
Calculations of Mapping from Two
Dimensional Plane to Integer Line and

the Reverse using Hilbert Curve
S. Santhosh Baboo1 and V. Narmadha2*

1Department of Computer Science, D.G. Vaishnav College, Chennai, Tamil Nadu, India
2Department of Computer Science, Women’s Christian College, Chennai, Tamil Nadu, India;

vnarmadha@yahoo.co.in

Abstract
Location management systems require multi-dimensional access methods to allow efficient handling of spatial queries.
Because there is no total ordering of locations that preserves the spatial locality between objects, it is difficult to design
multi-dimensional access method in the way as traditional one-dimensional access methods. However, mapping multi-
dimensional data into a single dimension makes it possible to answer these queries in an efficient way. Space filling curves
are used to connect all the points on a plane. Hilbert curve preserves locality than any other space filling curves. Hilbert
curve is used for sequencing the points in a plane and use the order for storage. This paper discusses the efficient way of
calculating the mapping from two dimensional planes to integer line or real line and the vice versa. The time complexity for
encoding and decoding using the proposed algorithm is less compared with existing algorithm. The memory requirement
is almost constant compared to state machine approach. This algorithm can be used for storing spatial data in efficient way
so that the access time becomes minimal.

Keywords: Efficient Storage Management, Hilbert Curve, Indexing, Spatial Data Structure

1. Introduction
A space filling curve is a continuous, onto mapping
from R to Rd. It was not always clear that such a map-
ping would exist for d > 1. In 1878 Cantor exhibited a
one to one map from the unit interval I = [0, 1] onto
unit square S = [0, 1] X [0, 1] and thus proving that I and
S have same cardinality. Later in the late 19th century
Peano showed that it is possible to find a continuous
map which is not one to one but onto for d = 2 and d =
3. An example given later by Lebesgue makes use of the
standard Cantor set I. Any number t in has a expansion
given by

i 0

t ai /3i
¥

=

=å , where each ai takes one of the values 0,

1, or 2.

The Cantor set C is defined as

i 0

C { : ai /3it t
¥

=

= =å with ai = 0 or 2}, C is known as

fractal.
Another (geometric) way to arrive at C is the following:

from I, first remove the open middle one-third interval
GI = (1/3, 2/3) and call what remains as F1. Thus
F1= [0, 1/3] U [2/3, 1]. From each of the two intervals
in F1, remove their open middle one-third intervals
(1/9, 2/9) and (7/9, 8/9) and call what is left as F2. From
each of the four intervals in F2, remove their open middle
one third intervals and call what remains as F3 and so on.
What finally remains is the Cantor set C = n Fn. Lebesgue’s
construction can now be given as follows:

for t ∈ C with
i 0

t ai /3i
¥

=

=å ,

Indian Journal of Science and Technology, Vol 7(9), 1387–1390, September 2014
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

*Author for correspondence

Calculations of Mapping from Two Dimensional Plane to Integer Line and the Reverse using Hilbert Curve

Indian Journal of Science and TechnologyVol 7 (9) | September 2014 | www.indjst.org1388

Define

1

2 1x(t)
2i

b i
i

¥

=

-=å and
1

2y(t)
2i

b i
i

¥

=

=å where bi = ai / 2.

The popularity of space filling curve is due to the
 geometric construction given by the Germen mathema-
tician David Hilbert. His basic idea was that if the unit
interval should fill the whole of S, then 1/4th of I will fill a
corresponding sub square of S of area ¼ with continuity in
neighbouring squares. Next I and S can be replaced by an
interval of length ¼ and sub square area of ¼ respectively
and the process can be repeated. Hence for each n > 1,
I and S are subdivided into 4n closed intervals and 4n closed
sub squares. The first three stages are shown in Figure 1. At
each stage, centers of the sub square are joined by consecu-
tive straight lines in the shown in Figure 1. This procedure
defines a sequence of continuous functions from I to S.
Since the length of the sides of the square tends to 0, the
sequence converges to a limit function which is therefore
continuous. This limit function is called Hilbert Curve.

Since then, quite a number of space filling curves have
appeared in the literature. During the early days space
filling curves were primarily seen as a mathematical curi-
osity. Today however, space filling curves are applied in
areas as diverse as load balancing for grid computing,
colour space dimension reduction, small antenna design,
I/O-efficient computations on massive matrices, and the
creation of spatial data indexes. In this paper, we focus on
the application of space filling curves to the creation of
query-efficient spatial data indexes using Hilbert curve.

2.1 Hilbert Curve
Among the space filling curves as Hilbert curve has the
property of preserving the locality. A Hilbert curve2 is a
particular form of the space filling curve that traverses a
2N × 2N array of points while never maintaining the same
direction for more than three consecutive points, where
N is the resolution, level or depth. Let us see how in 2-D
Hilbert curve drawn.

