
An Experimental Study of SSH Attacks by using
Honeypot Decoys

Esmaeil Kheirkhah1, Sayyed Mehdi Poustchi Amin2*, Hediyeh AmirJahanshahi Sistani2
and Haridas Acharya3

1Department of Computer Engineering, Mashhad Branch, Islamic Azad University, Iran; E.kheirkhah@gmail.com
2Department of Computer Studies and Research, Symbiosis International University, Pune, India;

Poustchi@outlook.com; Hediehamirjahanshahi@yahoo.com
3Allana Institute of Management Science, Pune University, Pune, India; Haridas.undr@gmail.com

Abstract
We studied Brute-force SSH attacks carried out on six different universities campus networks by using Honeypot
Techniques. Brute-force password guessing attacks against SSH, FTP and telnet servers are the most common form of at-
tack to compromise servers facing the internet. A key factor to avoid disruption of these networks is to defend it against
Brute-force attacks. We focused on the attempts to gain remote access to our SSH Honeypots Plus Tools and techniques
employed.

There are striking similarities in the methods used to attack these dissimilar systems. The evidence shows that,
pre-compiled lists of usernames and passwords that are widely shared form the basis for brute-force attacks. When the
passwords were analysed, it was found that in the event of actual malicious traffic what was commonly understood to be
strong password did not protect the systems from being compromised. The data from the study were used to evaluate the
efficacy of a variety of techniques designed to defend the systems against these attacks. Table 17 lists some commonly
recommendation for the protection of SSH servers.

Keywords: Honeypot, Honeynet, Internet Attacks, Network Security, SSH, Brute-force, Malware.

*Corresponding author:
Sayyed Mehdi Poustchi Amin (Poustchi@outlook.com)

1.  Introduction

The researchers in the nascent fields of digital and
network forensics constantly require new tools and
techniques to stay abreast of the latest trends in attack
on the systems. The use of honeypots has become more
extensive in the computer security industry because
the attack vectors have specially shifted into new
domains. To quote the leader of the Honeynet Project,
Lance Spitzner, a Honeypot is an information system
resource whose value lies in unauthorized or illicit use
of that resource [1]. A honeypot is a decoy computer
system, designed to look like a legitimate system, which

tempts an intruder to break into it while unknown
to the intruder, he is being covertly observed. The
attackers are unaware of the exact existence of the
Honeypots and hence the honeypots become precisely
effective [2].

RFC 4251 defines Secure Shell (SSH) as “a protocol for
secure remote login and other secure network services
over an insecure network.” [3] Nowadays, majority of
administrators use SSH as a secure replacement for Telnet
and r commands like rsh and rcp. SSH supplies similar
functionality while providing encrypted communica-
tions, password-less logins via public key authentication,
and host-based verification.

Indian Journal of Science and Technology, Vol 6(12), 5567–5578, December 2013

An Experimental Study of SSH Attacks by using Honeypot Decoys

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645Vol 6 (12) | December 2013 | www.indjst.org5568

In recent years, several studies on SSH attack have been
undertaken [4–6]. In some cases, the study of SSH attack
has been a part of a larger study. The larger study included
observation of intruder activities following the compro-
mise of a system or brute-force attacks. This research has
narrowly focused on the malicious login traffic, with the
aim of developing a deeper understanding of the tools and
techniques employed by such brute-force SSH intruders.
They still, by many accounts, represent a significant threat
to networked Linux systems [7].

Attacks against SSH are typically attempts to gain
remote access to a system or to cause a denial of service
condition since SSH supplies mechanisms for remote
access or remote file transfer. Basically, SSH service listen
for connection attempts on TCP port 22. After the three-
way handshake completes setting up the TCP connection
between the client and server, both client and server
transpose SSH version information and cryptographic
encryption keys. The remote user can seek authentica-
tion after the encrypted channel is established. If this
authentication fails, the connection will be closed. The
user is granted remote access to the system, if the authen-
tication succeeds.

There are two classes of Honeypots. The first class
depends upon the use of honeypots; in other words the
purpose of the honeypots and its production is purely for
research. The second class of honeypot is built depend-
ing upon the level of interactivity that they provide to the
attackers; in other words the can be termed low or high
interaction honeypots. By low-interaction honeypots, one
refers to those that simulate only some parts of the system
(the network stack).

The low-interactions honeypots do not implement
real services as much as the high-interaction honeypots.
They are utilized for collection of information at a higher
level (to learn about network probes and worm activ-
ity). Hence, low-interaction honeypots simulate some
services that prevent an attacker full access to the honey-
pots. Thus the attacker can’t control the system. With the
aid of patched system calls from loadable kernel mod-
ules, a high interaction honeypot is able to capture a large
amount of data, including encrypted communications.

We have set up a low-interaction honeypot system
in six different networks (different Internet IP spaces)
to investigate malicious activities that occur on these
networks. These systems are low-interaction honeypots
based on Kojoney project [8]. Here an attacker can inter-
act with honeypot as in any other system on the network.

For the attacker, there appears to be no discernible
difference between the honeypot and other computer
systems. It must be borne in mind however, that the hon-
eypot is closely monitored through the IPTables firewall.
The system events are recorded on the honeypot itself via
its logging facility. In fact, we improve the Kojoney hon-
eypot to allow the attacker to interact with our simulated
shell environment. Add support for XMPP (Extensible
Messaging and Presence Protocol) [14] to honeypot allow
the admins to receive alerts about ongoing attack very
quickly. We also instituted a central logging mechanism
for aggregation and analyzing attacks to create a database
center and warn the other parties about ongoing attacks.

