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Abstract 
Location management systems require multi-dimensional access methods to allow efficient handling of spatial queries. 
Because there is no total ordering of locations that preserves the spatial locality between objects, it is difficult to design 
multi-dimensional access method in the way as traditional one-dimensional access methods. However, mapping multi-
dimensional data into a single dimension makes it possible to answer these queries in an efficient way. Space filling curves 
are used to connect all the points on a plane. Hilbert curve preserves locality than any other space filling curves. Hilbert 
curve is used for sequencing the points in a plane and use the order for storage. This paper discusses the efficient way of 
calculating the mapping from two dimensional planes to integer line or real line and the vice versa. The time complexity for 
encoding and decoding using the proposed algorithm is less compared with existing algorithm. The memory requirement 
is almost constant compared to state machine approach. This algorithm can be used for storing spatial data in efficient way 
so that the access time becomes minimal.
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1. Introduction
A space filling curve is a continuous, onto mapping 
from R to Rd. It was not always clear that such a map-
ping would exist for d > 1. In 1878 Cantor exhibited a 
one to one map from the unit interval I = [0, 1] onto 
unit square S = [0, 1] X [0, 1] and thus proving that I and 
S have same cardinality. Later in the late 19th century 
Peano showed that it is possible to find a continuous 
map which is not one to one but onto for d = 2 and d = 
3. An example given later by Lebesgue makes use of the 
standard Cantor set I. Any number t in has a expansion 
given by
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=å , where each ai takes one of the values 0, 

1, or 2. 

The Cantor set C is defined as 
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= =å  with ai = 0 or 2}, C is known as  

fractal.  
Another (geometric) way to arrive at C is the following: 

from I, first remove the open middle one-third interval  
GI = (1/3, 2/3) and call what remains as F1. Thus  
F1= [0, 1/3] U [2/3, 1]. From each of the two intervals 
in F1, remove their open middle one-third intervals  
(1/9, 2/9) and (7/9, 8/9) and call what is left as F2. From 
each of the four intervals in F2, remove their open middle 
one third intervals and call what remains as F3 and so on. 
What finally remains is the Cantor set C = n Fn. Lebesgue’s 
construction can now be given as follows:

for t ∈ C with 
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The popularity of space filling curve is due to the 
 geometric construction given by the Germen mathema-
tician David Hilbert. His basic idea was that if the unit 
interval should fill the whole of S, then 1/4th of I will fill a 
corresponding sub square of S of area ¼ with continuity in 
neighbouring squares. Next I and S can be replaced by an 
interval of length ¼ and sub square area of ¼ respectively 
and the process can be repeated. Hence for each n > 1,  
I and S are subdivided into 4n closed intervals and 4n closed 
sub squares. The first three stages are shown in Figure 1. At 
each stage, centers of the sub square are joined by consecu-
tive straight lines in the shown in Figure 1. This procedure 
defines a sequence of continuous functions from I to S. 
Since the length of the sides of the square tends to 0, the 
sequence converges to a limit function which is therefore 
continuous. This limit function is called Hilbert Curve.

Since then, quite a number of space filling curves have 
appeared in the literature. During the early days space 
filling curves were primarily seen as a mathematical curi-
osity. Today however, space filling curves are applied in 
areas as diverse as load balancing for grid computing, 
colour space dimension reduction, small antenna design, 
I/O-efficient computations on massive matrices, and the 
creation of spatial data indexes. In this paper, we focus on 
the application of space filling curves to the creation of 
query-efficient spatial data indexes using Hilbert curve.

2.1 Hilbert Curve
Among the space filling curves as Hilbert curve has the 
property of preserving the locality. A Hilbert curve2 is a 
particular form of the space filling curve that traverses a 
2N × 2N array of points while never maintaining the same 
direction for more than three consecutive points, where 
N is the resolution, level or depth. Let us see how in 2-D 
Hilbert curve drawn.

