K-ordered Hamiltonian Graphs

Silviya Manesh

Department of Mathematics, Bharath University, Selaiyur, Chennai-600 073, India; Silvya.manesh@yahoo.com

Abstract

In this chapter, we review the following results proved in ^{1, 2, 3, 4}: (i) For $k \ge 3$, every (k+1)-Hamiltonian-connected graph is k-ordered. Determine f(k, n) if n is sufficiently large in terms of k. Let g(k,n) = n/2 + k/2 - 1 (ii) f(k,n) = g(k,n) if $n \ge 1$ lk-3 (iii) $f(k,n) \ge g(k,n)$ for any $n \ge 2k$ and f(k,n) > g(k,n) if $2k \le n \le 3k-6$ (iv) if G is a graph of order n with $3\le k\le n/2$ and $deg(u)+deg(v) \ge n+(3k-9)/2$ for every pair u, v of non-adjacent vertices of G, then G is k-ordered Hamiltonian.

Keywords: Adjacency, Connectedness, Hamilton, Vertices

1. Introduction

In this section, the concept of K-Hamiltonian connected graphs is introduced. The result is that, for $k\geq 3$, every (k+1)-hamiltonian connected graph is k-ordered is established. Also, necessary and sufficient conditions for a graph to be k-ordered are discussed. The notations used are recalled here. We write v1, (x1), v2, (x2), ..., vk-1, (xk-1), vk to indicate a v1-vk path that contains the k vertices v1, v2...vk, and possibly upto k-1 additional vertices, namely x1, x2, ...xk-1. Thus, for $1 \leq j \leq k-1$, (x1) indicates that some vertex, which we denote by xi, may (or) may not be present on the path. So, for each i ($1 \leq i \leq k-1$), the vertices v1 and vi+1 are either adjacent or vi, vi+1 is a path. For example, u, v (x), y indicates the path u, v, y or the path u, v, x, y.

PROPOSITION 1.1: Let G be a Hamiltonian graph of order $n \ge 3$. If G is k-ordered, $3 \le k \le n$, then G is (k-1)-connected.

PROOF: Suppose, to the contract that G is not (k-1) connected. Then, there exists a cut set $S = v_1, v_2, ..., v$ of G, where $\leq k-2$. Let v_{+1} and v_{+2} be vertices belonging to distict components of G-S. Consequently, every v_{+1} - v_{+2} path in G contains vertices of S, so G contains no Hamiltonian cycle containing the vertices of the sequence $v_1, v_2, ..., v$, v_{+1}, v_{+2} in this order. Hence G is not (+2) -ordered and so is not k-ordered.

COROLLARY 1.2: If G is a k-ordered Hamiltonian graph, then $\delta(G) \ge k-1$.

Sufficient conditions for k-ordered graphs

Many sufficient conditions have been given for Hamiltonian graphs. Two of the best known are by Dirac and Ore.

THEOREM 1.3 (DIRAC): Let G be a graph of order $n \ge 3$. If deg $v \ge n/2$ for every vertex v of G, then G is Hamiltonian.

THEOREM 1.4 (ORE): Let G be a graph of order $n \ge 3$. If for every pair u, v of non-adjacent vertices of G, deg u+deg v $\ge n$, then G is hamiltonian.

LEMMA 1.5: Let G be a graph of order $n \ge 3$ and let S: v_1, v_2, \dots, v_k be a sequence of k distinct vertices of G, where $3 \le k \le n$. If

deg u+deg v
$$\ge$$
 n+2k-7

For every pair u, v of non adjacent vertices of G, then G contains a $v_1 - v_k$ path of the type v_1 , (x_1) , v_2 , (x_2) ,... (x_{k-1}) , v_k or a v_k - v_{k-1} path of the type v_k , v_1 , (x_1) , v_2 , (x_2) , ..., (x_{k-2}) , v_{k-1} .