The honeypot ran a standard server configuration of
Linux CentOS 5 on a regular computer system. They were
equipped with the following hardware:

•	 Pentium IV CPU 2+ GHz , 1 GB RAM
•	 NIC Cards 100/1000 Mbps , 80+ GB HDD

Each honeypot system has three components. In sim-
ple terms there are three layers with the processor or CPU
as the central or lowest layer, the application as the outer-
most or highest layer and OS as a layer between them.

To run a 64-bit operating system you need support
from the lower level: the 64-bit CPU. To run a 64-bit
application you need support from all lower levels: the
64-bit OS and the 64-bit CPU.

This simplification works to explain what occurs
when the 32-bit and 64-bit parts in our honeynet design
are combined. The thumb rule is that 32-bit will run on a
lower level 64-bit component. The main reason that our
32-bit honeypot will always run on 64-bit is that the 64-bit
components have been designed to work that way. So the
newer 64-bit systems are backward-compatible with the
32-bit systems and the choices in the platforms warrants
the same result regardless of whether you select 32-bit or
64-bit platform.

We have installed Open VZ, in addition to the software
provided by the above type of installation. Open VZ is a
container-based virtualization for Linux. Also included
are the Kojoney honeypot and P0f (a passive OS finger-
printing tool) [9].

First, we configured the Kojoney with default settings
but after few days we made some changes in Kojoney
to log more details about the attacks. Secondly, we con-
figured the firewall so the SSH service of the server was
accessible via its public static IP address from the Internet

Esmaeil Kheirkhah, Sayyed Mehdi Poustchi Amin, Hediyeh AmirJahanshahi Sistani and Haridas Acharya

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645 5569Vol 6 (12) | December 2013 | www.indjst.org

and finally, we install the p0f fingerprinting OS tools to
identify the operating system on machines that connect
to our box.

The honeypots were brought online on August 20th
2011 and taken offline on October 6th 2011 for full 47
days. The SSH honeypots servers face several attacks
during this period of study, but were not successfully
compromised because of the nature of the low-inter-
action honeypots. In this paper, we will focus on the
attempts to gain remote access to a system using data
collected from our SSH honeypots plus tools and tech-
niques employed.

The other parts of this paper are organized as fol-
lows:

Section 2 provides a general view of the project. It
includes the experimental test bed to observe the attacks
and also a summary of usernames and passwords used
in such attacks. It also looks at the origin of these attacks
and their fingerprints on the OS. In Section 3, there is
a detailed analysis of malicious traffic which provides
insight into the methods and tools used by attackers.
Section 4, gives recommendations about commonly
used defenses against brute-force SSH attacks. Section
5 gives recommendation for future research in the same
field. (Figure 1).

2.  General View of the Project

2.1  Experimental Test Bed
SSH Honeypots were deployed in six different networks
to collect as much data as possible about actual attacks
on different network IP spaces. These six networks that
were hosting the honeypots, were completely separated
and had no explicit or logical links to inter connect
them. In addition, a different ISP was used by each net-
work (Figure 2).

The honeypots consisted of low-end PCs with CentOS
Linux operating system. Each system constantly running
two SSH services. The first service was a patched ver-
sion of Kojoney SSH honeypot version 0.0.4.2 [10] that
listened for attack traffic on TCP port 22. The second ser-
vice, was intended for maintenance and control of the
honeypots, ran the SSH server software provided with
the Linux distribution and listened on a nonstandard
high TCP port. (Figure 2)

Kojoney honeypot is written in Python [11] using the
Twisted Conch Libraries [12] and report scripts are writ-
ten in Perl [13].

We have done few modifications to the Kojoney
Software for more effectiveness which is as follows:

1.	 Add password logging function to the authentica-
tion mechanism to log the passwords used in all login
attempts.

2.	 Add user agent detection function to find out which
client software was used by attackers.

3.	 Add support for XMPP (Extensible Messaging and
Presence Protocol) [14] to create warning system that
should be able to alert the system administrator about
ongoing attack activities.

4.	 Add support of P0f as an OS fingerprinting tools.
5.	 Upgrade the IP geolocation function to provide accu-

rate information about attackers’ origination.
6.	 Upgrade shell prompt mechanism to make the system

more realistic.
7.	 In addition, a collection of scripts were written

to extract attack data from the honeypot log files
and insert them into a local database. For aggrega-

Figure 1.  SSH honeynet network.

Figure 2.  SSH honeypot in detail.

An Experimental Study of SSH Attacks by using Honeypot Decoys

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645Vol 6 (12) | December 2013 | www.indjst.org5570

tion and analysis, the local databases were regularly
synchronized with a central database server.

The source code of our modified version of SSH
honeypot is available on http://code.google.com/p/
kojoney-patch/.

We operated the honeypots from August 20th 2011
through October 6th 2011 for full 47 days. During this
period we collected ~160 MBytes raw log data’s (near
1206113 DB records), ~10 MBytes OS fingerprint data
and ~50 malware samples.

