
Estimation and Evaluation of Change in
Software Quality at a Particular Stage of

Software Development
Ekbal Rashid1*, Srikanta Patnayak2 and Vandana Bhattacherjee3

1 Department of CS & E, CIT Tatisilwai, Ranchi,Jharkhand, India; ekbalrashid2004@yahoo.com
2 Department of CS & E, SOA University, Bhubaneswar, Orissa, India; Patnaik_srikanta@yahoo.com

3 Department of CS & E, B.I.T. Mesra, Ranchi, Jharkhand, India; vbhattacherjee@ieee.org

Abstract
This paper suggests a method of comparing the actual rate of software development with the projected or targeted rate. A
working function may be devised from past experiences and results that would give the projected or the expected rate of
software development. Then using the methods given here, the actual rate of software development can be calculated at a
particular stage of work and the required comparisons can be made. On the basis of the results of comparisons made in this
manner, decisions can be taken to improve the quality by increasing the quantity or quality of manpower in order to achieve
the quality target within the stipulated time. In order to obtain the graphical representation of data, we have used Microsoft
office 2007 graphical chart. Which facilitate easy simulation of change in software quality at a particular stage of software
development.

*Corresponding author:
Ekbal Rashid (ekbalrashid2004@yahoo.com)

Indian Journal of Science and Technology

1.  Introduction

It is very common to see large projects being undertaken
nowadays. The software being developed in such projects
go through many phases of development and can be very
complicated in terms of quality assessment. There will
always be a concern for proper quality and effective cost
estimation of such software. This can be rather tricky as
the project being a large one may cover several unknown
and unseen factors that might previously be very difficult
to judge. The pertinent question here is how can we judge
in case of such a large project whether the progress that is
being made at a particular stage of software development is
really up to the mark. How can we be assured that the rate
of development of quality of the software at a particular
stage is actually satisfactory enough? This analysis becomes

more important because there is every possibility of
losing out in the midst of development work without
proper scientific planning and evaluation methods. It may
so happen that the subjective understanding of the progress
in development may lead to unexpected results. This will
surely affect the ultimate cost and quality of the software.
At the same time one can easily understand that the result
of the efforts may be totally disastrous. More the scientific
approach in this regard, better is the possibility of achieving
expected results. It would be best if a proper mathematical
model is available to assess and compare the rate of devel-
opment of software at a particular stage of development.
With properly defined steps and methods, it would be easy
to draw correct and objective conclusions. In this method
subjective analysis will be replaced by proper scientific
assessment. This paper suggests proper the steps and the

Keywords: Project Development Time, Software Development, Accelerated and Retarded Variation.

Ekbal Rashid, Srikanta Patnayak and Vandana Bhattacherjee 5371

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (10) | October 2013

proper methods to be followed for this kind of activity. The
novelty in this approach is the use of differential calculus
to obtain the correct quantitative analysis. The quantitative
analysis itself is a form of qualitative analysis with the help
of which proper decisions may be taken to make up for any
losses or lacunas in the development work. Simultaneously
there may also be the possibility of over usage of resources,
that is, resources that are being used, but, are not really
required. Due to lack of understanding about the correct
rate of development at various stages, organizations may
tend to over use their resources, when then could do with
lesser options. The assessment of quality at different stages
with the help of the methods given in this paper and their
proper records would create an important statistical knowl-
edge base which would result in better understanding of
the life cycle of any typical software type. Division of work
and allocating the number of workers per module will be
more easier than before.

The rest of the paper is organized as follows: section 2
gives brief overview of the various related work, section 3
describes the significance, section 4 describes the meth-
odology. In section 5 we describe the change in quality
in detail, Section 6 presents the accelerated and retarded
variation as a results and conclusion has been presented in
section 7.

