K-ordered Hamiltonian Graphs

Silviya Manesh

Department of Mathematics, Bharath University, Selaiyur, Chennai-600 073, India; Silvya.manesh@yahoo.com

Abstract

In this chapter, we review the following results proved in ${ }^{1,2,3,4}$: (i) For $\mathrm{k} \geq 3$, every $(\mathrm{k}+1$)-Hamiltonian-connected graph is k-ordered. Determine $f(k, n)$ if n is sufficiently large in terms of k. Let $g(k, n)=n / 2+k / 2-1(i i) f(k, n)=g(k, n)$ if $n \geq 1 l k-3$ (iii) $f(k, n) \geq g(k, n)$ for any $n \geq 2 k$ and $f(k, n)>g(k, n)$ if $2 k \leq n \leq 3 k-6$ (iv) if G is a graph of order n with $3 \leq k \leq n / 2$ and $\operatorname{deg}(u)+d e g$ (v) $\geq \mathrm{n}+(3 \mathrm{k}-9) / 2$ for every pair u, v of non-adjacent vertices of G , then G is k -ordered Hamiltonian.

Keywords: Adjacency, Connectedness, Hamilton, Vertices

1. Introduction

In this section, the concept of K-Hamiltonian connected graphs is introduced. The result is that, for $\mathrm{k} \geq 3$, every $(\mathrm{k}+1)$-hamiltonian connected graph is k -ordered is established. Also, necessary and sufficient conditions for a graph to be k-ordered are discussed. The notations used are recalled here. We write v1, (x1), v2, (x2), ..., vk-1, ($\mathrm{xk}-1$), vk to indicate a v1-vk path that contains the k vertices $\mathrm{v} 1, \mathrm{v} 2 \ldots \mathrm{k}$, and possibly upto $\mathrm{k}-1$ additional vertices, namely $\mathrm{x} 1, \mathrm{x} 2, \ldots \mathrm{xk}-1$. Thus, for $1 \leq \mathrm{j} \leq \mathrm{k}-1$, (x 1) indicates that some vertex, which we denote by xi, may (or) may not be present on the path. So, for each $i(1 \leq i \leq k-1)$, the vertices v 1 and vi+1 are either adjacent or vi, vi+1 is a path. For example, $u, v(x)$, y indicates the path u, v, y or the path u, v, x, y.

Proposition 1.1: Let G be a Hamiltonian graph of order $\mathrm{n} \geq 3$. If G is k -ordered, $3 \leq \mathrm{k} \leq \mathrm{n}$, then G is $(\mathrm{k}-1)$ connected.

Proof: Suppose, to the contract that G is not $(\mathrm{k}-1)$ connected. Then, there exists a cut set $S=v_{1}, v_{2}, \ldots$, , of G, where $\leq \mathrm{k}-2$. Let v_{+1} and v_{+2} be vertices belonging to distict components of G-S. Consequently, every $\mathrm{v}_{+1}{ }^{-\mathrm{v}_{+2}}$ path in G contains vertices of S, so G contains no Hamiltonian cycle containing the vertices of the sequence $\mathrm{v}_{1}, \mathrm{v}_{2} \ldots, \mathrm{v}$, $\mathrm{v}_{+1}, \mathrm{v}_{+2}$ in this order. Hence G is not (+2) -ordered and so is not k -ordered.

Corollary 1.2: If G is a k -ordered Hamiltonian graph, then $\delta(\mathrm{G}) \geq \mathrm{k}-1$.

Sufficient conditions for k-ordered graphs

Many sufficient conditions have been given for Hamiltonian graphs. Two of the best known are by Dirac and Ore.

Theorem 1.3 (Dirac): Let G be a graph of order $n \geq 3$. If $\operatorname{deg} v \geq n / 2$ for every vertex v of G, then G is Hamiltonian.

Theorem 1.4 (Ore): Let G be a graph of order $n \geq 3$. If for every pair u, v of non-adjacent vertices of $\mathrm{G}, \operatorname{deg} \mathrm{u}+\operatorname{deg} \mathrm{v}$ $\geq \mathrm{n}$, then G is hamiltonian.