2.2  Raw Data File
A large amount of raw data is generated by honeypots.
Network security professionals use them for analysis and
investigation. This raw data has typically rich content and
high volume. On our low interaction honeypot this data
run to hundreds megabytes.

Table 1 is a simplified example of raw logged data from
our honeypot. When a piece of malware has been down-
loaded by the attackers, then this data can be extracted
from the logged file records.

Each rows of log file formats as date and time is
expressed as YYYY-MM-DD HH:MM:SS.MS, [Service
function, Session ID, Attacker IP], Log Message. The
rich records supply a large amount of alternate modes for
analysing data.

2.3  Attack Attempts
This section provides a general view of the attacks in
this research. Over the course of approximately 7 weeks,
8 honeypots were received to nearly 98,180 connection
requests which were originated from 1153 IP addresses
and 79 countries.

Across the honeypots, during each attack, a num-
ber of login attempts were observed. These ranged from
one to two to hundreds or even thousands of attempts
(Table 2). The highest number of attempts observed
during a single attack session was 8,496. This attack, origi-
nated from Poland (Warsaw).

Of the 1153 IP addresses involved in attacks across
the eight systems, on 6 honeypots only 3 addresses were
consistently observed. Similarly, on more than 50% of all
honeypots, 50 IP addresses were involved in the attacks.
177 IP addresses were observed in attacks on at least 2 hon-
eypots and 976 IP addresses were observed in attacks on
only one honeypot. Overall statistics are presented in Table
3; there is a break down data for each individual honeypot.

Table 2.  Top 10 session count

Country City Session count
Poland Warsaw 8496
United States Statesboro 4993
Panama Panama City 3898
Iran Tehran 3153
Canada Toronto 2694
United States Los Banos 2269
Indonesia Jakarta 1875
Russian Federation Yekaterinburg 1451
United States Richmond 1291
Romania Bucharest 1267

Table 3.  Overall honeypot attack activity

Connection
Successful

authentication
Failed

authentication
Source

IP

HP 1 11174 628 9575 225
HP 2 3635 196 3221 72
HP 3 27571 5019 21625 414
HP 4 20312 2654 15342 209
HP 5 11228 913 9529 205
HP 6 8710 504 7942 137
HP 7 9652 268 3248 72
HP 8 5898 264 5393 136
Total 98180 10446 75875 1153

Table 1.  Raw data from our honeypot (simplified)
2011-09-25 06:36:20.977 new connection: 61.x.x.x:45231
[session: 931]
2011-09-25 06:36:20.978 detected os: Linux 2.6 (newer, 3)
2011-09-25 06:36:20.978 detected connection: ethernet/
modem
2011-09-25 06:36:21.970 remote SSH version: SSH-2.0-
libssh-0.1
2011-09-25 06:36:21.970 kex alg,key alg: diffie-hellman-
group1-sha1 ssh-rsa
2011-09-25 06:36:23.535 root trying auth password
2011-09-25 06:36:23.631 login attempt root:sales succeeded
2011-09-25 06:36:23.831 got channel session request
2011-09-25 06:37:23.952 getting shell
2011-09-25 06:38:44.631 command is : uname -a
2011-09-25 06:39:11.551 command is : cd /var/tmp
2011-09-25 06:42:13.351 command is : wget eduteam.home.ro/
mech.gz
2011-09-25 06:44:25.151 saved the file /log/kojoney/ro_
mech_gz643 requested by the attacker.
2011-09-25 06:45:25.126 connection duration (msec): 544143
2011-09-25 06:45:25.127 remote compression type: none
2011-09-25 06:45:25.127 connection lost

Esmaeil Kheirkhah, Sayyed Mehdi Poustchi Amin, Hediyeh AmirJahanshahi Sistani and Haridas Acharya

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645 5571Vol 6 (12) | December 2013 | www.indjst.org

2.4  Login Attempts
Our SSH honeypots were configured to allow logins
from any location using common username and pass-
word combinations. Login attempts for less common
usernames were recorded even if they were unable to
successfully authenticate to the system. As expected, the
most username observed in malicious login attempts was
Linux super user privileges called root which is a well-
known account for UNIX, Linux, and BSD-based systems.
Overall, the root account was targeted in just over a 66%
of all login attempts.

The commonly targeted usernames are those often
associated with temporary accounts which were test,
guest or user. The constantly targeted accounts were the
system accounts. Table 4 presents the “Top 15” usernames
and also shows the respective percentages of total login
attempts on these usernames. Interestingly, the list of
system accounts seem to be dominated by the database
system accounts.

According to our honeypots data, passwords based on
username accounts were by far most commonly attacked.
In fact, username:password pairs that were identical (e.g.
root:root, oracle:oracle, test:test) were attempted in 19.0%
of login attempts across all honeypots. Simple varia-
tions on the username to create passwords were used in
another 5.83% of attempts. The most common variation
was to simply append “123” to the username to form the
password (e.g. mysql:mysql123). An alternate form of
the username became other variations of passwords (the
password “Leland321” used with username “Leland”).
Another common variation was to simply double or triple
the username to form the password, such as forming the
password testtest from username test.

Table 5 lists the total percentage of login attempts
along with list of passwords that where most frequently
used in attacks on our honeypots.

Passwords similar to the username discussed above,
are represented by %username%.

