

In contrast, as seen in (b) the distance of the prototypes
from the optimal boundary is much more than the dis-
tance between WDNN prototypes and the boundary. In
addition, the number of selected prototypes is reduced in
AOWDNN in comparison to WDNN. This experiment
shows that a complex decision boundary can be effectively
simplified using the modified AOWDNN.

4.2  Real World Problems
We used 10 datasets from UCI repository to evaluate the
performance of the proposed scheme. Table 2 gives a short
summary of the datasets used in the experiments.

In the preprocessing phase, each categorical attribute
was replaced by P binary attributes, where P is the num-
ber of different values that the attribute can assume. Then
the feature vectors normalized to the interval0, 1. In data
sets having missing values (i.e., Heart), missing values
were replaced by the average value of that attribute in the
dataset.

The impact of the proposed method is more significant
in noisy environments, where a number of observations
are mislabeled. In this situation, the mislabeled instances
located near the decision boundary of a prototype increase
the weight of the prototype, significantly. The OAWDNN
method decreases the impact of these noisy instances
by decreasing the weight of the prototypes. The weight
decay simplifies the decision boundary and increases the
generalization power. In the UCI repository many of the
datasets are created by experts and the training examples
could be classified accurately by well-chosen relevant fea-
tures. Therefore, we uniformly changed the class label of
20% of the training data.

To measure the performance of the OAWDNN
algorithm, ten-fold cross validation (10-CV) was used.
To provide a better estimate of the accuracy, the 10-CV
test was repeated 20 times and the average classification
rate on test data is calculated as the performance of the
scheme. For tuning the parameter α, the training data
is randomly separated into two parts. One third of the
instances in the training data is separated as validation
data. Different values for the parameter α are used for the
prototype weighting.

The validation data is used to determine which of
these values performs the best result. Finally, the proto-
type weights (that are found using the best value of α)
are used to evaluate the generalization performance of
AOWDNN algorithm using the test data. In the reported
experiments, the parameter α is examined in the interval
[.001,3] step by .005. The classification rate on validation
data is calculated to determine the best value (i.e. the one
which maximizes the accuracy on validation data).

Figure 4 shows the average classification rate of all
examined data sets. This figure reports the train and test
accuracy of both the WDNN and AOWDNN methods
during the 5 iterations of learning process. In each itera-
tion of the WDNN method, the classification rate of the
training data is slightly increased while the classification
of the test data is decreased. In the iterations, the proto-
type weights are more and more fitted to the training data
which causes the test accuracy to be degraded.

On the other hand, in the AOWDNN method, the
classification rate of training data is less than the original
WDNN. It is expected because the algorithm intentionally
selects weight less than the best weight (i.e., in the interval
[0, best_weight]) instead of the best weight. Meanwhile,

Table 2.  Statistics of the data sets used in experiment

Data Set No. of Instances No. of Features No. of Classes No. of non numeric features
Cancer 685 9 2 0
Pima 768 8 2 0
Heart 294 13 2 7
Ionosphere 351 34 2 0
Iris 150 4 3 0
Bupa 347 6 2 0
Vote 435 16 2 16
Thyroid 215 5 3 0
Yeast 1484 8 10 0
Wine 178 13 3 0

E. Parvinnia, M. R. Moosavi, M. Zolghadri Jahromi and M. H. Sadreddini

Indian Journal of Science and Technology 77Vol 8 (1) | January 2015 | www.indjst.org

Figure 4.  Classification rates of Train and test data in 5
weighting iterations with WDNN and OAWDNN methods.

0 1 2 3 4 5

70

75

80

85

90

Iterations

A
cc

ur
ac

y
ra

te
s(

%
)

WDNN T rain

WDNN T es t

O AWDNN T rain

O AWDNN T es t

Figure 5.  Compression rates of AOWDNN method in
comparison with the WDNN method.