A square is initially divided into 4 sub-squares which
are then ordered such that any pair of consecutive sub
squares shares a common edge. The ordering is illustrated
by drawing a line through their centre-points and this line
is called a first-order curve. Figure 1(b) shows the next
step in which each sub-square is then divided into 4 sub-
squares. The sub squares within the first and last squares
of the first step are ordered differently to ensure the adja-
cency property is always preserved.

The three diagrams in Figure 1(a, b, c) illustrate the
way in which the Nth Hilbert curve HN is obtained from
HN−1. The curve HN−1 is replicated and moved into the four
quadrants of a larger square after a suitable rotation and
these four curves are joined by three line segments.

To describe vertex labeling algorithm conveniently,
the four quadrants are numbered as follows: we define the
lower-left quadrant as quadrant 0, the upper-left quadrant
as quadrant 1, the upper-right quadrant as quadrant 2 and
the lower-right quadrant as quadrant 3; see Figures 1a.
Consequently, quadrants 1 and 2 of HN are the copies of
HN−1, quadrant 0 is a copy of HN−1 rotated by 90° clockwise
and quadrant 3 is a copy of HN−1 rotated by 90° counter-
clockwise.

By converting the decimal digits in Figure 1 to their
quaternary digits as shown in Figure 2, we obtain the fol-
lowing replication rules: for quadrants 0, 1, 2 and 3, the
highest digit of each order is always 0, 1, 2 and 3, respec-
tively, for all resolutions; quadrant 0 of HN is a copy of
HN−1 reflected on the minor diagonal, quadrant 1 is a copy
of HN−1 with each element increased by 4N−1, quadrant 2
is a copy of HN−1 with each element increased by 2 × 4N−1
and quadrant 3 is a copy of HN−1 reflected on the major
diagonal with each element increased by 3 × 4N−1.

In this paper, we implement a new iterative algorithm
for encoding and decoding the Hilbert order based on a
replication process of the Hilbert matrix proposed in8 and
make a comparison with other encoding and decoding
procedure.

2.2 Hilbert Code Encoding and Decoding
Given the coordinates of a particular point P with pair
(X, Y) in a plane, the corresponding Hilbert order H
is to be determined. This procedure is called encod-
ing. Conversely, given H, the corresponding coordinate
(X, Y) is to be determined. This procedure is called
decoding.

Figure 1. Hilbert curve in 2 dimensions.

S. Santhosh Baboo and V. Narmadha

Indian Journal of Science and Technology 1389Vol 7 (9) | September 2014 | www.indjst.org

Butz uses an iterative algorithm1 to compute a
 mapping function with byte-oriented technique such as
exclusive OR, shifting etc. Sagan presents an arithmetic
method for the generation of the nodes and produces an
approximating polygon to represent the Hilbert space fill-
ing curve4. Hilbert space-filling curves can be explained
with the Lindenmayer system which can be used to gener-
ate self-similar fractals5. Bartholdi presents an algorithm
for computing all addresses of scanning path by recursive
procedure6. A non-recursive algorithm was reported3 for
N dimensional Hilbert space-filling curve using look-up
tables. Using tensor product formulation present, Lin and
Chen7 designed both recursive and iterative coding algo-
rithms which scan all space points of two-dimensional
and three dimensional Some application problems, such
as finding nearest neighbor points and retrieving partial
of satellite picture in geographic information system,
are not required to scan all data elements of a Hilbert
space-filling curve. Now we will introduce a simple math-
ematical method to construct the encoding and decoding
procedures based on the replication of the Hilbert matrix
given in 8.

2.3 Modified Algorithm for Hilbert
Space-Filling Curve

We use the Cartesian coordinate system to express
the positions of all the elements in the Hilbert matrix.
Element 0 in the Hilbert matrix is the origin of the
Cartesian coordinate system; the direction from left to
right is the positive direction of the X -axis; the direction
upwards is the positive direction of the Y -axis. Given the
coordinates of a particular point P with pair (x, y) in D,
the corresponding Hilbert order z is to be determined.
This procedure is called encoding. For example, element
8 of resolution 2 in Figure 2 corresponds to the coordi-
nate pair (2, 2). Conversely, given z, the corresponding
coordinate (x, y) is to be determined. This procedure is
called decoding.