2.  Related Work and Motivation
There are already several well defined attributes for quality
testing. The most prominent among them are: auditability,
compatibility, completeness, consistency, correctness, feasi-
bility, modularity, predictability, robustness, structuredness,
testability, traceability, understandability, verifiability, etc.
Some of the well defined metrics to be measured in dif-
ferent stages of software development are defect metrics
and maintainability metrics. The intrinsic product quality
is generally measured by identifying the number of ‘bugs’
in the software or by measuring how long the software can
run before encountering a ‘crash’. In operational definitions
the two are termed as defect density rate and the mean time
to failure (MTTF). The two metrics are correlated but are
different enough to merit close attention. First, one mea-
sures the time between failures, the other measures the
defects relative to the software size (lines of code, function
points, etc.) [1]. This brings back the discussion on the dif-
ferences between the terms error, fault, defect and failure.
According to the IEEE/ ANSI standard:

An error is a human mistake that results in incorrect
software.

The resulting fault is an accidental condition that causes
a unit of the system to fail to function as required.

A defect is an anomaly in a product.
A failure occurs when a functional unit of a software-

related system can no longer perform its required function
or cannot perform it within specified limits [2].

However as pointed out by noted authorities on the
subject, there is not much difference to be made between
fault and defect and one can observe that these terms are
used interchangeably in the industry. Over and above it has
been felt that the terms defect or fault may be used with the
end product while the term error may be used during the
development process. This means that the term error refers
to the mistake made by the developer and may be consid-
ered to be unintended or accidental. On the contrary, the
terms defect or fault may refer to some anomaly or inad-
equacy in the entire software itself which points towards
the fact that the designer was unable to foresee potential
problems in advance.

So the term defect density deals with the end product
and so does the term MTTF. However there should be a
term to determine the quality at each stage of develop-
ment of the software. In such cases there can be a term
used often called code quality which is normally referred
to as the ratio of the number of lines of code to the number
of defects in the program. When there is a mention about
using the number of lines of code, it becomes incumbent
to mention the different viewpoints regarding the issue of
counting lines of code or LOC as it is abbreviated.

The following can be taken as an authoritative defini-
tion of LOC:

“A line of code is any line of program text that is not
a comment or blank line, regardless of the number of
statements or fragments of statements on the line. This
specifically includes all lines containing program head-
ers, declarations, and executable and non-executable
statements” [3]. This was the definition from Conte. Now
another established authority on the subject, Bohem says
the LOC counting method counts lines as physical lines
and includes executable lines, data definitions, and com-
ments [4]. There is also the issue of counting the physical
and the logical LOC. It is widely opined that the counting
of logical LOC is a better choice for quality data. However
there are several problems in this field as programming is
done in different languages and so it is difficult to strike

Estimation and Evaluation of Change in Software Quality at a Particular Stage of Software Development5372

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (10) | October 2013

uniformity. While assembly language may need much
more lines of code as compared to high level languages,
an OOL may have total different paradigms for coding
as compared to structured programming language. There
is the idea of converting the code into equivalent lines of
assembly code. For this the LOC counted on the basis of
some agreed standard is multiplied with some coefficient
or some ratio to get the normalized value. For this purpose
the table of conversion values published by Jones in 1986
is the most popular in industry today. In addition to this
there may be other standards that can be adopted by differ-
ent organizations from time to time. Whatever be the set of
standards adopted, it is necessary to specify them and then
do the remaining calculation. Rashid et. al emphasized on
the importance of software quality estimation [5]. In [6]
Rashid et. al has given Enhancing the accuracy of case-
based estimation model through Early Prediction of Error
Patterns.

3.  Significance
The significance of this study is manifold. The following
can be shortlisted as some important points:

I.	 The greatest problem faced by analysts while dealing
with lines of code is that they are not able to compare
the coding done in different programming languages.
Once a common parameter or coefficient is set, and
the code from any programming language can be con-
verted into its assembly equivalent or into any other
form that can make it comparable to code of other lan-
guages in any standard form, the problem faced with
the issue of LOC becomes solved. This will make the
work of analysis straightforward and may remove the
different complicacies involved in the process.

II.	 The improvement of code quality with respect to
the time given for development work is yet another
parameter which, if assessed and measured correctly
can not only decide the proper cost of the software but
also ascertain the value of the developer. Besides as the
development work progresses, if we are able to deter-
mine the rate of improvement of code quality, then we
can also have an alternative assessment of the quality
of the final product. This will be a novel idea in the
realm of software engineering.