Lemma 1.5: Let G be a graph of order $\mathrm{n} \geq 3$ and let S : $\mathrm{v}_{1}, \mathrm{v}_{2}$, \ldots, v_{k} be a sequence of k distinct vertices of G, where 3 $\leq k \leq n$. If

$$
\operatorname{deg} u+\operatorname{deg} v \geq n+2 k-7
$$

For every pair u, v of non adjacent vertices of G, then G contains a $v_{1}-v_{k}$ path of the type $v_{1},\left(x_{1}\right), v_{2},\left(x_{2}\right), \ldots$ $\left(x_{k-1}\right), v_{k}$ or a $v_{k}-v_{k-1}$ path of the type $v_{k}, v_{1},\left(x_{1}\right), v_{2}$, $\left(\mathrm{x}_{2}\right), \ldots,\left(\mathrm{x}_{\mathrm{k}-2}\right), \mathrm{v}_{\mathrm{k}-1}$.
Proof: Consider the vertices v_{1} and v_{2}. If v_{1} and v_{2} are adjacent, then G contains the path v_{1},vs:; otherwise, deg $\mathrm{v}_{1}+\operatorname{deg} \mathrm{v}_{2} \geq \mathrm{n}+2 \mathrm{k}-7 \geq \mathrm{n}-1$, which implies the existence of a vertex x 1 mutually adjacent to v_{1} and v_{2} and so $\mathrm{v}_{1}, \mathrm{x}_{1}, \mathrm{v}_{2}$ is a path in G. In any case, G contains a path $\mathrm{v}_{1},\left(\mathrm{x}_{1}\right), \mathrm{v}_{2}$. Now, consider the vertex v_{3}. If $v_{2} v_{3} \in E(G)$, then G contains the path $\mathrm{v}_{1},\left(\mathrm{x}_{1}\right), \mathrm{v}_{2}, \mathrm{v}_{3}$. Suppose, then that $\mathrm{v}_{2} \mathrm{v}_{2} \in \mathrm{E}(\mathrm{G})$. Thus, $\operatorname{deg} \mathrm{v}_{2}+\operatorname{deg} \mathrm{v}_{2} \geq \mathrm{n}+2 \mathrm{k}-7$ by hypothesis. Since G has

[^0]order n, the vertices v_{2} and v_{3} are mutually adjacent to at least $2 \mathrm{k}-5$ vertices. if $\mathrm{k} \geq 4$, then G contains a vertex x_{2} distinct from v_{1} and x_{1} (if it exists) such that x_{2} is mutually adjacent to v_{2} and v_{3}. Hence G contains the path $v_{1},\left(x_{1}\right)$, $\mathrm{v}_{2},\left(\mathrm{x}_{2}\right), \mathrm{v}_{3}$. Suppose, then that $\mathrm{k}=3$ and that G contains to vertex distinct from v 1 and x 1 that is mutually adjacent to v_{2} and v_{3}. If v_{3} is adjacent to v_{1}, then $v_{3}, v_{1},\left(x_{1}\right), v_{2}$ is a path of G. If v_{3} is not adjacent to v_{1}, then v_{2} and v_{3} are mutually adjacent to 1 and to no other vertex, while v_{2} is adjacent to v_{1}. However, then $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{x}_{1}, \mathrm{v}_{3}$ is a path in G .

Proceeding inductively, assume that we have constructed a path $\mathrm{v}_{1},\left(\mathrm{x}_{1}\right), \mathrm{v}_{2},\left(\mathrm{x}_{2}\right), \ldots,\left(\mathrm{x}_{\mathrm{j}-2}\right), \mathrm{v}_{\mathrm{j}-1}$ in G . Suppose first that $j \leq k-1$. It is to show that G contains a path v_{1}, \ldots, $\left(x_{1}\right) v_{2}\left(x_{2}\right) v_{j}$. If v_{j-1} is adjacent to v_{j}. If v_{j-1} is adjacent to v_{j}, then G contains such a path. Suppose then that $v_{j-1} v_{j} \in$ $\mathrm{E}(\mathrm{G})$. If G contains a vertex $\mathrm{x}_{\mathrm{j}-1}$ distinct from the vertices on the path $\mathrm{v}_{1},\left(\mathrm{x}_{1}\right), \mathrm{v}_{2},\left(\mathrm{x}_{2}\right), \ldots,\left(\mathrm{x}_{\mathrm{j}-2}\right)$ such that $\mathrm{x}_{\mathrm{j}-1}$ is mutually adjacent to v_{j-1} and v_{j}, then G contains a path of the designed type, otherwise $\mathrm{v}_{\mathrm{j}-1}$ and v_{j} are mutually adjacent to at most 2_{j-4} vertices and G contains at least $n+2 k-2_{j-1}$ vertices. Since $k \geq j+1$, this produces a contradiction, and hence the desired claim is verified.