2.3.1 Encoding Algorithm
Encode (input: (x, y) Cartesian coordinate of the point, n:
Resolution of Hilbert curve output: H: H-code, (x, y)
Cartesian coordinate of the point)

 1. Input the location(x, y) and maximum order of
the Hilbert curve.

 2. Calculate Rmin = log2(max(x, y)) and
set width = 2Rmin – 1

 3. If parities of n and Rmin are not the same, exchange
the value of x and y

 4. Determine in which quadrant q of the Hilbert
code the point lies with Rmin as resolution

 5. Concatenate q to Z
 6. Reduce the width by its half.
 7. Reduce Rmin by 1
 8. Find new (x, y) as follows depending on the quad
 9. If (x, y) lies in the 0th quadrant, interchange x and y
 10. If it lies in the first quadrant, reduce y by the width
 11. If it lies in the second quadrant, reduce both x & y

by the width of the current resolution.
 12. If it lies in the third quadrant, calculate new

coordinate using the following x = width - y - 1;
y = 2∗width - x - 1

 13. Reduce Rmin by 1; width has to be reduced to its
half value.

 14. Repeat steps 4 through 13 till Rmin = 0

2.3.2 Decoding Algorithm
It is the reverse of what is done in the encoding algorithm.

 Decode(input: H: H-code, n : Resolution of Hilbert
curve output: (x,y) Cartesian coordinate of the point)

 1. Covert H to quaternary digits.
 2. Extract the least significant digit from H and call it r
 3. Set (x, y) to the quadrant position in hilbert curve

order 1. (I.e) Set (x, y) = (0, 0) if r = 0. Set it to
(0, 1) if r = 1. Set it to (1, 1), if r = 2. Otherwise set
(x, y) to (1, 0)

 4. Extract the least significant digit from H and call it r
 5. Set (x,y) depending on r as follows

r = 0 : interchange x and y
r = 1: y = y + width
r = 2 : x = x + width, y = y + width
r = 3: x = 2∗width – y - 1, y = width = x – 1

 6. width = 2∗width
 7. If parities of n and Rmin are not the same, exchange

the value of x and y .
Figure 2. The traditional Hilbert orders of resolutions 1,
2 and 3.

Calculations of Mapping from Two Dimensional Plane to Integer Line and the Reverse using Hilbert Curve

Indian Journal of Science and TechnologyVol 7 (9) | September 2014 | www.indjst.org1390

3. Results and Discussion
The above algorithm is implemented in C language. The
program is tested for different order of Hilbert curve. Along
with this, Lawder’s Algorithm9 & Butz’s Algorithm are also
tested. For these two Algorithms we used the code available
by Lawder. It has been recorded for point (4, 8) in different
depth varying from 1 to 30. The result is shown in Figure 3.

Though the complexity is n when the point lies at nth
row/column, it uses less memory and simple calculations.
Butz’s algorithm creates table for each order of Hilbert
curve and the table is searched. So time taken is bounded
by the order of the Hibert curve.

Lawder uses state diagram for each order. So the time
taken for coding is more compared to the Butz’s even
though it uses less amount of memory. As order increases
the time taken to code and decode also increases.

Our modified algorithm is bounded by calculations
and memory as the order increases. So time taken to exe-
cute our algorithm is bounded by position of point in the
two dimensional plane. It does not create any table or states
which involves lot memory as the dimension increases.
The algorithm works for Hilbert curve order 32.

4. Conclusion
The algorithm which is discussed in this paper is efficient
in terms of memory and execution time. The mapping
leads to efficient way of answering the queries like near-
est facility, facilities in the in route and efficient planning
of trip in a transportation network. It may also help in
planning for disaster management during floods or
cyclone.

5. References
1. Butz AR. Alternative algorithm for Hilbert’s space-filling

curve. IEEE Trans Comput. 1971; 20:424–6.
2. Cole AJ. A note on space filling curves. Software Pract Ex.

1983; 13:1181–9.
3. Kamata S, Pacrez A, Kawaguchi E. A method of com-

puting hilbert curves in two and three dimensional
spaces. Trans Inst Electron Inform Comm Eng. 1991;
J74-D-II(9):1217–26.

4. Sagan H. On the geometrization of the Peano curve and the
arithmetization of the Hilbert curve. Int J Math Educ Sci
Tech. 1992; 23(3):403–11.

5. Ohno Y, Ohyama K. A catalog of symmetric self-
 similar space-filling curves. J Recreational Math. 1991;
23:161–73.

6. Bartholdi JJ III, Goldsman P. Vertex-labeling algorithms
for the Hilbert space filling curve. Software Pract Ex. 2001;
31(5):395–408.

7. Lin SY, Chen CS, Liu L, Huang CH. Tensor product for-
mulation for Hilbert space-filling curves. Proceedings of
the International Conference on Parallel Processing (ICPP
2003); 2003 Oct 6–9; Kaohsiung, Taiwan. Los Alamitos,
CA: IEEE Computer Society Press; 2003, 99–106.

8. Chen N, Wang N, Shi B. A new algorithm for encoding
and decoding the Hilbert order. Software Pract Ex. 2007;
37:897–908.

9. Lawder JK. Using State Diagrams for Hilbert Curve
Mappings. Technical Report. Birkbeck College, University
of London: 2000. Reprt No.: JL2/00

Figure 3. Time taken of encoding and decoding Hilbert
code for different order.

