
Abstract
One class of models introduced in data envelopment analysis is called multiplicative model. In this paper, the extension of 
multiplicative data envelopment analysis(MDEA) model under variable return to scale(VRS) technology in the presence of 
stochastic data was focused on. The log-normal distribution is a family of probability density functions that is frequently 
used in practical situations. Therefore, in the present study, a stochastic MDEA model under VRS technology was proposed 
for measuring the stochastic a - efficiency of decision making units (DMUs) with inputs and outputs having log-normal 
distributions. Moreover, stochastic super-efficiency model was proposed for ranking stochastic a - efficient DMUs in sto-
chastic MDEA model. Finally, an example of the system reliability was presented for 12 different brands of computers to 
demonstrate our proposed modeling idea and its efficiency. 
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1.  Introduction
Data envelopment analtsis (DEA), as initiated and 
developed by Charnes1 is a non-parametric method for 
identifying efficient production frontiers and evaluating 
the relative efficiency of decision making units (DMUs) 
with similar quantitative characteristics. This is reflected 
by the assumption that each DMU uses the same set of 
inputs to produce the same set of outputs. 

One class of models introduced in DEA is called mul-
tiplicative data envelopment analysis (MDEA) model,  as 
initiated and developed by Banker and Maindiratta2, the 
piecewise linear frontiers usually employed in DEA are 
replaced by a frontier that is piecewise Cobb-Douglas 
and introduced also a model to identify the most pro-
ductive scale size pattern. Banker.3 presented a two-stage 
method for the identification of returns to scale in MDEA 
model. In the BCC model the convexity postulate permits 
increasing, constant or decreasing returns to scale in dif-
ferent regions of the production function. However, this 
also requires the marginal products (see Menger4), for a 

comparison of returns to scale and rate of change of mar-
ginal product) to be nonincreasing. This restriction in the 
BCC approach may not be appropriate for production 
technologies where the production function is noncon-
cave in some regions and the production possibility set 
is not convex. To allow for such situations, replace the 
(ordinary) convexity postulate of BCC by “geometric” 
convexity to interpolate between observed production 
possibilities. This implies that the piecewise linear fron-
tiers usually employed in DEA are replaced by a frontier 
that is piecewise Cobb-Douglas. If in an empirical appli-
cation there are a priori reasons to believe that marginal 
products are increasing in some regions, then the log-lin-
ear model is the appropriate DEA model for the analysis.

In cases in which several DMUs have the same effi-
ciency score of 1, a standard DEA approach is not able 
to discriminate amongst this DMUs. There are several 
approaches in the literature to rank efficient DMUs in 
DEA. Adler et al.5 classified these approaches into six 
streams. Perhaps super-efficiency is the most well known, 
most widely applied and researched ranking method 
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in DEA. The idea of super-efficiency as developed by 
Andersen and Petersen6.

The stochastic data envelopment analysis (SDEA) 
approach was developed by considering the value of inputs 
and outputs as random variables. Olesen and Petersen7 
developed a chance-constrained DEA model which used 
the piecewise linear envelopments of confidence regions 
for use with stochastic multiple inputs and multiple 
outputs. Cooper.8 developed a “joint chance-constrained” 
DEA model to naturally generalize “Pareto-Koopman’s 
Efficiency” to stochastic situations. Huang9 utilized this 
joint chance-constrained concept to discuss general dom-
inance structures in the stochastic situations.

Almost, all of the previous works in SDEA have been 
used the stochastic data when the inputs and outputs having 
normal distributions. As far as we know stochastic MDEA 
models have not already been used. when dealing with fail-
ure and repair mechanisms in general, the most suitable 
and applied distribution is the log-normal distribution. 
Therefore, in this paper, we propose the stochastic MDEA 
model under VRS technology and stochastic super-effi-
ciency for measuring the efficiency and ranking of systems. 
We consider these systems as DMUs with the inputs and 
outputs having log-normal distributions where inputs and 
outputs are stochastic failure times and stochastic repair 
times, respectively. The paper unfolds as follows:

Some basic concepts in statistics and deterministic 
MDEA model will be introduced in the next section. 
Section 3 addresses the proposed method for introduc-
ing the stochastic MDEA model. Section 4 addresses the 
stochastic super-efficiency proposed model for ranking of 
DMUs in stochastic MDEA model. A brief discuss about 
the proposed models and an applied example are given in 
section 5. Conclusions will appear in section 6.

