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Abstract
By exploiting a direct geometrical approach, an exact and efficient analytic formulation of relative motion was presented. 
Using the orbital elements without imposing any particular conditions on the base or the target satellites trajectories, exact 
expressions for the relative motion are obtained in a closed form. This solution allows the parameterization of the relative 
motion manifold and offers new methods to study its geometrical and topological properties. The study is complete and 
it maintains a high degree of accuracy even in the presence of J2 perturbations. It is adequate for long-term prediction of 
bounded relative orbits.
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1. Introduction
Due to the importance of rendezvous and docking 
maneuvers application between spacecrafts in presence of 
primary perturbing body like Earth, the study of the rela-
tive motion had concerned by many studies in the recent 
decades. Many traditional analysis for relative motion 
under the assumptions of a circular reference orbit, lin-
earized differential gravity field (small relative distance), 
and without perturbations such as oblateness effects of 
the central body, are presented.

The first use of the relative motion was by Hill7 in 
the late 19th century who was studying the motion of the 
Moon. His goal was to construct a more mathematically 
sound means of developing tables of lunar motion, which, 
at the time, were based on practical astronomy rather 
than of mathematics in his words. The first aerospace 
applications were in the area of intercept and rendezvous 
mechanics during the late 1950’s and continuing today. 
The intercept problem is one in which a chase vehicle is 
forced in such a way that its path intersects the path of a 
target point (which may be occupied by another  vehicle) 

at a specified time. The rendezvous problem further insists 
that the relative velocity of the two spacecraft be driven to 
zero at the time of intersection so that a docking proce-
dure or other such activities may be conducted.

This problem was studied by Clohessy and Wiltshire3 
in the interest of developing a guidance scheme for the 
rendezvous problem assuming that the target vehicle was 
in a circular orbit. This target satellite was to be a con-
trol center issuing relative position and velocity data to 
the slave satellites, which then used an on-board propul-
sion system to carry out the rendezvous and docking 
maneuver. Kelly9 developed an optimal solution to the 
two impulse rendezvous problem using relative motion 
equations and also includes the effects of eccentric orbits 
and gravity perturbations. A nonlinear model of relative 
motion was also given, but an analytical solution was not 
developed and so required numerical integration to solve 
the problem.

Alfriend et al.1, Vadali et al.2 and Schaub12 approached 
the problem by linearizing the direction cosine matrix of 
the orientation of the target with respect to the reference 
satellite.
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Garrison et al.6 used true anomaly as the  independent 
variable to obtain analytical expressions for relative 
motion near high-eccentricity orbits.

Condurache and Martinui4 studied the relative orbital 
motion between arbitrary Keplerian trajectories. A closed-
form vectorial solution to the nonlinear  initial value 
problem that models this type of motion with respect to a 
noninertial reference frame is offered.  

This paper aims to find an exact solution for the rela-
tive motion problem under the J2 perturbations. This 
solution will be adequate for long-term prediction of 
bounded relative orbits. A method is established to obtain 
the relative motion between spacecraft by direct geo-
metrical interpretation of Keplerian elements. Here, the 
relative satellite motion without any restriction as to the 
plane of the satellite orbits as well as their eccentricity and 
inclination is studied.

2. The Classical Approach
Classical mechanics gives the expression of the relative 
acceleration with respect to a non-inertial frame (see 
Figure 1) with an angular velocity w and an acceleration 


refa . Using previous notions, the equations of the relative 
motion in a rotating reference frame become:

 ( )           2Sat refa a= - - ¥ - ¥ - ¥ ¥r w r w r w w r
 

(1)

where refa  is the absolute acceleration of the body and the 
dot stands for the derivatives with respect to time and × is 
the operator of cross product 

These equations use three variables: (i) the rela-
tive  position and its derivatives, (ii) the difference of 
 accelerations between the two satellites, and (iii) the rota-
tion of the reference frame, also with its derivatives. Relative 
position is the unknown, and the other two  variables can 

be modeled in different ways. Both of them depend on the 
reference orbit.

The problem of relative motion is best studied by 
using simple models to begin with. The easiest way, for 
modeling them, is to take a non-perturbed circular ref-
erence orbit. This choice leads to the well-known Hill or 
Clohessy-Wiltshire equations. If it is assumed that the 
reference satellite’s orbit is circular, then refr  is constant 
and the mean motion of the reference satellite 3

refn r= m ,  
where m is the product between the gravitational constant 
and the mass of the central body.

The resulting equations are referred to a well-known 
Hill’s equations which integrate immediately to give:
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where, ,R Tr r  and Nr  refer to the radial, transferase and 
normal relative distance, respectively.

Lawden10 introduced the solution for the relative 
motion with eccentric non-perturbed reference orbit, 
using f as the true anomaly, as
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+Figure 1. Geometry of the Relative Motion Problem.
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Fontdecaba5 addressed useful comments on this 
result, these are:

•	 Lawden	 gave	 a	 closed	 form	 of	 the	 solution,	 but	 he	
didn’t give parameters A, B, C, D, E, F as function of 
initial conditions. 

•	 His	solution	is	not	convenient	because	of	the	integral	I1.

The nonlinear equations modeling relative motion in 
the two-body problem are given11: 
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where, θ is the angle between the reduis vector of the 
referrence satellite and the x-axis of the inertial frame and 
V  is the perturbed force.

