
Abstract
In this paper, we consider the step fixed-charge transportation problem where is one of the most important problems in 
transportation research area. To tackle such an NP-hard problem, we present Genetic Algorithm (GA). Since crossover and 
mutation operators have significant role on the algorithm’s quality, some crossover and mutation operators are tested in this 
work. For this aim, several problem sizes are generated at random and then through extensive computational experiments, 
appropriate GA parameter values were chosen. Besides, the efficiency and convergence of the proposed algorithms was 
evaluated by solution quality. The results showed that the GA was more robust and consistently outperformed Simulated 
Annealing (SA) for all instances.
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1. Introduction

Fixed Charge Problems (FCP) arise in a large number 
of production and transportation systems. Such FCPs 
are typically modeled as 0-1 integer programming prob-
lems. A special case of the general FCP is Fixed Charge 
Transportation Problem (FCTP). The problem involves 
the distribution of a single commodity from a set of 
supply centers (sources) to a set of demand centers (des-
tinations) such that the demand at each destination is 
satisfied without exceeding the supply at any source. The 
objective is to select a distribution scheme that has the 
least cost of transportation. Two kinds of costs are consid-
ered, a continuous cost which linearly increases with the 
amount transported between a source i and a destination 
j and a fixed charge which is incurred whenever a nonzero 
quantity is transported between source i and destination 
j . The fixed charge may represent toll charges on a high-
way; landing fees at an airport; setup costs in production 

systems or the cost of building roads in transportation 
systems. Depending on the specific applications, the 
importance of the fixed charge in the model will vary.

Fixed charge problems were first proposed by Hirsch 
and Dantzig4. Initial at tempts to solve the problem were 
mainly heuristic in nature. The best known heuristics are 
by Balinski2. Murty9 developed the first exact algorithm; 
his algorithm employs a vertex ranking procedure and 
works best when the fixed charges are small in compari-
son to the continuous costs. Steinberg11 provided an exact 
algorithm based on the branch and bound method. But, 
the exact branch and bound method is applicable to small 
problems only, since the effort to solve an FCTP grows 
substantially with the size of the problem as explained 
in Walker13. A good deal of effort has been devoted to 
finding approximate solutions to FCTPs. The heuristic 
methods try to reach the optimum through simplex like 
iterations. Cooper and Drebes3, Denzler4, Steinberg11, and 
Walker13 have developed heuristic adjacent extreme point 
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algorithms for the general FCTP. Since there is no guar-
antee that the solution obtained in the final iteration is a 
minimum (local or global), they experiment with substi-
tuting different combinations of variables into the basis 
to obtain better results. However, the criterion used to 
stop the simplex iterations (positive gradients between 
the location identified in the final iteration and its neigh-
boring peaks), while sufficient for a Linear Program (LP), 
does not guarantee optimality for the FCTP. Adlakha and 
Kowalski1 proposed a simple heuristic algorithm for solv-
ing small FCTP. However, it is stated that the proposed 
method is more time consuming than the algorithms 
for solving a regular transportation problem. Several 
heuristic methods were proposed for solving fixed cost 
transportation problem5,11,12. 

Step Fixed Charge Transportation Problem (SFCTP) 
is an extended version of the FCTP. The SFCTP in its rep-
resentation first was founded by Kowalski and Lev6. In the 
SFCTP due to the step function structure of the objective 
function, Kowalski and Lev6 were dealing with a ‘‘NP- 
hard’’ problem.

Since the problems with fixed charges are usu-
ally NP-hard (nondeterministic polynomial time) 
problem7, the computational time to obtain exact solu-
tions increases in a polynomial fashion and very quickly 
becomes extremely long as the dimensions of the problem 
increase6. In order to find the best solution, we proposed 
the genetic algorithm. It is known that the effectiveness 
of a GA highly depends on the great choice of the encod-
ing scheme, and the selection, crossover, and mutation 
operators, as well as their parameters by which they are 
applied10.

The rest of the paper is organized as follows: in 
Section  2, the SFCTP model is described. The GA 
developed to the SFCTP in section 3. In Section 4, the 
experimental design and comparisons are presented. 
Finally, the conclusion and future work are presented in 
Section 5.

2.  Step Fixed Charge 
Transportation Problem

The following notations are used to define the mathem-
atical model. 

