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Abstract
In this paper, a fractional diffusion equation by using the explicit numerical method in a finite domain with second-order 
accuracy which includes the Riesz fractional derivative approximation is studied. For the Riesz fractional derivative ap-
proximation, ‘‘fractional centered derivative’’ approach is used. The error of the Riesz fractional derivative to the fractional 
centered difference is calculated. We used the implicit numerical method to solve the fractional diffusion equation and also 
investigated the stability of explicit and implicit methods. The maximum error of the implicit method for fractional diffu-
sion equation with using fractional centered difference approach is shown by using the numerical results.

1. Introduction
Fractional differential equations are used frequently in 
science and engineering, such as: fractional diffusion and 
wave equations [1, 2], electrical systems [3], viscoelastic-
ity theory [3], control systems [3], biomedical engineering 
[4] finance [5] and the economic analysis of the stock 
prices. Let the ∂
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operator for 1 < α ≤ 2 that is defined in [6–8] as follows:  
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We consider the following equation in a finite domain  
associated with initial and Dirichlet boundary conditions 
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where D > 0 is diffusion coefficient, and f(x,t), ϕ ψ( ), ( ), ( )t t xΦ  
are sufficiently smooth functions. To estimate  the Riesz 
fractional derivatives, Grunwald–Letnikov derivative  
approximation, we use scheme of order O(h) [9–15]. 
Meerschaert  and  Tadjeran [11] and Tadjeranetal. [12] applied 
the Crank–Nicolson method with Grunwald–Letnikov 
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the centered finite difference approximation (5) for k = 0, 
± ±1 2, ,..., and α > −1. Then 

 gk ≥ 0  
g gk k= ≤− 0 for  k ≥ 1 (6)

Lemma 2.2.
Let f ∈C R5( ) and all derivatives up to order five belong to  
L1(R) and 
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be the fractional centered difference. Then 
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 is the Riesz fractional derivative 

for 1<α ≤2.  

if f * is defined by 
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such that f x C∗ ∈( ) (5 R) and all derivatives up to order five 
belong to L1(R) then from Lemma 2.2, we have 
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Where h b a
m

= − , and m is the number of partitions of 

the interval [a, b].

3. The Explicit Discretization for 
Fractional Diffusion Equation 
Explicit discretization for the equations 2 and 3 is
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derivative approximation to a linear diffusion equation, 
which has an independent fractional derivative, represented 
that the used method is unconditionally stable for given prob-
lems. Shen and et al. [13] applied implicit and explicit finite 
difference methods with Grunwald–Letnikov derivative 
approximation to a linear Riesz fractional diffusion equation, 
and showed that the explicit method is conditionally and the 
implicit models is unconditionally stable for given problems. 
To improve the convergence order of used approximation, 
they used the Richordsons extrapolation [11–14]. Zhang and 
Liu [15] applied the implicit finite difference method with 
Grunwald–Letnikov derivative approximation to a non-
linear Riesz fractional diffusion equation and showed that 
the used method is stable for small time. As a new approach, 
Ortigueire [16] defined the “fractional central derivative” 
and proved that the Riesz fractional derivative of an analytic 
function can be represented by fractional central derivative.

In Section 2, we show that the fractional central dif-
ference is approximated with O(h2) accurate to the Riesz 
fractional derivative for 1 < α ≤ 2. In Section 3 and 5 we 
applied the explicit and implicit method for the problem 
(2) and (3) by using the fractional centered difference 
discretization. In Section 4 and 6 we give the stability 
properties of the explicit and implicit method for the 
problem (2) and (3). Finally, in the last section we pre-
sented a numerical solution of an example by using the 
implicit method. 

