
Constraint Based Periodic Pattern Mining in Multiple
Longest Common Subsequences

G. M. Karthik1* and Ramachandra V. Pujeri2

1SACS MAVMM Engineering College, Kidaripatti (PO),
Algarkoil via, Madurai, Tamil Nadu, 625301, India; gmkarthik16@gmail.com

2KGiSL Institute of Technology, Saravanampatti, Coimbatore, Tamil Nadu, 641035, India; sriramu.vp@gmail.com

Abstract
The periodicity search in longest common subsequences in multiple strings has a number of application, is an interesting
data mining problem. Periodicity is very common practice in longest common subsequence mining algorithm. This work
introduces a new parallel algorithm for finding periodicity in multiple strings. Few existing algorithms lacks in poor scal-
ability, lacks in finding all longest pattern, and for finding symbol, partial and full periodicity. We designed the algorithm
using FP-tree for finding periodicity for most common longest substring in multiple sources. We introduce a parallel algo-
rithm for Constraint Based Periodic Pattern Mining (CBPPM) algorithm, which takes O(kN) for finding periodicity and
O N L h p× ×()()/ time for MLCS pattern. We tested parallel algorithm on a coarse-grained multi-computer (BSP/CGM) mod-

el with p m< processors that takes O N L p×() space per processor, with O plog() communication rounds. We derive
a practical implementation that works better for arbitrary length of input sequence. The algorithm is noise resilient, and
shown its performance in presence of replacement, insertion, deletion, or mixture of these types of noise. We experiment-
ed with synthetic and real data reveals a near linear speedup with scalable performance. The comparative study shows
algorithm’s applicability and effectiveness, generally more noise resilient.

Keywords: Frequent Pattern (FP) Tree, Multiple Longest Common Subsequence (MLCS), Periodicity Mining, Noise
Resilient, Parallel Processing, Data Mining.

*Corresponding author:
G. M. Karthik (gmkarthik16@gmail.com)

Indian Journal of Science and Technology

1. Introduction

The uniform interval of time to reflect certain behavior of
an entity is vital in many applications such as frequently
sold products in a retail market, interval pattern in DNA
sequences, stock growth, transactions in superstore, gene
expression data analysis [20, 8, 3] etc. Identifying repeating
(periodic) patterns could reveal important observations
about the behavior and future trends of the case repre-
sented by the time series [2], and hence would lead to more
effective decision making. The multiple longest common
subsequences (MLCS) are an NP-hard problem [7], with
vital application in bioinformatics and computational biol-
ogy, mostly in DNA and protein sequence analysis. Several

algorithm addresses simplest case of MLCS of two strings
[7, 5], or special case of three or more strings [32, 18, 25].
MLCS is widely used in DNA and protein sequence analy-
sis, in search for motif or set of motifs given a protein family.
With the increase volume of biological data, we expect that
MLCS algorithm will have a significant impact on compu-
tational biology methods and their applications.

To find the periodic pattern in MLCS, we propose a
new and efficient pattern enumeration approach based
on the ideas of frequent pattern mining techniques. First,
we have developed an efficient parallel version of CBPPM
algorithm in BSP/CGM model with a near-linear speedup.
A novel, compact Frequent Pattern tree (FP-tree) like
TRIE data structure, called consensus tree is constructed,

G. M. Karthik and Ramachandra V. Pujeri 5047

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (8) | August 2013

which enables a highly parallelized search along the tree
branches. The construction of consensus tree detects sym-
bol, sequence, and segment patterns without periodicity,
within subsection of the series. The growth of the tree is
restrained by providing additional mining constraints.
Using the strategy of Constraint-Based Mining [21, 14, 26,
31], we restraint growth of FP-tree using user-specified
constraints [26], such as level constraint [14] and rule con-
straint [31]. Secondly, the algorithm looks for all periods
starting from all positions available in a particular node of
consensus tree. All the node of the consensus tree exists
based on confidence greater than or equal to the user-spec-
ified periodicity threshold. In time series, there are three
types of periodic patterns (symbol / Sequence / Segment)
can be detected [10]. Integrating two techniques and devel-
oped an efficient algorithm known as Constraint Based
Periodicity Pattern Mining (CBPPM) technique to solve
MLCS problem and to find periodic pattern in MLCS.
We also demonstrate through empirical evaluation that
CBPPM is more scalable and faster than existing methods.
CBPPM algorithm is proposed based on two points; the
first we search for all subsequences of any length among
given input strings. The second one is that we search for all
instances of all subsequence in the input strings. Implicit
user-defined constraint play vital role in pruning the search
space of the FP-tree and influence time complexity.

The remainder of the paper is organized as follows: In
Section 2, we recall the basic definitions and existing tech-
niques available to solve to periodicity in MLCS. Section
3 we present our parallel algorithms, and discuss their
time and space complexities. In Section 4, we compare the
performance of the algorithms with existing algorithms.
Finally, in section 5, some concluding remarks and plans
about future works are given.