Set of indices:
I set of suppliers (i = 1,2,…,I)
J set of customers (j = 1,2,…,J)

Parameters:
Si capacity of supplier i
Dj capacity of customer j
ci,j  cost of transporting one unit of product from 

supplier i to customer j
Ai,j  a certain amount of transporting from supplier i 

to customer j
ki,j,1  fixed charge of transporting one unit of product 

from supplier i to customer j
ki,j,2  additional fixed cost when the transported units 

exceeds a certain amount Ai,j

Decision variables: 

xi,j  quantity of product shipped from plant i to cus-
tomer j

bi,j,1   binary variable equal to 1 if xi,j > 0 and equal to 0 
otherwise

bi,j,2  binary variable equal to 1 if xi,j > Ai,j and equal to 
0 otherwise

The mathematical model of the problem as follows6:

where ki,j,1, ki,j,2, ki,j , Ai,j ≥ 0. 
Note that fixed cost associated with route (i, j) has 

two steps. It could have multiple steps, depending on the 
problem structure. Without loss of generality, we assume 
that the problem is balanced, that is: 

3.  The Genetic Algorithm 
Proposed

Genetic Algorithms (GAs) arise in the 1970s by the 
work of Holland in 1975. They were intended to tackle 
industrial problems that were difficult to solve with the 
methods available at that time. Nowadays, GA is consid-
ered to be one of the typical metaheuristic methods for 
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tackling various optimization problems. The idea behind 
GA comes from Darwin’s ‘survival of the fittest’ concept, 
meaning that good parents produce better offspring.

GA employs a population of chromosomes each of 
them represents an encoded solution. A fitness value is 
allocated to each chromosome according to its perfor-
mance in which the more desirable the chromosome, 
the higher the fitnedss value becomes8. By using genetic 
operators, each successive incremental improvement in a 
chromosome becomes the basis for the next generation. 
The process continues by a set of genetic operators until 
some stopping criterion is met. Four fundamental steps 
are mostly used in GAs: reproduction, roulette wheel, 
crossover and mutation (for more detailed see8). 

3.1 Initialization
Each generated chromosome is considered as an indi-
vidual solution to the problem. In the first generation 
chromosomes are generated as many as population size. 
The random method is applied for generating the initial 
population. 

3.2 Selection Mechanism
As the total transportation cost including variable and 
fixed costs should be minimized in this problem, better 
solutions are those results with lower objective functions. 
The higher fitness value considered the better chromo-
some, so the applied function is formulated as follows: 

Since the Roulette-Wheel selection mechanism is 
deployed, the chromosomes with higher fitness values 
have more chance to be selected. 

3.3 Genetic Operators 
Reproduction: The Pr% of the chromosomes with higher 
fitness values are transferred to the next generation. 

Crossover: Crossover combines the two selected chro-
mosomes’ features in order to create two better offsprings. 
The remaining, (1-Pr%), of the chromosomes in next gen-
eration going to be generated from crossover operation. 
We used the one-point, two- point and Uniform cross-
over operators in this paper.

Mutation: The mutation operator is an important pro-
cess of any successful GA that reorganizes the structure of 
the genes so that the algorithm can escape from searching 

just in local optimum area. It can also be regarded as a 
simple local search technique. 

Performing the crossover operation, offspring are 
going to be mutated with the probability of Pm. It means 
that a random number in range [0, 1] is generated for each 
of the offsprings. If this number was less than Pm then the 
mutation operation is going to be performed. We utilize 
the Swap, Big Swap, Inversion and Displacement muta-
tion operators in this paper.

4. Experimental Design

4.1 Instances
Zavardehi et al.8 generated random insta-nces to verify the 
effectiveness of their GA approach. We use the same data-
sets except step cost in this paper. To cover various types 
of problems, we considered several levels of influencing 
inputs. First, we generated random problem instances 
for m = 10, 15, 30, and 50 suppliers and n = 10, 15, 20, 
30, 50, 100, and 200 customers, respectively. We consid-
ered both small-sized and large-sized problem instances, 
which was presented by the number of suppliers and cus-
tomers. Seven different problem sizes, 10 ×10, 10 ×20, 15 
×15, 10 ×30, 50 ×50, 30 ×100 and 50 ×200 are considered 
for experimental study, which present different levels of 
difficulty for alternative solution methods. After specify-
ing the size of problems in a given instance, considering 
the significant influence of the fixed costs to the solution 
for each size, four problem types (A–D) are employed. 
For a given problem size, problem types differ from each 
other by the range of fixed costs, which increases upon 
progressing from problem type A through problem type 
D. The variable costs range over the discrete values from 
3 to 8. The problem sizes, types, suppliers/customers, and 
fixed costs ranges are shown in Table 1.