Near 70% of passwords used in attacks had less than
8 characters length and only 4.2% of them had more than
16 characters (Table 6). The longest password, observed
was mt13hzxwUXu8PsT6KYExvLu5zgGEpC0vtmhVjg7-
KIWknhzfCalwVinh3rqyh7Ui.

The results presented thus far correlate very well with
those of earlier studies of malicious SSH login attempts
[4, 5]. In their analysis, the studies focused on the most
frequently observed usernames and passwords. This

was a prelude to the study undertaken to comprehend
the actions taken by the attackers to gain access to high-
interaction honeypots. This research focuses on develop-
ing and evaluating recommendations for defense against
brute-force attacks.

Table 4.  Common username observed
by honeypot

Username Percentage used

Root 66.42

Test 1.27

Oracle 1.09

Admin 0.77

Nagios 0.61

User 0.48

Bin 0.44

Guest 0.40

Postgres 0.37

Mysql 0.31

Tester 0.25

Webmaster 0.20

Teamspeak 0.19

Testing 0.18

test123 0.18

Table 5.  Common password observed by honeypot

Password Percentage used
%Username% 19.0
%Username*% 5.83
123456 1.9
Password 1.0
Root 1.0
1234 0.80
12345 0.60
123 0.60
Changeme 0.59
Qwerty 0.58
Test 0.49
1q2w3e 0.45
abc123 0.44
Oracle 0.43
111111 0.40

An Experimental Study of SSH Attacks by using Honeypot Decoys

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645Vol 6 (12) | December 2013 | www.indjst.org5572

The t-test is a statistical method used to compare
group means. The independent sample t-test enables us
to compare password lengths between successful login
attempts and unsuccessful login attempts. Application
of this statistical test to data tells us that the means of
password lengths for two respective groups, successful
and unsuccessful login attempts, are 5.44 and 8.33. We
also see that the sig score is 0.000 (which is less than
0.05); therefore there is a significant difference between
the means of the successful and unsuccessful login
attempts.

While the independent sample t-test is limited to com-
paring the means of two groups, the one-way ANOVA
(Analysis of Variance) can compare more than two
groups. ANOVA uses F statistic for testing a significant
difference between group means. In this paper, Duncan
Multiple Range Test is used to identify which group dif-
fers from the others.

ANOVA for the comparison means of password
lengths between continents shows that F (495.278) is sig-
nificant (sig = 0.000 and less than 0.05) therefore there
is a significant difference between the means of pass-
word lengths within continents (Consider the successful
and unsuccessful login attempts). For the alpha = 0.05,
Duncan’s MRT (Table 7) indicated that members of Subset
4 (Attackers from North America) scored highest means
of password length. Subset 2 (Attackers from Europe and
South America) scored means of password length around
7.30 and were not significantly different from each other.
Subset 1 (Africa) has the lowest password length with the
mean of 6.32.

We also observed 339 username:password pairs were
used in attacks involving all 8 of the honeypots. As shown
in Table 8, the usage of simple usernames was found to
be common. This designed list was aimed to explore, in a
very short period, the large number of potentially vulner-
able servers.

Table 9 shows the passwords used with usernames
mentioned in Table 8.

Note: Passwords are equal by the username discussed
above has been removed.

2.5  Sources of Attacks
Geographic distance has little relevance when dealing with
hosts that are logically located on the Internet, which is
physically worldwide. Regardless of the physical location
of an attacker, the Internet makes everyone close enough
to break in and steal things. Thus it can be important to
examine the source of login attempts. Table 10 lists the

Table 6.  Password lengths

Password Llength Percentage used
<= 2 1.64
>2 AND <=4 11.59
>4 AND <=6 29.15
>6 AND <=8 27.82
>8 AND <=10 14.19
>10 AND <=14 10.0
>=16 AND <=30 3.70
>30 0.5

Table 7.  Duncan test for password length (successful
and unsuccessful attacks)

Continent N
Subset for alpha = 0.05

1 2 3 4
Africa 863 6.32
Europe 30600 7.29
South
America 3352 7.30

Asia 23569 8.31
North
America 27936 8.65

Sig. 1.000 .0931 1.000 1.000

Table 8.  Common usernames
Username

admin dev Nagios samba upload
ant ftpuser News scan user
apache git ftp staff web
backup guest Office student webmaster
bin info Operator support www
cvsroot jboss Oracle temp www-data
cyrus marketing PlcmSpIp test zabbix
daemon master Postgres teste
david mike Qwerty tester
db2inst1 mysql Root tomcat

Table 9.  Common passwords

Password
!@!@!@ 1234pass computer guestguest r00t123
!@# 1234qwer connect! hacker r00tr00t
!@#$ 123root123 Internet iloveyou root12345
#a1s2d3f4 123zxcasd Login p@$$w0rd s3arch
#asd1234 Asdasd Mario p@$$w0rd1234 s3rver
*Q*W*E*
R*T*Y*

Asdf Matrix p@ssw0rdmns setup

000000 Attack Core p@ssword t3mp
012345 Babe Default Private t3st
0123456789 ch4ng3m3 demo123 professional zaqxsw
0p3r4t0r Cocacola Foobar qweqwe zxcvbn

Esmaeil Kheirkhah, Sayyed Mehdi Poustchi Amin, Hediyeh AmirJahanshahi Sistani and Haridas Acharya

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645 5573Vol 6 (12) | December 2013 | www.indjst.org

“Top 15” countries which attacks were originated from
with their overall percentages of total attacks attempts.
As you can see, two countries in particular stand out: the
United States (U.S.) and China.