2. Basic Definitions and Related
Works
The multiple longest common subsequences (MLCS) prob-
lem can be defined as follows: Let S s s sN= { }1 2, , be a set
of N sequences of length L L LN1 2, , , , correspondlingly,
over a finite symbol set ∑ with |∑|=R, such that
S L i Ni = ≤ ≤,1 , and positive integer d (represents muta-
tion level, means number of de-generative characters in a
subsequence) and q (subsequence must present in number
of input sequences) such that 0 ≤ ≤d L and 1≤ ≤q N. A sub-
sequence of st is called longest common substring (pattern or
center string), can be obtained from at least q input sequence

contains a substring in st’s d-neighborhood whose length is
s s s st t t tj≥ 1 2, , , , where 0 1 2< ≤ ≤t j L L LNmax[, , ,] . Note
that for a given set of input sequence there can be more
than one MLCS. In the case q = 2 MLCS problem is simply
called the longest common subsequence problem (LCS). The
MCLS is widely used in bioinformatics and computational
biology, and most direct implementation in a protein
sequence analysis is a search for a motif or set of motifs
given a protein family.

Qingguo Wang et al [25] have given basic definition of
MLCS problem, which is fixed parameter traceable with
respect to the length of sequences. Existing techniques
widely used dominant point approaches, applied to a case
of two sequences [1, 11]. In [18], Algorithm A uses three
input sequence. FAST-LCS [32], Hakata and Imai’s C algo-
rithm [18] and Qingguo Wang’s Quick DP algorithm [25],
works for arbitrary number of strings. To speed up the
computation, parallel MLCS algorithms are developed [25].
PRAM algorithms for LCS and are presented in [25] for
two input strings. Lu and Lin [21] proposed parallel algo-

rithm with O m nlog log2 +() time complexity with
mn

nlog

processors when log log log log2 m m n≤ . Xu et al. algo-

rithm takes O mn
p

 time, where 1≤ ≤p m nmax(,). Qingguo

Wang et al [25] take Σ logd n time complexity, where d rep-
resents number of input strings.

The existing algorithm [4, 15, 17] requires the user
to specify the period and patterns occurring with that
period, otherwise which look for all possible periods in
the sequence. The algorithms specified in [23, 24, 19, 10],
looks for all possible periods by considering the range.
COVN [23] fails to perform well when the sequence con-
tains insertion and deletion noise. WARP [24] can detect
segment periodicity; it cannot find symbol or sequence
periodicity. Sheng et al., [6] developed algorithm based on
[16] ParPer to detect periodic patterns in a section of the
sequence; their algorithm requires the user to provide the
expected period value. Huang and Chang [19] and STNR
[10] presented their algorithm for finding periodic pat-
terns, with allowable range along the time axis. Both finds
all type of periodicity by utilizing the time tolerance win-
dow and could function when noise is present. STNR [10]
can detect patterns which are periodic only in a subsection
of the sequence.

In this paper, we develop a parallel version algorithm
capable of detecting subsequence of all possible length and
finding positions of all instances of these patterns, then

Constraint Based Periodic Pattern Mining in Multiple Longest Common Subsequences5048

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (8) | August 2013

CBPPM algorithm to mine periodicity from given input
MLCS sequence. From generated subsequence, finding the
longest path in the consensus tree represents the longest
common subsequence present in q input strings (If q = 2
represents the LCS problem). We design CBPPM algorithm
to mine subsequence from given input strings to construct
consensus tree, using it to calculate the periodicity among
MLCS. Parallel CBPPM algorithm proposed in BSP/CGM
Coarse Grained Multicomputer to find periodic pattern in
MLCS with three or more input sequences.

3. Constraint Based Periodic
Pattern Mining Algorithm

3.1 Frequent Pattern Tree Construction
We will now present a parallel computing version of CBPPM
algorithm for MLCS problem. For simplicity, we consider
the number of processors p to be a power of 2 and m to be
a multiple of p, in which p−1 (slave/local) processor used
for constructing consensus tree, and one processor (mas-
ter/Global) used to find longest common subsequence. The
Parallel CBPPM algorithm divides the number of input
sequence into p−1 subsets of size [p−1] that do not over-
load. In each pi processor construct their own consensus
treeTPi with given number of input sequences. All generated
subsequence of TP from each processor given to p1 (master)
to find the longest common subsequence and periodic-
ity among them. Each processor construct consensus tree
based on user specified rule and level constraints.