A square is initially divided into 4 sub-squares which 
are then ordered such that any pair of consecutive sub 
squares shares a common edge. The ordering is illustrated 
by drawing a line through their centre-points and this line 
is called a first-order curve. Figure 1(b) shows the next 
step in which each sub-square is then divided into 4 sub-
squares. The sub squares within the first and last squares 
of the first step are ordered differently to ensure the adja-
cency property is always preserved.

The three diagrams in Figure 1(a, b, c) illustrate the 
way in which the Nth Hilbert curve HN is obtained from 
HN−1. The curve HN−1 is replicated and moved into the four 
quadrants of a larger square after a suitable rotation and 
these four curves are joined by three line segments.

To describe vertex labeling algorithm conveniently, 
the four quadrants are numbered as follows: we define the 
lower-left quadrant as quadrant 0, the upper-left quadrant 
as quadrant 1, the upper-right quadrant as quadrant 2 and 
the lower-right quadrant as quadrant 3; see Figures 1a. 
Consequently, quadrants 1 and 2 of HN are the copies of 
HN−1, quadrant 0 is a copy of HN−1 rotated by 90° clockwise 
and quadrant 3 is a copy of HN−1 rotated by 90° counter-
clockwise.

By converting the decimal digits in Figure 1 to their 
quaternary digits as shown in Figure 2, we obtain the fol-
lowing replication rules: for quadrants 0, 1, 2 and 3, the 
highest digit of each order is always 0, 1, 2 and 3, respec-
tively, for all resolutions; quadrant 0 of HN is a copy of 
HN−1 reflected on the minor diagonal, quadrant 1 is a copy 
of HN−1 with each element increased by 4N−1, quadrant 2 
is a copy of HN−1 with each element increased by 2 × 4N−1 
and quadrant 3 is a copy of HN−1 reflected on the major 
diagonal with each element increased by 3 × 4N−1.

In this paper, we implement a new iterative algorithm 
for encoding and decoding the Hilbert order based on a 
replication process of the Hilbert matrix proposed in8 and 
make a comparison with other encoding and  decoding 
procedure. 

2.2 Hilbert Code Encoding and Decoding
Given the coordinates of a particular point P with pair 
(X, Y) in a plane, the corresponding Hilbert order H 
is to be determined. This procedure is called encod-
ing. Conversely, given H, the corresponding coordinate 
(X, Y) is to be determined. This procedure is called  
decoding. 

Figure 1. Hilbert curve in 2 dimensions. 
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Butz uses an iterative algorithm1 to compute a 
 mapping function with byte-oriented technique such as 
exclusive OR, shifting etc. Sagan presents an arithmetic 
method for the generation of the nodes and produces an 
approximating polygon to represent the Hilbert space fill-
ing curve4.  Hilbert space-filling curves can be explained 
with the Lindenmayer system which can be used to gener-
ate self-similar fractals5. Bartholdi presents an algorithm 
for computing all addresses of scanning path by recursive 
procedure6. A non-recursive algorithm was reported3 for 
N dimensional Hilbert space-filling curve using look-up 
tables. Using tensor product formulation present, Lin and 
Chen7 designed both recursive and iterative coding algo-
rithms which scan all space points of two-dimensional 
and three dimensional Some application problems, such 
as finding nearest neighbor points and retrieving partial 
of satellite picture in geographic information system, 
are not required to scan all data elements of a Hilbert 
space-filling curve. Now we will introduce a simple math-
ematical method to construct the encoding and decoding 
procedures based on the replication of the Hilbert matrix 
given in 8.

2.3  Modified Algorithm for Hilbert  
Space-Filling Curve 

We use the Cartesian coordinate system to express 
the positions of all the elements in the Hilbert matrix. 
Element 0 in the Hilbert matrix is the origin of the 
Cartesian coordinate system; the direction from left to 
right is the positive direction of the X -axis; the direction 
upwards is the positive direction of the Y -axis. Given the 
coordinates of a particular point P with pair (x, y) in D, 
the corresponding Hilbert order z is to be determined. 
This procedure is called encoding. For example, element 
8 of resolution 2 in Figure 2 corresponds to the coordi-
nate pair (2, 2). Conversely, given z, the corresponding 
coordinate (x, y) is to be determined. This procedure is 
called decoding.