The chi-square test in contingency table (cross table)
analysis used to determine whether the variables are sta-
tistically independent or if they are associated.

Pearson chi-square sig < 0.05 interpreted that con-
tinent and login status variables are associated (95%
confidence level).

With respect to dependencies among variables and
consider to the percentage of each cell we find that,
attackers from Europe are more successful than their
competitors in other continents with 56.60% success rate
(Figure 3). Although, only 19.30% of all attacks originate
from Europe was a success (Figure 4).

What we can gain from the geographic data is the
ability to report the remote IP addresses of those who
accessed the honeypot to the proper individuals who can
fix the compromised hosts. Knowing where the system is
physically located can provide a route for resolving the
problem for those countries that have country-level com-
puter response teams to handle network security issues
within their jurisdictions [17].

2.6  OS used in Attacks
Any Operating System can be used for attacks. Linux
may be slightly more prone because, here, the micro-
kernel approach is implemented differently from the
micro-kernel of the windows OS. In Linux, the very basic
functionalities are in the micro-kernel while most of the
functionalities (including hardware and port access) are
deployed in a kernel that is controllable in the user space.
So, it provides more freedom to intercepting network
connections. Other OS like Windows give only restricted
access and also support much more identification over
the network [18].

For our SSH honeypots, more than 82% of connec-
tions were established from a Linux system and only 3%
was from Windows machine. Table 11 presents the “OS
used” in attacks, along with their respective percentages.

Factorial Analysis of Variance (FANOVA) tested the
effects of the OS used in attacks and the continents where
attacks are originated from the length of password used
in attacks.

Figure 3.  Login attempt stat by continent.

Figure 4.  Login attempt stat within continent.

Table 10.  Source of attacks

Country Frequency
United States 17.9
China 10.0
Poland 9.1
Canada 6.6
Argentina 6.1
Panama 4.1
Russian Federation 4.1
Germany 4.0
Iran 3.9
India 3.9
Romania 3.0
Thailand 2.8
Korea, Republic of 2.7
United Kingdom 2.5
Indonesia 2.5
Others (65 countries) 16.8

Table 11.  OS used in attacks

OS Percent
Linux 82.4
Unknown 14.4
Windows 3.2
FreeBSD .0

An Experimental Study of SSH Attacks by using Honeypot Decoys

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645Vol 6 (12) | December 2013 | www.indjst.org5574

Results indicated a significant main effect for the OS
factor, F(2,86305) = 9.774, sig < 0.01. As hypothesized,
those who used Linux OS in attacks used longer pass-
words (M = 8.07) compared to those who did not. There
was also a significant main effect for the continent for
which attacks originated from, F(4,86305) = 16.062 , sig
< 0.01. Attackers from North America used longer pass-
words to breaking into the systems (M = 8.65) than those
from Africa (M = 6.32).

The two main effects, OS and Continent, were quali-
fied, however, by a significant interaction between the
two factors, F(8,86305) = 35.573, sig < 0.01, indicating
that the OS effects were not the same for different con-
tinents. Figure 5 shows the estimated marginal means of
password length.

2.7  User Agents used in Attacks
A user agent is an SSH client software which uses the
secure shell protocol to connect to a remote computer.

More than 99% of connections to SSH honeynet were
established by using libssh. Libssh is a multiplatform C
library implementing the SSHv2 and SSHv1 protocol
on client and server side. With libssh, you can remotely
execute programs, transfer files, and use a secure and
transparent tunnel for your remote applications [19].
Table 12 presents the “User agents used” by attackers,
along with their respective percentages.

3. Activities Inside the Honeypot
In this section, a deeper look into the activities was done.
The different kinds of commands used by attackers on the
honeypot were examined and some interesting malware
was collected further discussion.

3.1  Attacker’s Favourite Commands
After a user logged in, he or she entered in an emulated
environment that allowed observation of all actions that
the user attempted after the successful login. In general,
users attempted to gain knowledge about the server–such
as the processes running on the system and the version
of the operating system–and could download files that
allowed them to increase their system privileges or run
software such as an IRC network bouncer. These shell ses-
sions were of three categories:

•	 The first category were those intruders who left imme-
diately after they had logged in, probably with the
intension to return later or assuming that the server
they wanted does not exist or is not available.

•	 The next category were intruders who run some basic
fingerprinting command on the server, using w,/proc/
cpuinfo, uptime and uname - a to figure out the basics
of the server. Most hackers also used wget to download
a large file to test the download rate of the server. This
trend was more common in the Windows 2000 SP3.
Probably this could be because it’s a large file which is
hosted by a fast server (Microsoft) and also because it
is still a hotlink.

•	 The last category of these users was those some finger-
printing and proceeded to download and run malware.
After the execution has been intercepted, some bogus
error messages surfaced and the intruders were usu-
ally force to disconnect.

Figure 5.  Estimated marginal means of password length.