CBPPM algorithm uses the TRIE like structure
(called consensus tree) for shared representation of all
subsequence. CBPPM finds all subsequence St

t
∈∑ � with

any length l, 0 ≤ < ≤d l L such that for each St, there are
at least q sequences of S containing an x-mutated copy
(x ≤ d) along with their instances. The consensus tree con-
structed by CBPPM algorithm shown in Figure 1, there
are |∑| branches grown out from each non-leaf node. Each
subsequence is mapped to sequence represent by a path
from root to particular node (leaf/nonleaf node). Each
node contains pointers to all subsequences mapped to St,
where a pointer (j, k, e) points to a subsequence are starting
at the k th position of the j th sequence and node contain-
ing pointers pointing to less than q input sequences, with
level of mutation e ≤ d. Each node has |∑| branches only
if nodes satisfy prescribed support and confidence value. A
path from root to any node in consensus represents a sub-
sequence.

Based on the constraints, the pre-pruning the nodes
happens at each level like backward closure property. The
consensus tree’s growth is restrained using rule and level
constraints. The number of levels in the consensus tree is
at most L L L LN= { }max , , ,1 2 of the sequences. Nodes

with confidence value as conf S
N S

N qt
t()

sup()
=

−
−

 < 1 will be

pruned; used as antimonotonic constraint [31]. The support
value sup(St) of subsequence, stand for number of point-
ers in each input sequences. A node in the consensus tree
will not branch out if a support value is ≤ q, used similar
to monotonic constraint [31]. Each instance in a consen-
sus node has to satisfy degree of mutation e ≤ d, otherwise
that particular instance is dropped, and we used it like suc-
cinct constraint. The longest paths from root node to any
leaf node in consensus tree represent the longest common
subsequence in given input sequence. In consensus tree
contains more than one longest path which represents the
MLCS. CBPPM algorithm performs many comparisons
between the subsequence using Hamming distance. We
use bitwise comparison with complexity O iln 2 Σ ×()()/ w .
Bitwise comparison is better than Hamming distance cal-
culation when N > 2. MLCS problem is fixed parameter
tractable with respect to (l, d) with finite and fixed symbol
set |∑|. The MLCS is fixed with the parameter L and |∑|,
since l and d are bounded with L.

In worst case the number of developed nodes is
N L i()− +1 , where each node can produce Σ()j i=0
i j j|() −()Σ 1 variations with mismatched. This makes space

complexity O(N × L × f (d, l)), which is roughly bound by
O(N × L). Time complexity is not gained since we generate
all possible subsequence, but will be gained back in space
complexity. CBPPM can also produce mutated copy, the
maximal number of node at each level i exceed N(l − i + 1).
We have used rule and level constraints, which do not
test all possibilities; this would raise the time complex-
ity to Σ L. Hence time complexity is roughly bounded to

Figure 1. CBPPM algorithm construct consensus tree with
N = 4, q = 4, d = 0.

G. M. Karthik and Ramachandra V. Pujeri 5049

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (8) | August 2013

O(N × L), with optimal low space complexity. Hence the
time and space complexity for each processor is same as
CBPPM algorithm.

To find the longest subsequence without mutation,
consider all instances with value e e d L= ≤ ≤ ≤0 0, , of a
subsequence obtained from consensus node. To increase
the accuracy of this process, value of mutation must be
d L= , but it affects time and space complexity of CBPPM
algorithm in larger scale. From this analysis, the total work
is not parallelized and the work done during the com-
munication steps is significantly smaller, compared to the

amount of the parallelized work. Hence the running time
of the parallel version of our algorithm that reflects the
sequential version of CBPPM algorithm’s efficiency. Figure
2 shows that the number of nodes generated with num-
ber of slave processors. Figure 3a shows the time taken for
communication between the numbers of processors, and
Figure 3b shows the time taken for different length of input
sequences (with eight processors). Figure 2 and Figure 3
shows the great advantage of this approach, in contrast to
classical dynamic programming approaches.

3.2 Periodic Pattern Mining
The master processor p1 does two processes, first, parti-
tion of number of input sequence based on number of
processors, and secondly finding periodic pattern among
generated subsequence. The most difficult part of the algo-
rithm involves the problem in finding periodic pattern in
MLCS. As mentioned above, we utilize the consensus tree
node with its pointer for periodicity detection algorithm.
Our algorithm is linear-distance-based; we take the differ-
ence between any two successive position pointers leading
to Difference vector, represented in Difference Matrix (Diff_
matrix). Diff_matrix is not kept in the memory but this
is considered only for the sake of explanation. Figure 4

Figure 2. The number of node generated in consensus tree
for number of processor using CBPPM algorithm for multiple
random sequences of length 100.

Figure 3a. The communication time with number of
processor for MCLS sequences on three random sequences
using CBPPM algorithm.

Figure 3b. The communication time with number of
processor for MCLS sequences on three random sequences
using CBPPM algorithm with different symbol set size.

Figure 4a. An example of consensus tree structure
constructed using CBFP algorithm with d = 0, Σ = { }a b, and
S = {(ababbab), (bbabbbb), (babbbaa), (abbabba)}, N = 4, L = 7,
q = 4, and Σ = 2.