III.	 The introduction of a new attribute of software qual-
ity can help one understand the software better. After

all what is the significance of any quality attribute?.
The significance lies in the fact that more the num-
ber of attributes, the better we can understand the
issue. Hence it is better to introduce more attributes
so that the issue of software quality can be understood
meticulously and with greater effect. Here it also needs
mention that a new attribute can bring into effect
understanding of newer terms which on the whole can
enrich the literature of the subject.

IV.	 As already mentioned earlier, when we are assessing the
quality of both the development phase of the software
as well as the quality of the end product, we are estab-
lishing a dialectical relationship between the two. For it
becomes very obvious that if the rate of improvement
of the software is higher, the end product has to be of
a much higher quality. Conversely, if the quality of the
end product is high, it means that the rate of improve-
ment of the quality of the software must have been
quite significant. So goes the dialectical relationship.

V.	 So this work is significant not only because it intro-
duces additional methods for the quality assessment
of the end product, but it is also important because
while trying to calculate the rate of improvement of
code quality with respect to development time, we can
predict the quality of the end product at any particular
stage of software development. This means that we are
working towards a specific goal in terms of achieving
the software quality. The assessment of the end product
must not vary in great detail from the prediction made
in this manner. This is totally a new concept in the field
of software engineering.

Looking from the other way, once we have a final prod-
uct we can also guess what should be the improvement rate
of the software product at any particular stage given the fact
as it is also mentioned in point 4 that the two are related
dialectically to each other and as mentioned in point 5, we
can go with the bottom up approach, and software develop-
ment like all other natural laws loves symmetry, implying
that when we can go bottom up, we can also have a top to
down approach with things.

4.  Methodology
As software develops from an initial stage to higher stages,
it undergoes several changes. A proper planning can take
it to improved levels and higher quality. However this

Ekbal Rashid, Srikanta Patnayak and Vandana Bhattacherjee 5373

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (10) | October 2013

continuous improvement of quality and standard can-
not be achieved without a conscious and diligent effort.
Moreover hard work and pious wishes cannot bring about
the improvement of quality. This has brought about the the-
ories of software engineering and has largely transformed a
practice that was much more like an art to an activity that
has closer relationship towards scientific methodology. This
has brought about the recepies needed to bring out the prod-
uct in right time and with the right quality. Although many
methods and means already exist and continuous research
is available in this field, things are not such that we have
had enough and that in spite of all the knowledge in this
domain things are not in wanting.

Rather more the amount of research being perfor-
med in this area, more are things getting better, clearer
and precise. This rightly reflects the philosophical fact that
truth is indeed concrete, particular and precise. Therefore
this paper has also worked upon the different phases of
software development in order to ascertain the improve-
ment of quality at each level of development.

This means that during the development of the soft-
ware, we need to be sure that the software being developed
is actually going in the right direction. And this determi-
nation must not be based on just subjective formulations
but on objective figures and facts. It has to be established
on specific models and metrics. There should be measured
parameters that can serve as indicators of growth or decay.
These are the factors that need to be defined, understood,
and established with a view to achieving the required goal.

With this objective of studying and estimating the
improvement of quality of software during the develop-
ment phase the following are some of the different terms
and definitions related to the same:

LOC: The lines of code continue to be the determining
metric in most of the quality and cost measurement. Now
the method in which the LOC count has to be taken is also
not yet standardized. However if we assume, for the sake of
simplicity, that a standardization has been achieved, then
on the basis of those set standards, after taking the LOC
count, we can normalize the same as below:

Let the number of coded lines in assembly language be n.
Let the number of coded lines in any particular lan-

guage be N. Now it is obvious that more the number of
coded lines in any particular high level language, more will
be the number of coded lines for the corresponding pro-
gram in assembly. Hence we can say that,

n α N

Meaning that as the number of lines in the assembly
level language is directly proportional to the number of
lines in the concerned high level language.

Now let the standard coefficient for the particular high
level language be k.