Table 3.  Classification rate of OA_WDNN method in comparison with 1NN and WDNN methods

Dataset ALFA 1NN ± STD_DEV WDNN ± STD_DEV OAWDNN± STD_DEV
Bupa 0.001 56.60 ± 1.05 59.67 ± 1.38 60.41 ±1.04
Cancer 0.127 77.38 ± 2.09 93.52 ± 1.06 96.71 ±0.27
Heart 0.131 64.99 ± 3.33 73.28 ± 2.90 79.60 ±1.76
Ionosphere 0.058 71.68 ± 2.14 84.44 ± 2.67 87.07 ±1.20
Iris 0.054 75.29 ± 4.29 89.02 ± 2.57 92.80 ±0.88
Pima 0.064 57.77 ± 1.55 69.44 ± 0.98 72.63 ±1.07
Thyroid 0.056 76.13 ± 1.95 92.06 ± 2.14 93.90 ±1.54
Vote 0.104 75.57 ± 2.14 85.97 ± 1.12 88.67 ±1.11
Wine 0.057 76.08 ± 2.41 89.41 ± 1.83 93.61 ±1.57
Yeast 0.030 42.13 ± 1.05 54.77 ± 0.85 56.18 ±0.77
Average --- 67.36 ± 2.20 79.16 ± 1.75 82.16 ±1.12

the test accuracy is increased in comparison to the
original method.

Table 3 gives the average of 10-CV test accuracy overall
20 times, for the proposed method, the WDNN algorithm
and the basic 1-NN method. Next to each average accuracy
value reported in Table 3, the standard deviation (calcu-
lated based on 20 runs of 10-CV) is given. The best value
for parameter α is also reported in the table. As seen, the
OAWDNN improves the generalization accuracy of the
basic NN and WDNN method in all data sets. In the last
row of this table, average generalization accuracy of each
method over all datasets is reported. As seen in the result
of Table 3, the OAWDNN method improves the average
accuracy of the basic NN and the WDNN 14.8% and 3%,

respectively. This verifies the effectiveness of the proposed
method compared with the WDNN algorithm.

In Figure 5, the compression rates of the OAWDNN
and WDNN methods are shown for various datasets.
As seen, The AOWDNN algorithm achieves the best
compression rates on all datasets. The reason is that the
AOWDNN weight decay causes some prototypes be
virtually removed as their weights decrease to zero.

5.  Conclusion
The WDNN algorithm is a method to learn nearest
neighbor distance measure parameters. In this method
a weight parameter is assigned to each training instance,

A Robust Instance Weighting Technique for Nearest Neighbor Classification in Noisy Environments

Indian Journal of Science and TechnologyVol 8 (1) | January 2015 | www.indjst.org78

which is used in the weighted distance function. In each
iteration, the WDNN learning algorithm maximizes the
leave-one-out (LOO) classification rate of the NN rule
by determining the best weight for one of the training
instances, assuming that the weights of all other instances
are given and fixed. This maximization is highly expected
to cause weight parameters overfitting to the training
data. In this paper we proposed a mechanism to avoid the
overfit problem in the WDNN algorithm. This method
decreases the instance weights to smooth decision bound-
ary. Experimental results show the effectiveness of the
method. In new method, although the error rate is higher
on the training data, but its generalization is increased,
so test error is significantly lower than original version of
WDNN.

7.  References
1.	� Peng J, Heisterkamp DR, Dai HK. Adaptive quasiconformal

kernel nearest neighbor classification. IEEE Trans Pattern
Anal Mach Intell. 2004; 26:656–61.

2.	� Hastie T, Tibshirani R. Discriminant adaptive nearest
neighbor classification. IEEE Trans Pattern Anal Mach
Intell. 2002; 18:607–15.

3.	� Moosavi MR, Jahromi ZM, Ghodratnama S, Taheri M,
Sadreddini MH. A Cost Sensitive Learning Method To
Tune The Nearest Neighbour For Intrusion Detection. IJST,
Transactions of Electrical Engineering. 2012; 36:109–29.

4.	� Wang J, Neskovic P, Cooper LN. Improving nearest neigh-
bor rule with a simple adaptive distance measure. Pattern
Recogn Lett. 2007; 28:207–13.