Figure 4b. Difference Matrix calculation for ‘ab’ pattern from
FP tree node pointers.

Constraint Based Periodic Pattern Mining in Multiple Longest Common Subsequences5050

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (8) | August 2013

presents how the Diff_matrix is derived from the position
pointers of a particular node of consensus tree. From the
matrix the periodicity is represented by (S, K, StPos, EndPos,
c), denoting the pattern, period value, starting position and
ending position, and number of occurrences respectively
for a particular consensus node (which denote a pattern).
CBPPM algorithm scans the difference vector starting
from its corresponding position (Pos), and increases the
frequency count of the period (K) if and only if the dif-
ference vector value is periodic regard to the StPos and K.
Algorithm 1 in appendix formally represent the formation
of Diff_matrix form consensus node pointers.

CBPPM algorithm calculates all patterns which are
periodic starting from any position and continues till the
last occurrence of the pattern. FP tree node which con-
tains pointers (pos) accessed as a continuous pattern for
Diff_matrix calculation. Such types of periodicity calcu-
lation are very useful in real time DNA sequences. The
existing algorithms [10] do not prune or prohibit the cal-
culation of redundant periods; the immediate drawback is
reporting a huge number of periods, which makes it more
challenging to find the few useful and meaningful periodic
patterns within the large pool of reported periods. Our
algorithm reduces the number of comparison of pointers
which are used for calculation periodicity. In Algorithm 2
we empowered to use p periods only one time for each and
every position pointers from that Diff_matrix is calculated.
Diff_matrix is able to assist in finding periodicity for every
starting position with different p periods. Our algorithm
not only saves the time of the users observing the produces
results, but also saves the time for computing the periodic-
ity by the mining algorithm itself.

The master processor p1 does two processes, first, par-
tition of number of input sequence based on number of
processors, and secondly finding periodic pattern among
generated subsequence. Time and space complexity of mas-
ter processor is minimum when compare to time and space
required by single processor involved in consensus tree
computing. We use log p rounds to join the results, in which
partial solutions are joined to give a single solution. The time
necessary for the p−1 processors to solve the MLCS sub-

problem in parallel is O
m N L

p
× ×()

. After log p rounds we

have the solution of the original problem. The sum of times
of all the union steps is O N L m m p× × + ()()()1 log /
and it takes O N L p×() space. Based on rule and level
constraints few subsequences will be pruned, which may
be present some input of any other local processor. Such

subsequences must be communicated among the local
processor which increase in time and space complexity.
Instead problem is handled using the mutation factor d,
which represent number of character is misplaced in a sub-

sequence. Usually mutation value is taken as d
m

p
=

−

1
,

which handle above problem to an optimal level.

4. Experimental Results
We designed and implemented the parallel version of
CBPPM algorithm for MLCS problem. The algorithm
was implemented on the message-passing interface (MPI)
system and run on local IBM SP3 machine. We have
used Scalasca parallel processing tool which runs in Dell
NVIDIA Linux cluster system, and aids in testing our paral-
lel CBPPM in massively parallel processing (MPP) systems.
The algorithms were tested on set of strings similar to
the length of nucleotide and protein sequences, ranging
between 100 and 5000 with Σ = 4 and Σ = 20.

4.1 Analysis of CBPPM Algorithm to Find
MLCS
The parallel CBPPM algorithm was implemented using
Scalasca parallel processing tool. The reason is it supports
MPP environment which provides efficient performance.
Our CBPPM algorithm consist of master thread which
runs on master processor and FP tree creation by slave
thread which runs in other slave processors. Master thread
divides the number of input sequence based on available
slave processor and assigns the input sequence along with
constraints to each slave processor. After all slave proces-
sor complete consensus tree creation, they generate all
subsequence and report it to master processor. Then, the
master thread performs bitwise comparison among the all
reported subsequence and report the longest subsequence
with/without mutation value. CBPPM algorithm is com-
pared with Hakata and Imai’s A and C algorithms [18],
Quick-DP algorithm [25]. The A algorithm is designed for
three sequence MLCS problem, and C algorithm work with
any number of sequence MLCS problem. Quick-DP, has
consistent speed up than Hakata and Imai’s algorithm.

Our algorithm takes more time than both Hakata and
Imai’s algorithm and Quick-DP, because our implemen-
tation generates all subsequence of three random DNA
sequences of various lengths. Our implementation has
higher precision and de-generative forms of MLCS can

G. M. Karthik and Ramachandra V. Pujeri 5051

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (8) | August 2013

be generated. Figure 5 shows that CBPPM compared with
Quick-DP, Hakata and Imai’s and FAST-LCS [32], for more
than three random sequence of MLCS problem. From
Table 1 it is clear Quick-DP has benchmark result than
Hakata and Imai’s algorithm and FAST-LCS algorithm for
both alphabet size Σ = 4 and Σ = 20. CBPPM algorithm
has moderate running time on long sequences. FAST-
LCS is fast enough than Hataka and Imai’s algorithm, but
compared to Quick-DP less time efficient. The CBPPM
algorithm’s performance is far better than other existing
technique is discussed in [13] and [12]. Time performance
of CBPPM remains same as it checks for all possible subse-
quence irrespective of the data set. CBPPM performs better
than WARP and STNR [13].