This coefficient will be the one decided according to the
IEEE/ANSI standard. Then the final normalized equivalent
lines of code in the assembly will be given by:

n = kN
where n now denotes the normalized value of the

equivalent lines of code in the assembly language. Now this
normalized value for the number of lines of code can be
used to calculate the cost of the software or the quality of
the software as required.

This standard LOC count after being normalized serves
as the primary metric.

Development time: The development time can also
be a confusing factor. With experienced personnel, the
development time is sure to be on the lower side. However
if the staff is not equipped enough, we are going to have
a prolonged development time with respect to any par-
ticular work. The development time can be calculated
on the basis of man hours, or working days or months.
This largely depends upon the nature of the organization
and the type of software being developed. At this junc-
ture we can only say that lesser the unit of development
time, greater is the accuracy of estimation of the quality
of product.

Errors: The number of errors is also dependent on the
person or the team of persons developing the software. If
the developers are experienced there are lesser chances of
errors. There may be exceptions to this. However this is
the normal trend. Similarly the errors may increase if the
staff is relatively inexperienced. Moreover there is also the
issue of debugging. It becomes very difficult to debug the
software if the staff is not experienced. On the other hand
experienced and skilled developers can debug programs
more efficiently.

This takes us towards the calculation of the rate of
change of software quality. The rate of change of software
quality can be calculated in two ways: With respect to time
and With respect to LOC.

The rate of change of software quality with respect to
time can be defined as the following:

The average change rate in software quality with respect
to time is the change in the software quality per unit devel-
opment time.

Estimation and Evaluation of Change in Software Quality at a Particular Stage of Software Development5374

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (10) | October 2013

Let the initial software quality be qi and the final
software quality be qf . Then the change in software quality
becomes qf - qi.

The rate of change of software quality with respect to
LOC can be defined as the following:

The average change rate in software quality with respect
to LOC is the change in the software quality per line of
code where the total lines of code have been taken in the
normalized form.

Both these concepts are further mathematically formu-
lated in the next section.

5.  The Variation
In the previous section the concept of average rate of
change of quality with respect to time and LOC has been
explained. Since this parameter is expected to play a piv-
otal role in the estimation of software quality, it becomes
incumbent to associate a name to it. The name that seems
to be fit for the concept is variation.

The average rate of change of software quality can be
termed as average variation of software. From the previous
chapter itself we can reformulate as under:

1.	 With respect to development time:

 Average Variation =
q q

f i

development time

−

2.	 With respect to LOC:

 Average Variation =
q q
L L

f i

f i

−
−

Where the symbols have the following meanings:

qf = final quality
qi = initial quality
Lf = final normalized LOC
Li = initial normalized LOC

When we think in terms of the software quality, the
average variation geometrically represents the slope of the
secant joining two points in the graph of quality versus time.
The graph in Figure 1 is the case of particular software with
some imaginary data showing how an increase in quality of
software looks geometrically when plotted against time.

Now when we calculate the average variation between
two stages of development of the software, namely P and
Q, what we get is the slope of the line PQ. The line PQ is
shown in Figure 2. It joins the points P and Q of the graph.
This forms the basis on which the concept of instantaneous
variation is to be developed. Here it needs to be noted that
this average variation is between time 3 unit to 7 unit. Had
the development been as calculated in the average varia-
tion, it would have reached the same level in the particular
stage Q.

However it becomes more useful if an instantaneous
rate is calculated. That actually enables the developer or
anyone concerned to understand whether the software is
being developed in the right direction and in proper pace
at any particular stage, both from the viewpoint of time
and also from the viewpoint of LOC. We have seen earlier
that the average rate of change of software quality can be
termed as average variation of software. On the either hand,
the instantaneous rate of change of software quality can be
termed as instantaneous variation or simply variation.

Now let us calculate the instantaneous variation at
a particular stage, say time = 5 units. This can be done
by calculating the average variation over different time

Figure 1.  Graph of quality versus time. Figure 2.  Graph of quality versus time.