2.  Preliminaries
 In this section, we recall some basic concepts and results 
which will be used through the paper.

2.1  Log-normal Distribution
The log-normal distribution is a family of probability 
density functions that is frequently used in practical situa-
tions. In system reliability analysis, failure time and repair 
time a system is often distributed log-normally.
Definition 2.1  A random variable X is said to have 
log-normal distribution if its probability density function 
(PDF) is given as follows: 
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We will use the notation X LN∼ ( , )2m s  to denote a ran-
dom variable X having the log-normal distribution with 
parameters s > 0 and m ŒR  where m = E LnX( ) and 
s 2 = Var LnX( ).

Remark 2.1
If X LN∼ ( , )2m s , then Y LnX=  having the normal distri-
bution with scale parameter s > 0 and location parameter 
m ŒR where is denoted by notation Y N∼ ( , )2m s . Thus, 
PDF random variable Y is given as follows: 
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The corresponding cumulative distribution function 
(CDF) has the following form: 
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Note that if Y N∼ (0,1) then f yY ( ) is called standard 
normal distribution and f yY ( ) is denoted by F( )y and  
F -1, its inverse, is the so-called fractile function. Specially, 
F -1(0.5) = 0, F - -1(0.1) = 1.28, and F -1(0.67) = 0.44. 

2.2  System Reliability
A system contains one or several subsystems of components 
interconnected so that the system is able to perform of 
number of required functions. The reliability of the system 
denotes the relationship between the systems required per-
formance and its achieved performance. The probabilistic 
method of the system’s reliability deals with the uncertainty 
of this relation. To discuss a component’s characteristics 
in terms of reliability there are several functions that can 
be utilized. The failure rate function, w(t) illustrates the 
components tendency to fail, failures per time unit, for t 
≥ 0. However, the instantaneous failure rate at the time t0 
for functional rate components is called γ = w(t0), the cor-
responding instantaneous repair rate for faulted items is 
called µ. In order to comprehend a component’s stochastic 
behaviour concerning its uptime, functional, and down-
time, faulted, the components probabilistic behaviour can 
be represented using a probability density function. In 
reliability analysis, failure time and repair time a system 
is often distributed log-normally. Therefore, in this paper 
used from the log-normal distribution.
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2.3  Output-Oriented BCC Model
One of the basic DEA model for evaluating DMUs is 
the output-oriented BCC model where introduced by 
Banker10 . They omitted the ray unboundedness postulate 
from the CCR postulates and deduced the following pro-
duction possibility set:
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Where X x x xj j j mj= ( , , , )1 2 …  and Y y y yj j j sj= ( , , , )1 2 …  
are the input and output vectors of DMU j, respec-
tively. Moreover, xij ≥ 0 and yrj ≥ 0 for each r sŒ{ , ,..., }1 2 ,  
j nŒ{ , , ..., }1 2 , and i mŒ{ , , ..., }1 2 . The BCC-efficiency of a 
specific DMUo under set Tv is obtained by solving the fol-
lowing model:
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Definition 2.2
(BCC-efficient) DMUo is said to be BCC-efficient if and 
only if the following two conditions are both satisfied: 
i.  jo

* =1
ii. � All slack variables are zero in the alternative optimal 

solution.

2.4  Output-Oriented MDEA Model
Suppose that there are n DMUs, where each DMU j  
(j = 1,..., n) uses m different inputs, xij > 0 (i=1,..., m), to 
produce s different outputs, yrj > 0 (r=1,..., s) and suppose also 
that the data set is deterministic. Therefore for each DMU j,  
let X x x xj j j mj= ( , , , )1 2 …  and Y y y yj j j sj= ( , , , )1 2 …  are the 
input and output vectors of DMU j, respectively. One 
of the basic multiplicative data envelopment analysis 
(MDEA) models used to evaluate DMUs is the output-ori-
ented MDEA model under VRS technology. Banker and 
Maindiratta2 replaced the (ordinary) convexity postulate 

of BCC by “geometric” convexity, and introduced the 
following production possibility set (PPS): 
	

¢ ≥ £ ≥’ ’ ÂT X Y X X Y Yv
j

n

j
j

j

n

j
j

j

n

j j= {( , ) & & =1& 0}
=1 =1 =1

|
l l

l l

� (6)
Therefore, output-oriented MDEA model under VRS 
technology for evaluating DMUo is given by the following 
model:
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Now, by taking the natural logarithm of both sides, in the 
first and second constraint we have:
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Alternatively, 
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Where si
- ≥ 0 and sr

+ ≥ 0 represent slacks.
Definition 2.3 (MDEA-efficient) DMUo is said to be 
MDEA-efficient if and only if the following two conditions 
are both satisfied: 

i.	 jo
* =1

ii.	 All slack variables are zero in the alternative optimal 
solution. 