The running time of parallel CBPPM is compared
with Quick-DPPAR (parallel version of Quick-DP) [25],
on sequences of various lengths. Quick-DPPAR using
8-processor on five random DNA sequences is published
in [25]. The Figure 6 demonstrates the efficiency of par-
allel CBPPM with Quick-DPPAR. Based on running
time, Parallel CBPPM is less efficient compare to Quick-
DPPAR in terms of time complexity. We test out parallel
CBPPM with few set of protein sequences from the family
of melanin-concentrating hormone receptors (MCHRs).
From Pfam database [28, 27], few collection of KRAB-
containing zinc-finger repressor protein families were
used as a test data [29]. We used very few protein families
listed in Table 2, which CBPPM solves MLCS with opti-
mal solution. It is very difficult to compare the execution
or computation time of CBPPM with existing techniques
like MUSCLE [25] and ClustalW [22]. Since MUSCLE
and ClustalW extract common subsequences by counting
number of residues that are in common among all align-
ment sequences. Quick-DP, MUSCLE and ClustalW fails
when pair wise identity among sequences is poor. But
CBPPM identify those subsequences, since it is incor-
porated with mutation factor, de-generated sequences
will be generated even when sequences pair wise iden-
tity is poor. CBPPM running time is always worse when
compared to existing techniques like Hataka and Imai’s
algorithm and Quick-DP shown in Figure 6. CBPPM
takes more time in generating all subsequences and along
their instances. Hence computation time of CBPPM is
not good as compared to dominant point approaches.
CBPPM is recommended for finding a longest common
subsequence with mutation. CBPPM algorithm is far
better than existing technique, which are related in pat-
tern mining is described in [13, 12]. The idea of using

FP-tree in solving MLCS problem can be accomplished by
CBPPM algorithm.

4.2 Analysis of CBPPM for Finding
Periodicity in MLCS
CBPPM algorithm does not calculated redundant period,
because which are supper-pattern has already been found
periodic with same period value using Diff_matrix.
Periodicity is calculated using Diff_matrix from bottom to
top, hence algorithm does not check the redundant peri-
ods.The time performance of CBPPM compared to ParPer,
CONV, WARP and STNR in three perspectives: varying
data size, period size and noise ratio. First we compare
CBPPM performance against ParPer [16], with synthetic
data with varying data size from 1,00,000 to 10,00,000. The
results are shown in Figure 7. ParPer only finds partial
periodic patterns in the data namely symbol, segment and
sequence patterns, and their complexity is O (N2). STNR
[10], CONV [23] and WARP [24] are compared with size
of the series varied from 1,00,000 to 10,00,00,000. Figure
8 shows CBPPM performs better than WARP and STNR,
but worse than CONV. The run time complexity of STNR
and WARP is O (N2), but for CONV is O (nlogn). CBPPM
performs better than WARP and STNR because CBPPM
applies optimization strategies, mostly reduced the redun-
dant comparison. CBPPM performance is shown in Figure
9 with varying period size from 5 to 100. ParPer [16] and
WARP [24] get affected as the period size increased. Time
performance of CBPPM, CONV and STNR [10] remains
same as it checks for all possible periods irrespective of the
data set.

The noise-resilient features in periodicity detection in
presence of noise, is presented in [9, 10]. Three types of
noise generally considered in time series data are replace-
ment, insertion, and deletion noise. In order to deal with
this problem, [10] used the concept of time tolerance into
the periodicity detection process. The idea is that periodic
occurrence can be drifted within a specified limit called
time tolerance (denoted as tt), which is utilized in CBPPM
algorithm. The CBPPM algorithm with time tolerance is
presented in Appendix. In the case of noise ratio, we used
a synthetic sequence of length 10,000 containing 4 symbols
with embedded period size of 10. Symbols are uniformly
distributed and generated in the same way as done in
[23]. We used 5 combination of noise, i.e., replacement,
insertion, deletion, insertion-deletion, and replacement-
insertion-deletion. By gradually increased the noise ration

Constraint Based Periodic Pattern Mining in Multiple Longest Common Subsequences5052

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (8) | August 2013

from 0.0 to 0.5, the confidence at period of 10 is detected.
The time tolerance for all the experiments is ±2. Figure 10
show that our algorithm compares well with WARP [24],
STNR [10] and performs better than AWSOM [30], CONV
[23], and STB [9]. For most of the combination of noise, the
algorithm detects the period at the confidence higher than
0.5. The worst results are found with deletion noise, which
disturbs the actual periodicity. CBPPM shows consistent
superiority because we consider asynchronous periodic
occurrences which drift from the expected position within

an allowable limit. This turns our algorithm a better choice
in detecting different types of periodicity.