Table 12.  User agents used in attacks

User Agents Percent
SSH-2.0-libssh-0.1 85.3
SSH-2.0-libssh-0.2 10.3
SSH-2.0-libssh2_1.0 3.3
SSH-2.0-dropbear_0.47 .4
SSH-2.0-libssh-0.11 .4
SSH-2.0-dropbear_0.49 .1
SSH-2.0-PuTTY_Release_0.60 .1
Others .1

Esmaeil Kheirkhah, Sayyed Mehdi Poustchi Amin, Hediyeh AmirJahanshahi Sistani and Haridas Acharya

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645 5575Vol 6 (12) | December 2013 | www.indjst.org

Table 13 presents the most commands observed, along
with their respective percentages of total commands.

3.2  Malware Collected
Some significant challenges for investigation and defense
of malware come from an elusive type of malware called
Kernel Rootkits. The most notable are Persistent Kernel
Rootkits. This is a special type of kernel rootkits that
implant persistent kernel hooks to tamper with the kernel
execution paths and allow them to hide their presence.

By design, rootkits attempt to hide their presence
from all rootkit detection software. This includes various
system utility programs (e.g., ps and ls) that manipulate
OS kernel control-flows. The persistent kernel rootkits, by
their nature implant kernel hooks on corresponding ker-
nel-side execution paths to invoke the security programs.

US-CERT in 2008 confirmed that attackers are actively
targeting Linux-based computing infrastructures, using
stolen SSH keys to gain access to systems and install a
rootkit known as “phalanx2”. The rootkit itself isn’t using
kernel bug or an SSH flaw but CERT issued an advisory
because it might happen. Fortunately, our proposed hon-
eypot system doesn’t allow such activity in first place
because of the nature of low-interaction honeypot; our
proposed system is completely immune against rootkits
such as Phalanx2 and Adore. We have to note that this
behavior is not the system limitation rather they have
been designed to work this way.

Although, The purpose of SSH honeypots is not col-
lecting malicious software (malware)–like what we can do
with Nepenthes [20]–but collecting and analyzing them
at the early stages may allow us to deal with them before
they spreads massively and causes severe damage. Table
14 presents the most common malware observed.

After analyzing these malwares and our honeypots
logs, one observes that:

•	 There has been multiple repacking and rewriting of
the malware. Most of the tools were outdated and con-
tained leftover files from previous installations.

•	 The main reasons for hacking a server seems to be:

	 i.	� Installing tools to hack more servers. e.g. WuScan,
Unixcod, BBDoS

ii.	 Installing hidden web servers.
iii.		� Installing IRC daemons or bouncers. e.g.

psyBNC

	 iv.	 Installing IRC bots. e.g. ZmEu, Shellbot

•	 and it is a surprise that no attempt to nuke the system
was carried out by any of the intruders.

•	 Some intruders realized that a honeypot was in place
by taunting the system with fake error messages.

•	 By appearances, the intruders seem to follow a kind of
memorized script. They used the same tools and same

Table 13.  Commands used inside honeypot
Commands Percent
W 13.61
uname–a 9.47
Wget 5.68
Id 5.56
Ls 5.44
cat/proc/cpuinfo 5.44
Uptime 3.91
ps x 2.13
ls–a 2.01
Passwd 1.89
Whoami 0.59
Halt 0.12
Help 0.12
History 0.12
Netstat 0.12
php–v 0.12
Ifconfig 0.12

Table 14.  Malware collected by honeypots
Malware Detected as

ZmEu Mal/Behav-183
wunderbar_emporium None!
psyBNC_2_3_2_7 IRC-Bouncer
SynScan HackTool.Linux.Small.af
Checkmech IRC bot
Unixcod Los Banos
udp Perl/BBDoS.MN!tr
Ferry.tgz Linux/Rst.B
vicssh Linux/CleanLog.H
alexe Unix.Mech.g
canim Backdoor.Perl.Shellbot.a
goshNEW HackTool.Linux.WuScan.b
coffe Linux/ProcHider.C
blackenergy Spyware.Unix.Mech.A
cobrel Exploit.Linux.Small.f
Pinky Exploit.Linux.Local.h
Solid Backdoor.Perl.Shellbot.B

An Experimental Study of SSH Attacks by using Honeypot Decoys

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645Vol 6 (12) | December 2013 | www.indjst.org5576

mode of fingerprinting in most of their attempts and
executions. This brings in the question of the existence
of a “SSH hacking school” in cyberspace or in more
concise terms a “hacking tutorial” on a forum which
doles out commands for execution of hacking.

From a malware perspective, currently the vast
majority of existing malware in the wild, targets 32-bit
platforms. Many of these older platforms are consumer
machines that are poorly patched, and they make an
easy target for botnet candidates. Attackers generally
go for low-hanging fruit, so it makes sense for them to
continue targeting 32-bit platforms rather than expend
time and energy trying to defeat the more power-
ful security defences of 64-bit platforms. For example,
researches show that 64-bit ASLR (Address Space Layout
Randomization) is a strong protection against brute force
attacks (buffer overrun attacks) and most of the working
brute force exploits for a x86 architecture will not succeed
on a x64 machine [21, 22].

3.3  Bots Involved
By going deep into the downloaded malwares, we revealed
bunch of bot nets (channels, username, password and
etc). Most of bots hosted on undernet.org (Table 15).

Table 16 lists the discovered bot channels.