3.  Stochastic MDEA Model
In this section, we present the stochastic MDEA 
Model. For each DMU j, let X X X Xj j j mj= ( , , , )1 2 …  and 
Y Y Y Yj j j sj= ( , , , )1 2 …  are the input and output random vec-
tors of DMU j, respectively. Moreover, suppose that Xij > 0 
and Yrj > 0. If X LNij ij ij∼ ( , )2m s  and Y LNrj rj rj∼ ( , )2g t  
then by Remark(2.1) LnX X Nij ij ij ij= ( , )2 ∼ m s  and 
LnY Y Nrj rj rj rj= ( , )2 ∼ g t . Now, by using models (7) and 
(8) the stochastic output-oriented MDEA model can be 
obtained as follows: 
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Alternatively, 
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where a  is a predetermined number between 0 and 1  
which specifies the significance level and P means 
“Probability Measure”.

3.1  Deterministic Equivalent 
If  ∼X Nij ij ij( , )2m s  and  ∼Y Nrj rj rj( , )2g t  then for all  
r sŒ{1,2, , }… , o nŒ{1,2, , }… , and i mŒ{1,2, , }…  we have: 
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Similarly, 
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Theorem 3.1
Deterministic equivalent of stochastic MDEA model (11) 
is as follows: 
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Proof:  From the first constraint in model (11) and state-
ment (13) we have: 
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Similarly, from the second constraint in model (11) and 
statement (12) we have: 
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Thus, by (15) and (16), the deterministic model is 
completely specified.  Therefor, j ao

*( ), si-*, and si
+* can be 

determined by solving model (14). 

Definition 3.1

DMUo is stochastic a - efficient if and only if the following 
two conditions are both satisfied:  

i.  j ao
*( ) =1

ii.  All slack variables are zero in the alternative optimal 
solution. 
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Otherwise, DMUo is called stochastic a -  inefficient. For 
the sake of simplicity, we denote them by a -  efficient and 
a -  inefficient, respectively. 

In order to determine the stochastic a -  efficiency we 
consider the following theorem:
Theorem 3.2 For a = 0.5. The inefficiency vs. efficiency 
classification of DMUo in output-oriented MDEA model 
(9) is the same as in stochastic MDEA model (14).
Proof: If a = 0.5 then F -1(0.5) = 0. Thus, the inefficiency 
vs. efficiency classification of DMUo in deterministic 
MDEA model (9) is the same as in stochastic MDEA 
model (14).

4.  �Stochastic Super-Efficiency 
Model

One of the basic models for ranking DMUs is the “super-
efficiency” model where introduced by Anderson and 
Peterson2 . The efficiency scores from these models are 
obtained by eliminating the data on the DMUo to be 
evaluated from the solution set. For the input model 
this can result in values which are regarded as accord-
ing DMUo the status of being “super-efficient”. These 
values are used to rank the DMUs and thereby elimi-
nate some (but not all) of the ties that occur for efficient 
DMUs. Now, by using model (11) we propose the sto-
chastic super-efficiency for stochastic MDEA model 
(10)as follows : 
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In a similar manner to the proof of Theorem (3.1) the 
deterministic equivalent of stochastic super-efficiency 
model (17) is specified as follows:  
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 Note that in the above model we have: 
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Stochastic super-efficiency model (17) computes the 
score of the DMU under evaluation with removing it 
from constraints. 



H. Dibachia, M.H. Behzadia, and M. Izadikhah

Indian Journal of Science and Technology 1771Vol 7 (11) | November 2014 | www.indjst.org

Definition 4.1

DMUo is stochastic super a - efficient if 0 < ( ) <1*j ao .  

Moreover, if j ao
*( ) >1 then DMUo is called stochastic 

super a -  inefficient. For the sake of simplicity, we 
denote them by super a -efficient and super a-inefficient, 
respectively.

5. Application
In this section, an example of system reliability is presented 
to demonstrate the modeling idea and the effectiveness of 
the proposed method.