5. Conclusion
In this paper, we presented novel algorithm uses FP tree as
underlying structure for finding periodic pattern in MLCS.
The algorithm can detect symbol, sequence and segment
periodicity. In CBPPM, a highly parallel TRIE-like struc-
ture, the consensus tree, and fast level-wise search strategy
based on downward closure property help to increase the
efficiency. It can detect the redundant period which are
pruned; before calculating confidence which in turn saves
a significant amount of time. We tested the algorithm on
both real and synthetic data in order to test its accuracy,
effectiveness of reported results, and the noise resilience
characteristics. Our algorithm runs in O (k. N) in the worst
case for finding periodic patterns. Analysis of protein and
genome sequence is one of the principle application are
for the MLCS methods [32, 11, 25] using dominant point.
Note that the space complexity for algorithm is optimal for
all subsequences, since its space complexity is linear in the

Figure 5. The average running time of CBPPM, Hataka
and Imai’s C algorithm, Quick-DP and FAST-LCS on MLCS
protein of five random strings of different lengths.

Table 1. Average running time (seconds) of CBPPM, FAST-LCS, Quick-DP and Hataka
and Imai’s C algorithm for random five sequence of different length

Sequence
length

Quick-DP Hataka and Imai’s
C algorithm

FAST-LCS CBPPM

Σ = 4 Σ = 20 Σ = 4 Σ = 20 Σ = 4 Σ = 4 Σ = 20

100 0.2 0 3.6 1.7 46.8 36 26
120 0.6 0.1 15.8 12.2 266 184 150
140 0.9 0.4 54.9 26.2 1430 1014 890
160 1.4 0.5 149.9 71.5 4801 2891 1450
180 2.2 0.8 426 203 17143 6434 2350
200 2.6 1.1 896 560 40262 9832 3122

Table 2. KRAB containing zinc-finger repressor sequence

Sub family Protein Species Localization Number of zinc
finger

Expression pattern

A+B subfamily HKrI8 Human 19 20 Ubiquitous

RbaK Human 7 16 Ubiquitous

ZF5128 Human 19 9 Ubiquitous

A subfamily HZF12 Human 19 9 Ubiquitous

A+b subfamily ZNF222 Human 19 7 Ubiquitous

SCAN subfamily ZFP95 Human 7 13 Ubiquitous

G. M. Karthik and Ramachandra V. Pujeri 5053

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (8) | August 2013

input size. We have found all algorithms, including ours, for
solving MLCS are exponential in some parameters, which
is inevitable. We have done only a few experiments in real

biological data. In the future, we will apply this approach to
solve more real problems in biological computation.

6. References
 1. Apostolico A, Browne S et al. (1992). Fast linear-space com-

putations of longest common subsequences, Theoretical
Computer Science, vol 92(1), No. 1, 3–17.

 2. Weigend A, and Gershenfeld N (1994). Time series pre-
diction: forecasting the future and understanding the past,
Addison-Wesley.

 3. Ptitsyn A A, Zvonic S et al. (2007). Permutation test for
periodicity in short time series data, BMC Bioinformatics
(BMCBI), vol 8, 395.

 4. Berberidis C, Aref W et al. (2002). Multiple and partial
periodicity mining in time series databases, Proceedings of
European Conference Artificial Intelligence.

 5. Rick C (1994). New algorithms for the longest common
subsequence problem, Technical Report No. 85123-CS,
Computer Science Department, University of Bonn.

 6. Sheng C, Hsu W et al. (2005). Mining dense periodic patterns
in time series data, Proceedings of 22nd IEEE International
Conference on Data Engineering, 115.

 7. Maier D (1978). The complexity of some problems on subse-
quences and supersequences, Journal of the ACM, vol 25(2),
322–336.

 8. Glynn E F, Chen J et al. (2006). Detecting periodic pat-
terns in unevenly spaced gene expression time series using
lomb-scargle periodograms, Bioinformatics, vol 22(3),
310–316.

 9. Rasheed F, and Alhajj R (2010). STNR: a suffix tree based
noise resilient algorithm for periodicity detection in time
series databases, Applied Intelligence, vol 32(3), 267–278.

10. Rasheed F, Al-Shalalfa M et al. (2011). Efficient periodic-
ity mining in time series databases using suffix trees, IEEE
Transactions on Knowledge and Data Engineering (TKDE),
vol 23, No.1, 79–94.

11. Chin F Y, and Poon C K (1990). A fast algorithm for com-
puting longest common subsequences of small alphabet size,
Journal of Information Processing, vol 13, No.4, 463–469.

12. Karthik G M, and Pujeri R V (2008). Constraint based fre-
quent pattern mining technique for solving GCS problem,
proceedings of World Academy of Science, Engineering and
Technology, vol 32, 672–679.