4.  Conclusions and
Recommendations
It is common wisdom that Linux is superior to Windows
with regard to security issues. With the growing

popularity of open source software for the consumer
(Android phones) and the enterprises (Linux runs the
10 fastest supercomputers in the world, according to
Wikipedia); it’s time to push past the reluctance and look
at safety issues in a holistic manner.

“Linux has been more widely deployed, which has
certainly made it a bigger target to hackers in general,”
said Charlie Belmer, founder and CEO of security vendor
Golem Technologies. But in terms of overall security it is
still far superior to Windows.

The greatest advantage with regard to security for
Linux rest with its huge, highly-skilled and diligent
open source community”. The open source nature of
Linux allows for more peer review of the code to find
and fix the code before zero day hacks can be done,”
said Williams. However, this does not make Linux
invulnerable. It faces increasing threats as it gains in
popularity though, it has only limited set of security
solutions available to it. The number of vulnerabili-
ties that require patching has been growing at a fast
pace too [23].

Linux faces greatest threats due to social engineering
and poorly configured systems. Like Windows, passwords
are a serious liability to Linux.

In light of the insights gained from our research, it
is now possible after collecting and analyzing a large
amount of data from our honeypots, to offer a variety

Table 15.  Server used by bots
208.83.20.130 SantaAna.CA.US.

Undernet.org
ced.dal.net

94.125.182.255 Vancouver.BC.CA.
Undernet.org

twisted.dal.net

Tampa.fl.us.
undernet.org

ede.nl.eu.undernet.
org

irc.emory.edu

Budapest.hu.eu.
undernet.org

193.109.122.67 irc.gigabell.de

bucharest.ro.eu.
undernet.org

66.186.59.50 irc.solidstreaming.
net

195.197.175.21 irc.plur.net irc.homelien.no
195.144.12.5 irc.concentric.net irc.powersurfr.com
82.76.255.62 irc.du.se irc.mcs.net
us.undernet.org irc.psychoid.net irc.mindspring.com

Table 16.  Bot channels and operators discovered

Channels Operators

#op_op
#muieall
#system
#moarte
#!@##@!
#@r@d
#FCU
#FreeWay
#kRs-oNe

!@koffe.users.undernet.org
!@GTI.users.undernet.org
!@shortty.users.undernet.org
-psyBNC!psyBNC@lam3rz.de
-Ryo-psyBNC!Ryo-Psybnc@
Anakbodoh.com
!@Sinai.users.undernet.org
!@bLaCkEnErGy.users.undernet.org
!@axelinho.users.undernet.org
**!*@Bummer.users.undernet.org
!@sp00f3d.users.undernet.org
!@n2u.users.undernet.org
!@sinned.users.undernet.org
!@Winder.users.undernet.org
!@haihui.users.undernet.org
!@Pimpologyst.users.undernet.org
!@ZmEu.users.undernet.org
!@newbies.users.undernet.org
!@ZmEu.WhiteHat.ro
!@Costi.users.undernet.org

Esmaeil Kheirkhah, Sayyed Mehdi Poustchi Amin, Hediyeh AmirJahanshahi Sistani and Haridas Acharya

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645 5577Vol 6 (12) | December 2013 | www.indjst.org

Table 17.  Suggestion and recommendation ordered by priority/effectiveness

Order Suggestion Description

1 Turning off the daemon service There is likely no need for remote access via SSH if the computer system
is a client machine and not a server [16].

2 Install a firewall To restrict access to the SSH server from only authorized machines and
networks [16].

3 Use the hosts.allow and hosts.deny To restrict daemon access to specific hosts [16].

4 Restrain the SSH server to only
authenticate particular users or groups

To restrict access to the SSH server from only authorized users and
groups [16].

5 Use port knocking mechanism Port knocking is a method of establishing a connection to a networked
computer that has no open ports [24].

6 Use an alternate authentication methods PublicKey and GSS-API

7 Implement One Time Password
mechanism (OTP) or Single Packet
Authorization (SPA)

SPA is essentially next generation port knocking, where only a single
“knock” is needed, consisting of an encrypted packet.
The one-time password system ensures that a password can’t be reused.
So, even if the password is captured in transit, it’s worthless to an attacker
once you’ve logged in with it [26].

8 Move the listening port It will significantly reduce the likelihood of finding your SSH daemon
[16].

9 Use intrusion detection/prevention
systems

Through protocol analysis, content searching, and various pre-
processors, Intrusion Detection System detects thousands of worms,
vulnerability exploit attempts, port scans, and other suspicious behavior

10 Use ECC and RSA cryptographic
algorithm for generating SSH keys

Elliptic Curve Cryptography (ECC) is proving to be a very secure, robust
and light crypto algorithm [25].
RSA key size 1024 bits ~ NIST ECC key size 192 bits
RSA key size 2048 bits ~ NIST ECC key size 224 bits
RSA key size 3072 bits ~ NIST ECC key size 256 bits

11 Don’t use a blank passphrase on your keys If your keys are not protected by passphrases, then after scouring your
shell history, or SSH config for hosts to connect to, they’re in the SSH
server with little effort [16].

12 Expiring and regenerating SSH keys
periodically

The biggest reason to change your private key is if you have a reason to
suspect it has been compromised or is no longer secure.

13 Limit the number of clients you SSH from If an attacker can compromise your client, then they can get access to
your SSH keys, as they are stored on the file system.