Ekbal Rashid, Srikanta Patnayak and Vandana Bhattacherjee 5375

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (10) | October 2013

periods and gradually reducing the time intervals in such
a way that it nearly becomes zero at the stage of time = 5
units. This is shown in Figure 3.

It can be easily seen in the graph that the time inter-
val is gradually being reduced towards the point at which
we are going to calculate the instantaneous variation. At
each interval the slope of the line joining the two points
on the curve gives the average variation in that interval. In
the above figure, the slopes of corresponding lines give the
average variation between P1Q1 and P2Q2 respectively. Now
as the time interval becomes vanishingly small at the stage
where time = 5 units, the secant becomes a tangent and
then the average variation at that point becomes the slope
of the tangent at that point of the curve. This average varia-
tion given by the slope of the tangent at that point is the
instantaneous variation at that particular stage of software
development. This is shown in Figure 4.

This means the calculation of instantaneous variation at
any particular stage of software development is simply the
calculation of the slope of the tangent to the quality versus
development time curve at that particular stage. From dif-
ferential calculus we know that the slope of any tangent to a
curve at a particular point is given by the first derivative of
the function representing the curve at that particular point.
Thus we can state the following expression for instanta-
neous variation or simple variation:

		 []
dq
dt

t = x=variation x






where, [variation]x stands for variation at x.
As mentioned earlier, the quality can always be expressed

as a function of development time. The function may vary
from software to software and even from one organiza-
tion to another. Each organization will be having its own
set of attributes and methods to ascertain the relationship

between the quality and the development time of the soft-
ware. However once this relation between the development
time and quality is established, we can go forward to simply
finding the derivative at a particular point in time to get the
expected instantaneous variation at that particular stage.

Likewise we can also calculate the instantaneous variation
with respect to the LOC. Only in this case we have to express
quality as a function of the LOC. The graph of quality versus
LOC has LOC count on the horizontal axis. The tangent to
the curve at a particular value of LOC count gives the corre-
sponding variation. The related graph will look much similar
to the earlier graph. Figure 5 illustrates the point. This is the
graph of quality versus LOC. The curvature of the graph is
different and it will be explained in the next chapter.

Figure 4.  Graph of quality versus time.

Figure 3.  Graph of quality versus time.

Figure 5.  Graph of quality versus LOC.

Estimation and Evaluation of Change in Software Quality at a Particular Stage of Software Development5376

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (10) | October 2013

We can see in Figure 6 that PQ will give us the average
variation between the intervals of LOC = 500 to LOC =
3500. The slope of the tangent at P’ will give the instanta-
neous variation when the LOC is exactly 2000.

We can calculate the variation with respect to the LOC
in the same manner using differential calculus as we had
done in the case of calculating variation with respect to
development time. We get the expression as follows:

[]
dq
dL

L = x=variation x






where,
q = quality (to be expressed as a function of LOC)
L = normalized LOC
[variation]x = instantaneous variation when LOC = x

�
dq
dL

L = x





 = first derivative of the function quality w.r.t.

LOC at the point where LOC = x

The calculation of variation has deep significance. It
needs to be stressed at this juncture that the term varia-
tion used here is actually the variation of quality. Using the
method shown here, we can calculate this variation in both
space and time dimensions. When we are dealing with LOC,
we are actually confronted with the size of the software. Then
the calculation of variation deals with space dimensions.

Similarly, when we are dealing with development time,
we are concerned with understanding the variation of qual-
ity in time dimension. The concept of variation of quality in
both space and time for the software gives a proper scientific
metric that can be understood concretely and compared to
accepted standards. Figure 7 showss the model for calcula-
tion of variation.

6. Accelerated and Retarded
Variations
The variation as calculated in the above manner may be
uniform, accelerated or retarded. First an overview of these
terms is given as under:

1.	 Uniform variation: When the change of quality of
software remains the same over equal intervals of
development time or over equal increase in LOC,
the variation can be said to be uniform. If the soft-
ware quality variation is uniform, there exists a linear
relationship between the quality and development
time or between the quality and the LOC. The graph
drawn will invariably be a straight line as shown in
Figure 8.
The same kind of graph can be seen if the horizontal

component is development time. One can easily see that
the ration between the quality and the LOC or the develop-
ment time, as the case is always remains a constant.