2. Approximation by Fractional 
Centered Difference
In [16] for α > –1 the fractional centered difference is defined 
by 
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represents the Riesz fractional derivative (1) for the case 
of 1< α ≤ 2. we use Eq. (5) as a discretization to the Riesz 
fractional derivative. Therefore, we express  the following 
property and lemma. 
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For i = 1, 2, …, m–1, j = 0, 1, …, N–1, 
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can rewrite the system (11) in matrix – vector form as 
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4. Stability of the Explicit 
Difference Approximation Method

Theorem 4.1 equation (12) for problem (2) and (3) is con-
ditionally stable.
Proof. In [16] it was shown that the coefficients of the gen-
erating function (5) for z ∈ R has the following form: 
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Let λ be the eigenvalue of matrix A, then by using (14) and 
Gerschgorin’s circle theorem [19] we have: 
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For stability, the eigenvalues of matrix   (I-A) should be sat-
isfy | 1–λ | <1, therefore, 0 < λ < 2, Consequently 2 20ag < ,
a
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0

 and discrete equation (12) is conditionally

stable.

5. The Implicit Discretization for 
Fractional Diffusion Equation
Stability of explicit methods was studied in the previ-
ous section. Now we want to discuss the implicit method. 
Implicit discretization for the equations 2 and 3 is 
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In Table 1, we calculated the maximum errors of the 
implicit method for several different values   of α in inter-
val 1 <α ≤ 2 at t = 1 and τ = 0.01 when h = 0.01 and h =  
0.005.

In Table 2, we calculated the maximum errors of the 
implicit method for several different values of α in interval  
1 < α ≤ 2 at t = 5 and τ = 0.01, when h = 0.01 and  
h = 0.005. Comparing the two tables shows that accuracy 
of this method in t = 1 is more than in the time t = 5. When 
τ is considered as a constant, the accuracy of this method 
decrease in h

2.
In Table 3, we consider h as a constant and obtain the ma-

ximum error of method for τ = 0.01 and τ = 0.005 in x = 0.4.

6. Stability of the Explicit 
Difference Approximation Method
Theorem 6.1 discrete equation (18) for problems (2) and 
(3) is unconditionally stable.

Proof: Let λ is the eigenvalue of matrix A, then by using 
(14) and Gerschgorin’s circle theorem [16] we have: 
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Hence the eigenvalues of the matrix (I+A)−1 satisfy 
1

1
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l
 therefore, the spectral radius is less than one.

Thus, the discrete equation (22) is unconditionally stable. 

7. Numerical Example
For example, consider 
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where the exact solution is 

 u x t t x x,( ) = +( ) −( )1 12 2α    (26) 

Figure 1 shows the solution profiles for the approximate 
solution computed using a = 1.2, 1.4, 1.8 at t = 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

 

 

a=1.2
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Figure 1. The exact solution of the Eqs. (23) with the ini-
tial and boundary conditions (24) at t = 1, a = 1.2, 1.4, 1.8.

Table 1. The maximum of errors for different values of α 
for τ = 0.01, t =1

α h=0.01 h=0.005
1.2 3.8857 × 10–4 4.0142 × 10–4

1.4 5.2263 × 10–4 5.4080 × 10–4

1.6 6.8416 × 10–4 7.1023 × 10–4

1.8 8.7656 × 10–4 9.1698 × 10–4

Table 2. The maximum of errors for different values of 
α for τ = 0.01, t = 5

α h=0.01 h=0.005
1.2 4.7954 × 10–4 5.3553 × 10–4

1.4 7.8244 × 10–4 8.7835 × 10–4

1.6 1.2 × 10–3 1.4 × 10–3

1.8 1.9 × 10–3 2.2 × 10–3
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In Table 4 we consider h as a constant and obtain the 
maximum error of method for τ = 0.01 and τ = 0.005 in  
x = 0.7. Comparing the two Tables 3, 4 shows that accuracy 
of this method is increases by halving the τ and accuracy of 
this method increase when x increase.

8. Conclusions 
In this paper, Riesz derivative is approximated by using 
fractional central difference. Diffusion equation is approxi-
mated by Riesz derivative with applying the explicit and 
implicit numerical methods and we observed that after dis-
cretization for stability the spectral radius is less than one. 
The explicit method is conditionally stable and the stability 
of the implicit method is unconditional.
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