4.2 Parameter Setting
The performance of the GA is generally sensitive to the 
parameter setting which influences the search efficiency 
and the convergence quality. Twenty-eight test prob-
lems, with different sizes and specifications, are generated 
and solved to evaluate the performance of the presented  
algorithms. 

The instances are implemented using MATLAB on 
a PC with dual core Duo 2 2.8 GHz and 4 GB of RAM. 
All algorithms ran 3 times and Due to having different 
scale of objective functions in each instance the relative 

Fitness Value
Objective Function

=
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obvious. From this figures, it is concluded that GA has a 
better convergence than SA on the instances. 

Considering 20 instances for each of the 28 problem 
type, or 80 instances for each of the 7 problem sizes, for 
both algorithms, the instances have been run 5 times and 
hence, by using the RPD we deal with 400 data for each 
algorithm. 

The averages of these data for each algorithm and each 
instance are shown in Figure 2.

In order to verify the statistical validity of the results, 
we have performed an Analysis Of Variance (ANOVA) 
to accurately analyze the results. The point that can be 
concluded from the results is that there is a clear statis-
tically meaningful difference between performances of 
the algorithms. The means plot and LSD intervals (at the 
95% confidence level) for two algorithms are shown in 
Figure 3. 

percentage deviation (RPD) is used for each instance. The 
RPD is obtained by the following formula:

where Algsol and Minsol are the obtained objective 
value and minimum objective value found from both 
proposed algorithms for each instance, respectively. After 
obtaining the results of the test problems in different trial, 
results of each trial are transformed into RPD measure.

Using the average of RPD measures of trials, the 
parameters and operators that have minimum RPD aver-
age are selected as the best ones. Therefore, the parameters 
of GA were set as follows: population size = 100, Crossover 
percentage = 0.8, Mutation probability = 0.15, Crossover 
operator = Two-point crossover, Mutation operator = 
Displacement Mutation. 

4.3 Experimental Results
We set searching time to be identical for both algorithms 
which is equal to 1.5× (n + m) milliseconds. Hence, this 
criterion is affected by both n and m. The more the number 
of suppliers and customers, the more the rise of searching 
time increases. We generated 20 instances for each twenty 
eight problem type, summing to 28×20=560 instances 
which are different from the ones used for parameter set-
ting to avoid bias in the results. For further comparison, 
the maximum generations is set to 1000. The best objec-
tive function and their convergence after 1000 generations 
are reported in Figure 1. The improvement of GA on SA is 

Table 1. Test problems characteristics
Problem 

size
Total 

Demand
Problem 

type
Range of variable costs Range of first fixed costs Range of second fixed 

costs
Aij al al-bl α and β al al-bl α and β al al-bl α and β

10×10 10,000 A 400 U(3, 
7)

U(0, 
1)

U(0.25, 
1)

U(50, 
200)

U(0, 
25)

U(5, 
25)

U(50, 
200)

U(0, 
25)

U(5, 
25)

10×20 15,000 B 400 U(3, 
7)

U(0, 
1)

U(0.25, 
1)

U(100, 
400)

U(0, 
50)

U(10, 
50)

U(100, 
400)

U(0, 
50)

U(10, 
50)

15×15 15,000 C 400 U(3, 
7)

U(0, 
1)

U(0.25, 
1)

U(200, 
800)

U(0, 
100)

U(20, 
100)

U(200, 
800)

U(0, 
100)

U(20, 
100)

10×30 15,000 D 400 U(3, 
7)

U(0, 
1)

U(0.25, 
1)

U(400, 
1,600)

U(0, 
200)

U(40, 
200)

U(400, 
1,600)

U(0, 
200)

U(40, 
200)