2.	 Accelerated variation: When the increase in quality
increases over equal intervals of time, we may call the
situation a case of accelerated variation. The graph of an
accelerated variation will be an overall concave curve
with the slope of the curve increasing over increase in

Figure 6.  Graph of quality versus LOC. Figure 7.  Calculation of variation.

Ekbal Rashid, Srikanta Patnayak and Vandana Bhattacherjee 5377

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (10) | October 2013

Figure 8.  Uniform variation.

Figure 9.  Graph of quality versus time showing accelerated
variation.

LOC or development time. The graph for an accelerated
variation would look something like in Figure 9.
It can be easily seen that the variation between the two

stages P and Q and the variation between the two stages Q
and R is not the same. The quality changes at different rates
between P and Q and between different rates between Q and
R. And it can also be easily seen that the variation is greater
between Q and R than between P and Q. Thus such a con-
dition when the variation increases with successive stages
of LOC growth or equal intervals of development time are
called accelerated variation. The curve for an accelerated
variation is a concave curve as shown in the figure. Thus if
the graph of quality versus LOC or quality versus develop-
ment time is a concave curve, we may conclude that on the
whole it is an accelerated variation.

3.	 Retarded variation: When the variation over successive
equal intervals of development time or over succes-
sive stages of LOC growth goes on diminishing we get
the case of a retarded variation. The graph showing a
retarded variation will be a convex graph with a moun-
tain in it as shown in the Figure 10.

Again it is obvious that the change of quality between P
and Q is not the same as the change of quality between Q
and R. From the graph we can deduce that the variation is
greater from P to Q that the variation between Q and R. If
we compare this case with the earlier case, the difference is
quite clear. In the earlier graph, the slope between P and Q
is less that the slope between Q and R. While in this graph,
the slope between P and Q is greater that the slope between
Q and R. The rate of change of quality becomes slower in

this case. Thus we say that the average variation on the
whole is gradually decreasing as through the life cycle of
the software. This is a case of retarded variation. It is obvi-
ous from the above figure that on an average the graph of a
retarded variation shows a convex curve. Thus if the graph
of quality versus LOC or the graph of quality versus devel-
opment time is a convex curve we can easily conclude that
the variation is a retarded variation.

However the average nature of variation is not as sig-
nificant as the instantaneous nature of variations. This is
because at a particular stage of software development, the
developer may be interested in finding out whether the
change in software quality at that particular stage is going
according to the set plan or not. For this it is necessary to

Figure 10.  Graph of quality versus LOC showing retarted
variation.

Estimation and Evaluation of Change in Software Quality at a Particular Stage of Software Development5378

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (10) | October 2013

determine whether the variation at any particular instance
of development time or at any particular instance of code
development is accelerated or retarded or uniform. As we
have seen earlier that the curve for an accelerated variation
is a concave curve and the curve for a retarded variation
is a convex curve. So if we just test the curvature of the
graph at any particular instance of time, we shall be able to
determine what the nature of variation is at that particu-
lar instance. Testing the curvature can be done according
to the principles of differential calculus where we find the
second derivative of the quality function with respect to
the LOC or the development time as the case is. Now from
differential calculus, if the second derivative at a particu-
lar point is positive, we have a concave curve at that point.
Simultaneously, if the second derivative at a point is nega-
tive, we have a convex curve at that point. Mathematically
stating we have the following:

If d q
dt

2

2 < 0 or if d q
dL

2

2 < 0 then at t = c or L = c respectively,
then at the particular stage c of software development, the
variation curve is convex, showing a retardation in the vari-
ation. In the same way, if d q

dt

2

2 > 0 or if d q
dL

2

2 > 0 then at t =
c or L = c respectively, then at the particular stage c of soft-
ware development, the variation curve is concave, showing
an acceleration in the variation. There is another method of
determining whether the variation at any particular stage of
software development is accelerated or retarded. That is by
using the method of increasing and decreasing functions.
If at any particular point the graph of quality versus LOC
or the graph of quality versus development time gives the
indication of an increasing function, we can say that at that
particular stage, there is accelerated variation. At the same

time if at any particular stage of software development, the
graph gives the indication of a decreasing function, we can
conclude that at that particular stage of software develop-
ment, the variation is retarded. We can decide whether the
function is increasing or decreasing at any particular point
by using the first derivative test. For this at a particular point
first we find the instantaneous variation. Then we deter-
mine the variation for a point just below and just above
the point in consideration. If the value of the first deriva-
tive just below the consideration point is less that the first
derivative at the consideration point and the first derivative
at point above the consideration point is just greater than
the value of the first derivative at the considered point then
the conclusion will be that the function is increasing as it
is passing through the considered point. On the contrary if
the first derivative at a point below is greater than the first
derivative at the considered point and the first derivative at
a point above the is just greater than the first derivative at
the point of consideration, we may conclude that the func-
tion is a decreasing function and thus it will follow that at
that particular stage of software development, the variation
is retarded.

A better understanding of the entire concept can be
achieved from Figures 11 and 12.

As can be seen from the above graph that the slope of
the tangent at Q (the stage where we wish to determine the
nature of variation) has a variation greater than that at A
but less than that at B. Hence this is a case of accelerated
variation at Q.

Similarly in the Figure 12, it can be seen that the
first derivative at Q is less than the first derivative at
A but is greater than the first derivative at B. This is

Figure 11.  Graph of quality versus time showing accelerated
variation.

Figure 12.  Graph of quality versus LOC showing that
variation is retarded at Q.

Ekbal Rashid, Srikanta Patnayak and Vandana Bhattacherjee 5379

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (10) | October 2013

very obvious from the slopes of the tangents drawn at
those particular points. This points towards the fact
that the function of quality with respect to the LOC is
decreasing at the particular point Q. Thus we can con-
clude from this case that the software is undergoing a
retarded variation at Q.

7.  Conclusion
The paper has presented a new method of estimating
and evaluating the changes in quality through particu-
lar stages of software development. By measuring the
changes in software development one can understand if
the software development process is going through the
expected phases. At the same time we can estimate the
probable quality of the final software. The method of pre-
dicting the quality of the final software is something that
has not been dealt in the present paper; nevertheless, it is
a part of the future work. The estimation of changes in
quality helps us to properly measure, compare and take
concrete decisions regarding quality during the course
of software development. The evaluation of the changes
in quality gives the developer the ability to forecast the
next stage or make adequate plans for the next phase of
development. The method is mathematically motivated
and its standards can be set up either by an international
body or by any organization as per the requirement.
This is not only a development in the realm of software

development, but also is an added treasure in the realm
of applied mathematics. The use of graphical methods
and other principles of differential calculus are clear
pointers in that direction. There may be dispute about
the method in which the various parameters are being
calculated. Through repeated discussions and exchanges
among experts, better methods of measurement of dif-
ferent parameters may evolve. Still, the method to decide
the variation and the nature of variation will remain as
enunciated in the paper.

8.  References
1.	� Kan S H (2002). Metrics and Models in Software Quality

Engineering, 2nd Edn., Addison Wesley.
2.	� IEEE/American National Standards Institute (ANSI) stan-

dard (982.2).
3.	� Conte S D et al. (1986). Software Engineering Metrics and

Models, Benjamin-Cummings Publishing Co., Inc, USA.
4.	� Bohem (1981). Software Engineering Economics, 1st Edn.,

Prentice Hall.
5.	� Rashid E, Patnaik S et al. (2012). A survey in the area of

machine learning and its application for software quality
estimation, CM SIGSOFT Software Engineering Notes, vol
37, No. 5, 1–7.

6.	� Rashid E E, Patnaik S et al. (2013). Enhancing the accuracy
of case-based estimation model through early prediction of
error patterns, International Symposium on Computational
and Business Intelligence (ISCBI 2013), DOI 10.1109/
ISCBI.2013.