5.1.  Practical Example of System Reliability
We apply the proposed stochastic MDEA methodology 
and stochastic super-efficiency for measuring the effi-
ciency and ranking of 12 systems. We consider this systems 
as DMUs, and denote them by DMU jj ,( =1,2, ,12)… .  
Every DMU j is composed of 2 components which have the 
random length of time until failure. Suppose that Y rrj , =1,2 
are the random failure time of component r of DMU j 
where have the log-normal distribution with parameters 
t rj

2 and g rj which are denoted with Y LNrj rj rj∼ ( , )2g t .  
When a component fails it undergoes repair. Suppose 
that X iij , =1,2 are the random repair time of component 

i of DMU j where have the log-normal distribution 
with parameters s ij

2 and mij which are denoted with 
X LNij ij ij∼ ( , )2m s . Let us consider 12 different brands 
of computers(for example, Acer, Apple, Compaq, Dell, 
Emachines, Everex, Hp, Ibm/Lenovo, Panasonic, Sony, 
Toshiba, and Gateway) and consider also two prin-
cipal components(or items)of computers. Thus, by 
solving models(14) and (18) can be obtain the stochastic  
a -  efficiency of computers (i.e. DMUs) and its rank. The 
labels of inputs and outputs are as Table 1. 

The data set for this example is shown in Table 2. 
We run models (14) and (18) by means of GAMS 

software for all a Œ{0.1,0.5,0.67}  and the results are 
shown in Table 3. 

There are a lot of number of the DMUs, which are  
a -efficient thus, by using stochastic super-efficiency are 

Table 1.  The labels of inputs and outputs.

Input1 The random repair time of the first 
component of computer

Input2 The random repair time of the second 
component of computer

Output1 The random length of time until failure of 
the first component of computer 

Output2 The random length of time until failure of 
the second component of computer 

Table 2.  The data set of practical example.

j DMU j Input 1 Input 2 Output 1 Output 2 

1 Acer X LN11 (20,25)∼ X LN21 (25,16)∼ Y LN11 (1000,100)∼ Y LN21 (900, 400)∼

2 Panasonic X LN12 (15, 4)∼ X LN22 (23,18)∼ Y LN12 (800,200)∼ Y LN22 (950,300)∼

3 Sony X LN13 (10,4)∼ X LN23 (9,9)∼ Y LN13 (950,400)∼ Y LN23 (500,450)∼

4 Apple X LN14 (18,8)∼ X LN24 (10,8)∼ Y LN14 (850,500)∼ Y LN24 (550, 430)∼

5 Hp X LN15 (17,6)∼ X LN25 (18,7)∼ Y LN15 (980,550)∼ Y LN25 (800,100)∼

6 Everex X LN16 (16, 4)∼ X LN26 (19,15)∼ Y LN16 (700,520)∼ Y LN26 (600,250)∼

7 Emachines X LN17 (11,9)∼ X LN27 (20,14)∼ Y LN17 (750,700)∼ Y LN27 (650,230)∼

8 Compaq X LN18 (19,20)∼ X LN28 (17, 4)∼ Y LN18 (850,350)∼ Y LN28 (830, 450)∼

9 Dell X LN19 (12,10)∼ X LN29 (15,17)∼ Y LN19 (600,150)∼ Y LN29 (580,160)∼

10 Ibm/Lenovo X LN110 (13,5)∼ X LN210 (10,12)∼ Y LN110 (970,300)∼ Y LN210 (560, 400)∼

11 Toshiba X LN111 (16,6)∼ X LN211 (22,16)∼ Y LN111 (780,110)∼ Y LN211 (700,350)∼

12 Gateway X LN112 (9, 4)∼ X LN212 (8,3)∼ Y LN112 (650,90)∼ Y LN212 (860,310)∼
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DMUs by using stochastic MDEA model. Some basic con-
cepts in statistics were stated and the concepts of stochastic 
a -efficient, a - inefficient, super a -  efficient, and super 
a -  inefficient are defined. Finally, an example of system 
reliability was used to demonstrate the capability of the 
proposed approach. This example was run in three cases 
of a  and it was observed that the number of DMUs fea-
tured stochastic a -  inefficient and super a -  inefficient 
increases when the value of a  increases. In order to further 
studies, the approach of this research may be extended to 
some other DEA models and other distributions.
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