14 Use network level monitoring and security
tools

Monitor log files - Remote Logging

that transparently perform password checking as users
change their passwords on Unix-based systems. Based on
our findings, we can offer passwords list to those projects.
We would like to continue to provide updates to collected
information on a monthly, weekly, daily basis and even
in real-time.

of evaluated mitigation techniques. Table 17 lists some
common recommendation for the protection of SSH serv-
ers. The study data can also provide additional defense
strategies. Furthermore, many projects focus upon check-
ing the strength of passwords too. Both cracklib [27] and
OpenWall’s pam_passwdqc [28] provide helper tools

An Experimental Study of SSH Attacks by using Honeypot Decoys

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645Vol 6 (12) | December 2013 | www.indjst.org5578

5.  Future Work
Currently, work on developing more effective set of soft-
ware tools that could support automatic consolidation
and analysis of honeypot data at a central server is on. It
could also readily support a variety of analysis activities
that help collect and aggregate username:password pair
data, as well as highlight the specific kinds of intruder
activities. These can be designed to lower the volume of
brute-force SSH attacks. In future, it is also possible to
envision a centralized database of username:password
pairs commonly used in malicious login attempts. These
can be similar to the central DenyHosts [15] database of
malicious IP addresses.

6. Acknowledgement
The authors are highly grateful to the Mashhad Branch,
Islamic Azad University, Iran, for giving all types of sup-
port in conducting this research. This paper is based upon
the information available in the project entitled “Design
and Deployment of Honeynet for Analysis of Internet
Attacks in Islamic Azad University, Mashhad Branch”
with project number 90351/409/13.

 The authors are sincerely grateful to the anonymous
reviewer(s) who helped to improve the quality of this
paper.

7.  References
  1.	� Spitzner L (2002). Honeypots, tracking the hackers.

Available from: http://www.tracking-hackers.com
  2.	� Scottberg B, Yurcik W et al. (2002). Internet honeypots: pro-

tection or entrapment, In IEEE International Symposium
on Technology and Society (ISTAS), 387–391.

  3.	� Lonvick C (2006). The Secure Shell (SSH) protocol archi-
tecture, IETF RFC 4251. Available from: http://www.ietf.
org/rfc/rfc4251.txt

  4.	� Ramsbrock D, Berthier R et al. (2007). Profiling attacker
behavior following SSH Compromises, Proceedings of
the 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, 119–124.

  5.	� Seifert C (2006). Analyzing malicious SSH login
attempts. Available from: http://www.securityfocus.com/
infocus/1876

  6.	� Alata E, Nicomette V et al. (2006). Lessons learned
from the deployment of a high-interaction honeypot,
In Proceedings of Dependable Computing Conference
(EDCC06), 39–46.

  7.	� SANS Institute (2007). SANS Top-20 2007 Security Risks
(2007 Annual Update). Available from: http://www.sans.
org/top20/2007/

  8.	� Kojoney Project (2011). Available from: http://kojoney.
sourceforge.net

  9.	� The new P0f (2011). Available from: http://lcamtuf.
coredump.cx/p0f.shtml

10.	� Kojoney-patch (2011). Available from: http://code.google.
com/p/kojoney-patch

11.	� Python (2011). Available from: http://www.python.org
12.	� Event-driven networking engine written in Python (2011).

Available from: http://twistedmatrix.com
13.	 Perl (2011). Available from: http://www.perl.org
14.	� The XMPP Standards Foundation (2011). Available from:

http://xmpp.org
15.	� Welcome to DenyHosts (2011). Available from: http://

denyhosts.sourceforge.net
16.	� Toponce A (2011). OpenSSH best practices. Available

from: http://pthree.org/2011/07/22/openssh-best-practice
17.	� Observations of login activity in an SSH honeypot (2011).

Available from: http://www.cisco.com/web/about/security/
intelligence/ssh-security.html

18.	� Most of the hackers use Linux (2011). Available from:
http://www.mylot.com/w/discussions/2101732.aspx

19.	� Libssh - the SSH library (2011). Available from: http://
www.libssh.org

20.	� Nepenthes–finest collection (2011). Available from: http://
nepenthes.carnivore.it

21.	� Ormandy T, and Tinnes J (2009). Linux ASLR curiosities.
Available from: http://www.cr0.org/paper/to-jt-linux-alsr-
leak.pdf

22.	� Shacham H, and Page M (2004). On the effectiveness of
address-space randomization, CCS’04 Proceedings of the
11th ACM conference on Computer and Communications
Security, 298–307.

23.	� Baker P (2011). Is linux really more secure than windows?
Available from: http://www.esecurityplanet.com/trends/
article.php/3933491/Is-Linux-Really-More-Secure-than-
Windows.htm

24.	� Krzywinski M (2003). Port knocking: network authentica-
tion across closed ports, SysAdmin Magazine, vol 12(6),
12–170.

25.	� Rogers P, and Hering R (2011). RACF and digital cer-
tificates. Security Server RACF Security Administrator's
Guide, 14th Edn., IBM Redbooks, USA, 571–631.

26.	� Single Packet Authorization with Fwknop (2005]). Available
from: www.cipherdyne.org/fwknop/docs/SPA.html

27.	� CrackLib (2008). Available from: http://sourceforge.net/
projects/cracklib

28.	� Password/passphrase strength checking and enforcement
(2010). Available from: http://www.openwall.com/passwdqc