13. Karthik G M, and Pujeri R V (2012). Constraint based peri-
odicity mining in time series databases, International Journal
of Computer Network and Information Security, vol 10,
37–46.

14. Han J, Lakshmanan L V S et al. (1999). Constraint-based
multidimensional data mining, IEEE Computer, vol 32,
No. 8, 46–50.

Figure 6. Comparing running time of the parallel CBPPM
(on eight processors) with Quick-DPPAR, FAST-LCS, Hataka
and Imai’s C algorithm on zinc finger protein sequences from
Pfam database.

Figure 7. Time performance of CBPPM with ParPer
algorithm.

Figure 8. Time performance of CBPPM algorithm with
STNR, CONV and WARP.

Figure 9. Time behavior with varying period size.

Constraint Based Periodic Pattern Mining in Multiple Longest Common Subsequences5054

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (8) | August 2013

15. Han J, Gong W et al. (1998). Mining segment-wise periodic
patterns in time related databases, Proceedings of ACM
International Conference on Knowledge Discovery and Data
Mining, 214–218.

16. Han J, Yin Y et al. (1999). Efficient mining of partial periodic
patterns in time series database, Proceedings of 15th IEEE
International Conference in Data Engineering, 106.

17. Yang J, Wang W et al. (2002). InfoMiner: mining partial
periodic patterns with gap penalties, Proceedings of Second
IEEE International Conference on Data Mining.

18. Hakata K, and Imai H (1998). Algorithms for the longest
common subsequence problem for multiple strings based
on geometric maxima, Optimization Methods and Software,
vol 10(2), 233–260.

19. Huang K Y, and Chang C H (2005). SMCA: a general
model for mining asynchronous periodic patterns in tem-
poral databases, IEEE Transaction on Knowledge and Data
Engineering, vol 17, No. 6, 774–785.

20. Dubiner M et al. (1994). Faster tree pattern matching, Journal
of ACM, vol 14(2), 205–213.

21. Lu M, and Lin H (1994). Parallel algorithms for the longest
common subsequence problem, IEEE Trans. Parallel and
Distributed System, vol 5, No. 8, 835–848.

22. Larkin M A, Blackshields G et al. (2007). Clustal W and
Clustal X Version 2.0, Bioinformatics, vol 23, 2947–2948.

23. Elfeky M G, Aref W G et al. (2005). Periodicity detection in
time series databases, IEEE Transactions on Knowledge and
Data Engineering, vol 17, No. 7, 875–887.

24. Elfeky M. G, Aref W G et al. (2005). WARP: Time WARPing
for periodicity detection, Proceedings of Fifth IEEE
International Conference on Data Mining, 138–145.

25. Wang Q et al. (2011). A fast multiple long common subse-
quence (MLCS), IEEE Transactions on Knowledge and Data
Engineering, vol 23, No. 3, 321–334.

26. Ng R et al. (1998). Exploratory mining and pruning optimiza-
tions of constrained associations rules, Proceedings of 1998
ACM SIGMOD International Conference on Management
of Data, ACM Press, New York, 13–24.

27. Finn R D, Mistry J et al. (2006). Pfam: clans, web tools and
services, Nucleic Acids Research, vol 34, D247–D251.

(a) Replacement Noise (b) Insertion noise

(c) Deletion Noise (d) Insertion- Deletion Noise

(e) Replacement-Insertion-Deletion Noise

Figure 10. Time performance of CBPPM compared with STNR, CONV, ParPer, WARP, AWSOM, STB.

G. M. Karthik and Ramachandra V. Pujeri 5055

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (8) | August 2013

28. Finn R D, Tate J et al. (2008). The Pfam protein families data-
base, Nucleic Acids Research, vol 36, D281–D288.

29. Urrutia R (2003). KRAB-containing zinc finger repressor
proteins, Genome Biology, vol 4, No. 10, 231.

30. Papadimitriou S, Brockwell A et al. (2003). Adaptive, hands
off-stream mining, Proceedings of 29th Very Large Data
Bases (VLDB) conference, 560–571.

31. Lee S D, and De Raedt L (2004). Constraint based mining of
first order sequences in SeqLog, Database Support for Data
Mining Applications, 154–173.

32. Chen Y, Wan A et al. (2006). A fast parallel algorithm for
finding the longest common sequence of multiple biose-
quences, BMC Bioinformatics, vol 7, S4.