2.3.1 Encoding Algorithm
Encode (input: (x, y) Cartesian coordinate of the point, n:  
Resolution of Hilbert curve output: H: H-code, (x, y) 
Cartesian coordinate of the point)   

  1.  Input the location(x, y) and maximum order of 
the Hilbert curve.

  2.  Calculate Rmin = log2(max(x, y)) and  
set width = 2Rmin – 1

  3.  If parities of n and Rmin are not the same, exchange 
the value of x and y 

  4.  Determine in which quadrant q of the Hilbert 
code  the point lies with Rmin as resolution

  5.  Concatenate q to Z
  6.  Reduce the width by its half.
  7.  Reduce Rmin by 1
  8.  Find new (x, y) as follows depending on the quad 
  9.  If (x, y) lies in the 0th quadrant, interchange x and y
 10.  If it lies in the first quadrant, reduce y by the width
 11.  If it lies in the second quadrant, reduce both x & y 

by the width of the current resolution.
 12.  If it lies in the third quadrant, calculate new 

coordinate using the following x = width - y - 1;  
y = 2∗width - x - 1

 13.  Reduce Rmin by 1; width has to be reduced to its 
half value.

 14.  Repeat steps 4 through 13 till Rmin = 0

2.3.2 Decoding Algorithm
It is the reverse of what is done in the encoding algorithm. 

 Decode( input: H: H-code, n : Resolution of Hilbert 
curve output: (x,y) Cartesian coordinate of the point)   

 1. Covert H to quaternary digits.
 2.  Extract the least significant digit from H and call it r
 3.  Set (x, y) to the quadrant position in hilbert curve 

order 1. (I.e)  Set (x, y) = (0, 0) if r = 0. Set it to  
(0, 1) if r = 1. Set it to (1, 1), if r = 2. Otherwise set 
(x, y) to (1, 0)

 4.  Extract the least significant digit from H and call it r
 5. Set (x,y) depending on r as follows

r = 0 : interchange x and y
r = 1: y = y + width
r = 2 : x = x + width, y = y + width
r = 3: x = 2∗width – y - 1, y = width = x – 1

 6. width = 2∗width
 7.  If parities of n and Rmin are not the same, exchange 

the value of x and y .
Figure 2. The traditional Hilbert orders of resolutions 1, 
2 and 3.
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3. Results and Discussion
The above algorithm is implemented in C language. The 
program is tested for different order of Hilbert curve. Along 
with this, Lawder’s Algorithm9 & Butz’s Algorithm are also 
tested. For these two Algorithms we used the code available 
by Lawder. It has been recorded for point (4, 8) in different 
depth varying from 1 to 30. The result is shown in Figure 3.

Though the complexity is n when the point lies at nth 
row/column, it uses less memory and simple calculations. 
Butz’s algorithm creates table for each order of Hilbert 
curve and the table is searched. So time taken is bounded 
by the order of the Hibert curve.

Lawder uses state diagram for each order. So the time 
taken for coding is more compared to the Butz’s even 
though it uses less amount of memory. As order increases 
the time taken to code and decode also increases.

Our modified algorithm is bounded by calculations 
and memory as the order increases. So time taken to exe-
cute our algorithm is bounded by position of point in the 
two dimensional plane. It does not create any table or states 
which involves lot memory as the dimension increases. 
The algorithm works for Hilbert curve order 32. 

4. Conclusion 
The algorithm which is discussed in this paper is efficient 
in terms of memory and execution time. The mapping 
leads to efficient way of answering the queries like near-
est facility, facilities in the in route and efficient planning 
of trip in a transportation network. It may also help in 
planning for disaster management during floods or 
cyclone.  
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Figure 3. Time taken of encoding and decoding Hilbert 
code for different order.