50×50 50,000
30×100 30,000
50×200 50,000

RPD A ol Minsol
Minsol

=
−

×
lgs 100

Figure 1. Evolution in 1000 generations.
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crossover and four mutation operators for the problem 
from the GA literature. The robustness of the algorithm 
may be improved by fine-tuning the GA parameters and 
operators, relating the population size, reproduction per-
centage, mutation probability, crossover and mutation 
types. We solved the randomly generated problems by GA 
and also with SA to compare them. The obtained results 
show the proficiency of GA comparison with SA. Results 
showed that the GA proposed was capable of obtaining 
better solutions with a more reasonable computational 
time compared to the SA, for all sizes. The future work is 
to extend our approach to the case of multistage SFCTP, 
fuzzy costs, or other optimization objectives. Also, con-
sidering other well-known metaheuristics such as tabu 
search or new ones such as imperialist competitive algo-
rithm is encouraged.

6. Acknowledgement 
This study was supported under research project entitled 
“Addressing a fixed-charge solid transportation problem 
in multi-stage supply chain” by Islamic Azad University, 
Masjed-Soleiman Branch. The first author is grateful for 
this financial support.

7. Reference
 1.  Adlakha V, Kowalski K. A simple heuristic for solving small 

fixed-charge transportation problems Omega. Int J Manag 
Sci Eng Manag. 2003; 31:205–211.

 2.  Balinski ML. Fixed cost transportation problems. Naval 
Research Logistics. 1961. 8, 41–54.

 3.  Cooper L, Drebes C. An approximate solution method for 
the fixed charge problem. Nav Res Logist Q. 1967; 14:101–
13.

 4.  Denzler DR. An approximate algorithm for the fixed charge 
problem. Nav Res Logist Q. 1964; 16:411–16.

 5.  Gottlieb J, Paulmann L. Genetic algorithms for the 
fixed charge transportation problem. Proceedings of IEEE 
International Conference on Evolutionary Computation, 
Anchorage. 1998; 330–35.

 6.  Kowalski K, Lev B. On step fixed-charge transportation 
problem. OMEGA, The International Journal of Management 
Science. 2008; 36(5):913–17. 

 7.  Hirsch W, Dantzig GB. The Fixed Charge Problem. Nav Res 
Logist Q. 1968; 15:413–24.

 8.  Molla-Alizadeh-Zavardehi S, Hajiaghaei-Keshteli M, 
Tavakkoli-Moghaddam R. Solving a capacitated fixed-
charge transportation problem by artificial immune and 

Figure 2. Means plot for the interaction between each 
algorithm and problem size.

Since, we are to appraise the robustness of the algo-
rithms in different circumstances, the effects of the 
problem sizes on the performance of both algorithms 
are analyzed. The reciprocal between the capability of 
the algorithms and the size of problems is illustrated in 
Figure 2. As can be seen from the result figure, not only 
is the overall performance of GA better than SA, but GA 
is more robust. Thus, GA has the capability to reduce the 
search space significantly and to obtain better solutions 
with less computational time than SA.

5. Conclusion and Future Works
In this paper, a real-world modeling of transportation 
problem has been investigated. We developed three 

Figure 3. Means plot and LSD intervals for the GA and SA 
algorithms.



Step Fixed Charge Transportation Problems via Genetic Algorithm

Indian Journal of Science and TechnologyVol 7 (7) | July 2014 | www.indjst.org954

genetic algorithms with a Prüfer number representation. 
Expert Systems with Applications. 2011; 38:10462–74.

 9.  Murty KG. Solving the Fixed Charge Transportation 
Problem by Extreme Point Ranking. Operations research 
Quarterly. 1968; 16:268–79.

10.  Ruiz R, Maroto C. A genetic algorithm for hybrid flow 
shops with sequence dependent setup times and machine 
eligibility. European Journal of Operational Research. 2006; 
169, 781–800.

11.  Steinberg DI. (1970). The fixed charge problem. Nav Res 
Logist Q. 1970; 17:217–36.

12.  Sun M, Aronson JE, Mckeown PG, Drinka D. A tabu search 
heuristic procedure for the fixe charge transportation prob-
lem. Eur J Oper Res. 1998; 106:441–45. 

13.  Walker WE. A heuristic adjacent extreme point algorithm 
for the fixed charge problem. Management Science. 1976; 
22:587–96.