Constraint Based Periodic Pattern Mining in Multiple Longest Common Subsequences5056

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (8) | August 2013

Appendix
CBPPM Algorithm (FP Tree Construction)

CBPPM performs many compare operations for calculating distance between two patterns. Mainly, complexity O (i) deals
with comparing the symbols of the two strings one by one in ith level of the consensus tree. For each candidate center

string in each node is j = 0,
i
jj

d i
j

∑ −()
=0

1
min(,)

Σ , calculated at most N L i× − +()1 distances. The time complexity is roughly

bound by O N L()× . The secondary storage used for running the CBPPM is bound by O N L i()× − +()1 . Therefore, the
total space complexity is O N L×(). Testing all possibilities of patterns restrained by rule and level constraints this would
raise the time complexity to Σ L. We generate those candidates whose consensus strings satisfy the prescribed rule con-
straint. Therefore, using our strategy we raise time complexity by O N L×() with quite low space complexity.

Algorithm 1: FP-tree construction

 1. For each string j of given input sequence N do
 2. For each symbol k of input string j of length L do
 3. If the kth symbol ith sequence is b1 ∈Σ do
 4. Put (j, k, 0) in new node Sb1, find (j, k, 1) substring is in all Sb'1 for b′1 ≠ b1 and j in Tb'1 for each b′1 ∈Σ if and only

if sup b thresholdi() > .
 5. For each ith sequence from 1 to L do
 6. Loop(1):
 7. For each substring’s conf b b b bi1 2 3 1 1, , , , −() ≥ do
 8. Loop(2):
 9. For each entry (j, k, e) in each nodes Sb b b1 2 1, , , where k < L − i + 1 do
10. Loop(3):
11. If the k + ith element of the jth sequence is bi− ∈1 Σ and sup()bi−1 < q do
12. Begin(1):
13. put (j, k, e) in Sb b b bi1 2 0 1, , , , −

;
14. if e < d then for all b bi i′ − −≠1 1

15. put (j, k, e + 1) in Sb b b bi1 2 0 1, , , , −
 if and only if conf b b b bi1 2 0 1, , , , −() ≥ 1;

16. End Begin 4;
17. If conf bi()− <1 1 then Remove Sbi−1

;
18. End Loop 3;
19. For each node Sb b bi1 2 1, , , −

≠ f do
20. For each node in next level Sb b b′ ′ ′1 2 0, , , with distance b b di i, ′() ≤ do

21. For each Sb b b′ ′ ′1 2 1, , , ≠ f and conf S qb b b i′ ′ ′1 2, , ,() ≥ along with distance bi ,b di′() ≤ do
22. Loop(5):
23. If conf b i()′ < 1 then Remove Sb i′

24. Create a new level in consensus tree with T T Sb b b b b b b b b′ ′ ′ ′ ′ ′ ′ ′ ′1 2 1 1 2 1 1 2 1, , , , , , ←
25. If no node exists in Tb b b′ ′ ′1 2 1, , , then
26. Increment i ; End Loop2;
27. Else
28. Print the output sequence b Si b i

′ ′,();
29. End Loop 5;
30. If all Sb b b bi i1 2 1, , , , +

 are removed then stop the program else output all pairs b1, b2,…,bi−1; Sb b b bi i1 2 1, , , , +

31. Remove all Sb b bi1 2, , , and Tb b bi1 2, , , ;
32. End Loop 2;
33. i = i + 1;
34. End Loop 1;

G. M. Karthik and Ramachandra V. Pujeri 5057

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (8) | August 2013

Algorithm 2: Difference Matrix (Diff_matrix) Algorithm

  •  Input: a MLCS (S) of size N contains position pointers Pos;
  •  Output: Difference Matrix (A) containing Difference vector;
 1. For i = 1 to N − 1
 2. Begin Loop 1:
 3. Assign j = 1
 4. if (j < N − i)
 5. A j i Sj(,) = −Sj+i;
 6. if (j + 1 ≠ j + i)
 7. Then
 8. t j= +1;
 9. While (t < j + i − 1)
10. Begin Loop 2:
11. A t i S St t i(,) = − + ;
12. t = t + i;
13. End Loop 2;
14. Endif;
15. j = j + i;
16. Endif;
17. End Loop 1;

Algorithm 3: Constraint Based Periodicity Mining Algorithm (CBPPM)

  •  Input: Diff_matrix (A), and time tolerance value tt;
  •  Output: position of periodic patterns P;
 1. For K = N − 1 to 1;
 2. Begin Loop 1:
 3. For i = 1 to N − k;
 4. Begin Loop 2:
 5. Assign j = i, c = 1;
 6. if (j + K ≤ N − K then
 7. if Difference (A(j, K), A(j + K, K)) is in between (A(j, K) ± tt)
 8. then c++;
 9. Endif;
10. if ∃ +Pj K, 1 and Diff (A(j, K), A(j, K + 1)) is in between (A(j, K) ± tt)
11. then c = c + Pj, k + 1(q);
12. Endif;
13. j = j + k;
14. Goto step 6:
15. Else
16. Assign stPos = j, endpos = j + k, p = k, q = c;
17. Project Periodicity Pj, K(S, p, stPos, endPos, q);
18. If (i + K > N − K)
19. Break Loop 2;
20. Endif;
21. End Loop 2;
22. End loop 1;