5.	� Moosavi MR, Yeganehfard Z, Kazemi A, Sadreddini MH,
Jahromi MZ. Distance measure adaptation based on local
feature weighting. In Intelligent Systems (IS), 2012 6th
IEEE International Conference. 2012 Sept; IEEE. p. 132–7.

6.	� Paredes R, Vidal E. Learning weighted metrics to minimize
nearest-neighbor classification error. IEEE Trans Pattern Anal
Mach Intell. 2006; 28:1100–10.

7.	� Shahparast H, Jahromi MZ, Taheri M, Hamzeloo S. A Novel
Weight Adjustment Method for Handling Concept-Drift in
Data Stream Classification. Arabian Journal for Science and
Engineering. 2014; 39(2):799–807.

8.	� Shahparast H, Taheri M, Hamzeloo S, Jahromi ZM. An
online rule weighting method to classify data streams. 2012
16th CSI International Symposium on Artificial Intelligence
and Signal Processing (AISP); 2012 May; IEEE. p. 407–12.

9.	� Wilson DR, Martinez TR. An integrated instance-based
learning algorithm. Comp Intell. 2000; 16:1–28.

10.	� Jankowski N. Grochowski M. Comparison of Instances
Selection Algorithm I. Algorithms Survey. Rutkowski
Let al. (eds), ICAISC, Springer-Verlag LNAI 3070;
p. 598–603.

11.	� Wilson DR, Martinez TR. Reduction techniques for
exemplar-based learning algorithms. Mach Learn. 2000;
38:257–86.

12.	� Paredes R, Vidal E. Learning prototypes and distances:
A prototype reduction technique based on nearest neigh-
bor error minimization. Pattern Recogn. 2006; 39:180–8.

13.	� Jahromi MZ, Parvinnia E, John R. A method of learning
weighted similarity function to improve the performance
of nearest neighbour. Inform Sci. 2009; 179:2964–73.

14.	� Cherkassky V, Shao X, Mulier FM, Vapnik VN. Model
complexity control for regression using VC generalization
bounds. IEEE Trans Neural Network. 1999; 10:1075.

15.	� Pardo M, Sberveglieri G. Learning from data: A tutorial
with emphasis on modern pattern recognition methods.
IEEE Sensor J. 2002; 2(3):203–17.

16.	� Domingos P. The role of Occam’s razor in knowledge dis-
covery. Data Min Knowl Discov. Springer. 1999; 3:409–25.

17.	� Gamberger D, Lavrač N. Conditions for Occam's razor
applicability and noise elimination. Springer Berlin
Heidelberg, 1997. p. 108–23.

18.	� Prechelt L. Automatic early stopping using cross valida-
tion: quantifying the criteria. Neural Network. 1998;
11:761–7.

19.	� Wu H, Shapiro JL. Does overfitting affect performance in
estimation of distribution algorithms. Proceedings of the
8th annual conference on Genetic and evolutionary com-
putation; 2006; p. 434.

20.	� Ng AY. Feature selection, L1 vs. L2 regularization and
rotational invariance. Proceedings of the twenty-first inter-
national conference on Machine learning; 2004; p. 78.

21.	� Wang C, Venkatesh SS, Judd JS. Optimal Stopping and
Effective Machine Complexity in Learning. Advances in
NIPS. 1994; 6:303–10.

22.	� Lauret P, Fock E, Randrianarivony RN, Manicom-
Ramsamy JF. Bayesian neural network approach to short
time load forecasting. Energ Convers Manag. 2008;
49:1156–66.

23.	� Moosavi MR, Javan MF, Jahromi MZ, Sadreddini MH. An
adaptive nearest neighbor classifier for noisy environments.
18th Iranian Conference on Electrical Engineering (ICEE);
2010; p. 576–80.

24.	� Parvinnia E, Sabeti M, Jahromi ZM, Boostani R.
Classification of EEG Signals using adaptive weighted dis-
tance nearest neighbor algorithm. Journal of King Saud
University-Computer and Information Sciences. 2013;
26(1):1–6.