PROOF: Consider the vertices v_1 and v_2 . If v_1 and v_2 are adjacent, then G contains the path v_1 ,vs:; otherwise, deg $v_1 + \deg v_2 \ge n + 2k - 7 \ge n - 1$, which implies the existence of a vertex x1 mutually adjacent to v_1 and v_2 and so v_1 , x_1 , v_2 is a path in G. In any case, G contains a path v_1 , (x_1) , v_2 . Now, consider the vertex v_3 . If $v_2v_3 \in E(G)$, then G contains the path v_1 , (x_1) , v_2 , v_3 . Suppose, then that $v_2v_2 \in E(G)$. Thus, deg $v_2 + \deg v_2 \ge n + 2k - 7$ by hypothesis. Since G has

^{*}Author for correspondence

order n, the vertices v_2 and v_3 are mutually adjacent to at least 2k-5 vertices. if k≥4, then G contains a vertex x_2 distinct from v_1 and x_1 (if it exists) such that x_2 is mutually adjacent to v_2 and v_3 . Hence G contains the path v_1 , (x_1) , v_2 , (x_2) , v_3 . Suppose, then that k=3 and that G contains to vertex distinct from v1 and x1 that is mutually adjacent to v_2 and v_3 . If v_3 is adjacent to v_1 , then v_3 , v_1 , (x_1) , v_2 is a path of G. If v_3 is not adjacent to v_1 , then v_2 and v_3 are mutually adjacent to 1 and to no other vertex, while v_2 is adjacent to v_1 . However, then v_1 , v_2 , x_1 , v_3 is a path in G.

Proceeding inductively, assume that we have constructed a path v_1 , (x_1) , v_2 , (x_2) ,..., (x_{j-2}) , v_{j-1} in G. Suppose first that $j \le k-1$. It is to show that G contains a path v_1 ,..., $(x_1) v_2 (x_2) v_j$. If v_{j-1} is adjacent to v_j . If v_{j-1} is adjacent to v_j , then G contains such a path. Suppose then that $v_{j-1} v_j \in$ E(G). If G contains a vertex x_{j-1} distinct from the vertices on the path v_1 , (x_1) , v_2 , (x_2) ,..., (x_{j-2}) such that x_{j-1} is mutually adjacent to v_{j-1} and v_j , then G contains a path of the designed type, otherwise v_{j-1} and v_j are mutually adjacent to at most 2_{j-4} vertices and G contains at least $n + 2k - 2_{j-1}$ vertices. Since $k \ge j + 1$, this produces a contradiction, and hence the desired claim is verified.

Finally, suppose that j = k, that is, assume that there is a path v_1 , (x_1) , v_2 , (x_2) ,..., (x_{k-2}) , v_{k-1} is constructed in G. It is to show that G contains either a path v_1 , (x_1) , v_2 , (x_2) ,..., v_{k-1} , (x_{k-1}) , v_k or a path v_k , v_1 , (x_1) , v_2 , (x_2) ..., (x_{k-2}) , v_{k-1} . If either $v_k v_{k-1} \in E(G)$ or $v_k v_1 \in E(G)$, then the desired result is obtained, thus assume that v_k is adjacent to neither v_{k-1} nor v_1 . Also, if v_{k-1} and vk are mutually adjacent to some vertex other than the (at most) 2_{k-5} vertices on the path (x_1) , v_2 , (x_2) , ..., v_{k-2} , (x_{k-2}) , the proof is complete; so assume that this is not the case. Hence v_{k-1} and v_k are mutually adjacent to at most 2_{k-5} vertices. Since G has order n, it follows that v_{k-1} and v_k are mutually adjacent to exactly 2_{k-5} vertices (so all of the vertices $x_1, x_2, ..., x_{k-2}$ exist), and every other vertex of G is adjacent to exactly one of v_{k-1} , and G contains the path $v_1, x_1, v_2, x_2, ..., v_{k-2}, x_{k-2}, v_k$, producing the desired path. Hence, the result.

2. References

- Oberly DJ, Summer DP. Every connected, locally connected non trivial graph with no induced claw is Hamiltonian. J Graph Theory. 1979; 3(4):351–56.
- Harary F, Nash-Williams C St. JA. On Eulerian and Hamiltonian graphs and line graphs. Canad Math Bull. 1965; 8:701–09.
- Li M. On pancyclic claw-free graphs. Ars Combin. 1998; 50:279–91.
- 4. Ryjacek Z. Hamiltonian circuits in N2-locally connected k1,3-free graphs. J Graph Theory. 1990; 14:321–31.