Tschauner and Hempel8 changed the independent 
variable to the true anomaly, and scaled the relative posi-
tion by the radius of the reference satellite
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If second- and higher-order terms are neglected then 
the resulting equations are known as the Tschauner-
Hempel (TH) equations.

3. Alternative Approach
This section studies unperturbed and perturbed satellite 
relative motion, respectively, using direct  geometrical 

approach. The results provide a complete analytic 
 solution of satellite relative motion for formation  flying 
and constellation design. It is useful to distinguish the 
 variables used to represent the differential orbital ele-
ments. The Keplerian orbit is commonly specified by 
the classical orbital elements for state representations in 
space. The six orbital element sets are [a, e, i, ω, Ω, f ] 
where as usual a is the semi-major axis, e is the eccen-
tricity, i is the inclination, ω is the argument of the 
periapsis, Ω is the longitude of ascending node, f is the 
true anomaly.

In the subsequent developments the adopted reference 
frame (ℱ) is an equatorial system with the positive X-axis 
towards the node of the orbit of base satellite, Z-axis 
towards the north pole of the equator of the primary, and 
the Y-axis completing a right handed system. 

The position vectors of the base, Br , and target, 

Tr , 

 satellites can be written as the vector components in ℱ 
using Figure 2, as:
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where, , ,sr s B T=  are the modulus of vectors sr  and 
,s s su f= + w  usually known as the argument of latitude, 

and the subscripts B, T  refer to the base and target satel-
lite, respectively, and TDW W WB= - , is the difference of 
the nodal longitudes.

The relative position vector 
r  of the target satellite in 

base satellite centered frame, ℱ, are derived by vector sub-
traction of the position vectors from Eq. (5) and Eq. (6):
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The relative velocity vector 


V  is obtained by taking the 
time derivatives of Eq. (7):
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The equations (7) and (8) are the exact analytic  solution 
for satellite relative motions. The only assumption is that 
no perturbations are acting on the satellites.

4.  Effects of J2 on the  
Relative Distance

In this section we will introduce a more accurate 
model. We will  incorporate the Earth asphericity due to 
J2 zonal harmonics. J2 term is assumed to be of first. The 
gravitational potential including J2 oblateness effects is 
given by
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Figure 2. Relation between the relative distance and the orbital elements of two satellites with radius vectors Br  and Tr .
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where, ,GM≈=m  with G is the universal gravitation 
 constant, and M≈ is the mass of the Earth. The quanti-
ties r and φ denote the radial distance and latitude of the 
satellite, respectively; R≈ is the radius of the Earth, and 

( )2 sinP j  is the second Legendre polynomial.
The effects on the orbital elements due to the first order 

in J2, are classified as secular growth, short-periodic, and 
long-periodic perturbations. If the study of the change of 
orbital elements is limited to that due to the first-order 
secular component, it can be shown that orbital elements 
a, e, and i can be considered constant and the elements Ω, 
ω, and f show secular growth.

So the following results are obtained from secular 
growth coming form J2 term
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In what follows we treated the considered modifica-
tions on the unperturbed model
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Using the superscript 0, 1 for the unperturbed and 
perturbed case respectively, and
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Using that

( ) ( )

( )( )

( )

2
1 2

22 2

2 2
01

22
0

2 2
1

22 2

3
5 cos 1 ,

2 1

3 sin sin
,

4 1 1 cos

3 cos

2 1

s s

s s

s s s
s

s s s s

s
s

s s

R
i

a e

R e i f
r

a e e f

R i
u

a e

p
w

p

p

≈

≈

≈

= -
-

= -
- +

=
-

( ) ( )

( ) ( )

2 2
0 01

2 22 2 2 2
0 0 0 0

2

2 22 2 2 2

3 cos 3 cos

2 1 2 1

cos cos3
2 1 1

T B
s

T T B B

T B

T T B B

R i R i

a e a e

i iR
a e a e

p p

p

≈ ≈

≈

DW = +
- -

Ê ˆ-
= +Á ˜

Á ˜- -Ë ¯

Table 1. Orbital elements of two satellites Grace A and Grace B

Time 
From

1/1/1950
a(m) E + 07 e E – 03 I(Deg) E + 02 Ω(Deg) E + 03 ω(Deg) E + 03 f(Deg) E + 03

Grace A 21762.00 0.683816980297970 0.647260795750325 0.890144804417850 0.356879216666980 0.350246638846765 0.333023742099671

Grace B 21762.00 0.683815882904043 0.749984715740628 0.890145688198547 0.356894594129638 0.346804713265063 0.337982744793233

5. Numerical Application
An example given below illustrates the influence of J2 
 perturbation on the relative motion between two  satellites. 
The orbital elements of the satellites used in the exemplary 
calculations are given in Table 1.

The numerical simulation, coded on iterating  solutions 
at each time step; is 30 minutes, runs over a period of 90 
days with the orbit elements of the base and target satellite 
in Table 1. 

6. Conclusion
We developed the analytic solution for satellite relative 
motion through a direct geometrical description using the 
usual orbital elements without and with J2 perturbations. 
The derivation of this approach is straightforward, and the 
resulting equations provide a complete analytic form of 
the relative motion avoiding the singularity solution.
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