Finally, suppose that $\mathrm{j}=\mathrm{k}$, that is, assume that there is a path $\mathrm{v}_{1},\left(\mathrm{x}_{1}\right), \mathrm{v}_{2},\left(\mathrm{x}_{2}\right), \ldots,\left(\mathrm{x}_{\mathrm{k}-2}\right), \mathrm{v}_{\mathrm{k}-1}$ is constructed in G. It is to show that G contains either a path $v_{1},\left(x_{1}\right), v_{2},\left(x_{2}\right), \ldots$,
$\mathrm{v}_{\mathrm{k}-1},\left(\mathrm{x}_{\mathrm{k}-1}\right), \mathrm{v}_{\mathrm{k}}$ or a path $\mathrm{v}_{\mathrm{k}}, \mathrm{v}_{1},\left(\mathrm{x}_{1}\right), \mathrm{v}_{2},\left(\mathrm{x}_{2}\right) \ldots,\left(\mathrm{x}_{\mathrm{k}-2}\right), \mathrm{v}_{\mathrm{k}-1}$. If either $\mathrm{v}_{\mathrm{k}} \mathrm{v}_{\mathrm{k}-1} \in \mathrm{E}(\mathrm{G})$ or $\mathrm{v}_{\mathrm{k}} \mathrm{v}_{1} \in \mathrm{E}(\mathrm{G})$, then the desired result is obtained, thus assume that v_{k} is adjacent to neither $\mathrm{v}_{\mathrm{k}-1}$ nor v_{1}. Also, if $\mathrm{v}_{\mathrm{k}-1}$ and vk are mutually adjacent to some vertex other than the (at most) 2_{k-5} vertices on the path $\left(\mathrm{X}_{1}\right), \mathrm{v}_{2}$, $\left(\mathrm{x}_{2}\right), \ldots, \mathrm{v}_{\mathrm{k}-2},\left(\mathrm{x}_{\mathrm{k}-2}\right)$, the proof is complete; so assume that this is not the case. Hence v_{k-1} and v_{k} are mutually adjacent to at most $2_{\mathrm{k}-5}$ vertices. Since G has order n , it follows that $\mathrm{v}_{\mathrm{k}-1}$ and v_{k} are mutually adjacent to exactly $2_{\mathrm{k}-5}$ vertices (so all of the vertices $x_{1}, x_{2}, \ldots, x_{k-2}$ exist), and every other vertex of G is adjacent to exactly one of v_{k-1}, and G contains the path $\mathrm{v}_{1}, \mathrm{x}_{1}, \mathrm{v}_{2}, \mathrm{x}_{2}, \ldots, \mathrm{v}_{\mathrm{k}-2}, \mathrm{x}_{\mathrm{k}-2}, \mathrm{v}_{\mathrm{k}}$, producing the desired path. Hence, the result.

2. References

1. Oberly DJ, Summer DP. Every connected, locally connected non trivial graph with no induced claw is Hamiltonian. J Graph Theory. 1979; 3(4):351-56.
2. Harary F, Nash-Williams C St. JA. On Eulerian and Hamiltonian graphs and line graphs. Canad Math Bull. 1965; 8:701-09.
3. Li M. On pancyclic claw-free graphs. Ars Combin. 1998; 50:279-91.
4. Ryjacek Z. Hamiltonian circuits in N2-locally connected k1,3-free graphs. J Graph Theory. 1990; 14:321-31.

[^0]: *Author for correspondence

