
FIR Filter Implementation using Modified
Distributed Arithmetic Architecture

M. Yazhini1* and R. Ramesh2

1PG Scholar, Department of Electronics and Communication Engineering, Saveetha Engineering College,
Tamil Nadu, 602105, India; yazhinimohan21@gmail.com

2 Professor, Department of Electronics and Communication Engineering, Saveetha Engineering College,
Tamil Nadu, 602105, India; raammesh1976@gmail.com

Abstract
In this project use Distributed Arithmetic (DA) technique for FIR filter. In this technique consist of Look Up Table (LUT),
shift register and accumulator. Based on this technique multipliers in FIR filter are removed. Multiplication is performed
through shift and addition operations. The LUT can be subdivided into a number of LUT to reduce the size of the LUT for
higher order filter. Each LUT operates on a different set of filter taps. Analysis on the performance of various filter orders
with different address length are done using Xilinx synthesis tool. The proposed architecture provides less latency and less
area compared with existing structure of FIR filter.

Keywords: FIR, Distributed Arithmetic, LUT.

1.  Introduction
A digital filter is a system that performs mathematical
operations on a sampled or discrete time signal to reduce
or enhance certain aspects of that signal. One type of digi-
tal filter is FIR filter. It is a stable filter. It gives linear phase
response. Pipelining and parallel processing technique is
used in FIR filter. Pipelining operation takes place in an
interleaved manner. Pipelining done by inserting latches
(delay element) in the system. It increases the overall speed
of the architecture but the hardware structure and system
latency will increases. Hardware structures increases due
to inserting pipelining latches. For M level pipelining M-1
delay elements required. Latency is the difference between
the availability of first output in the sequential system and
the pipeline system[1]. At every clock cycle it will operate
multiple inputs and produced multiple outputs is called
parallel processing. It required extra hardware. Both pipe-
lining and parallel processing has disadvantages. For FIR

filters, output is a linear convolution of weights and inputs.
For an Nth-order FIR filter, the generation of each output
sample takes N+1 multiply accumulate (MAC) operations.

Multiplication is strongest operation because it is
repeated addition. It require large portion of chip area. Power
consumption is more. Memory-based structures are more
regular compared with the multiply accumulate structures;
and have many other advantages, e.g., greater potential for
high throughput and reduced-latency implementation and
are expected to have less dynamic power consumption due
to less switching activities for memory-read operations
compared to the conventional multipliers. Memory based
structures are well-suited for many digital signal process-
ing (DSP) algorithms, which involve multiplication with
a fixed set of coefficients. For this Distributed Arithmetic
architecture used in FIR filter.

Distributed arithmetic is one way to implement
convolution with multiplier less unit, where the MAC
operations are replaced by a series of LUT access and

* Corresponding author:
M.Yazhini (yazhinimohan21@gmail.com)

Indian Journal of Science and Technology

6_5_12.indd 4485 5/30/2013 11:11:19 AM

FIR Filter Implementation using Modified Distributed Arithmetic Architecture4486

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (5) | May 2013

summations. Distributed Arithmetic is a different
approach for implementing digital filters. The basic idea
is to replace all multiplications and additions by a table
and a shifter-accumulator. LUT are the kind of logic that
used in SRAM based FPGAs. Basically each look table is
a bunch of single bit memory cells storing individual bit
values in each of the cells. Memory access time is less in
SRAM, so speed of the static RAM is high. Distributed
Arithmetic provides cost-effective and area-time efficient
computing structures. Digital Finite Impulse Response
(FIR) filters are essential building blocks in most Digital
Signal Processing (DSP) systems. A large application area
is telecommunication, where filters are needed in receivers
and transmitters, and an increasing portion of the signal
processing is done digitally [2, 3]. However, power dissipa-
tion of the digital parts can be a limiting factor, especially
in portable, battery-operated devices. Scaling of the feature
sizes and supply voltages naturally helps to reduce power.
For a certain technology, there are still many kinds of
architectural and implementation approaches available to
the designer. Due to the advancement in Very Large Scale
Integration (VLSI) technology, realization of FIR filters is
done in Application Specific Integrated Circuits (ASIC)
and Field-Programmable Gate Arrays (FPGA) platforms.

2.  FIR Filter with Multiplier
In signal processing, a finite impulse response (FIR) filter is
a filter whose impulse response is of finite duration, because
it settles to zero in finite time. This is in contrast to infinite
impulse response (IIR) filters, which may have internal
feedback and may continue to respond indefinitely.

The Figure 1 shows discrete time FIR filter of order N.
The top part is an N-stage delay line with N + 1 taps. Each
unit delay is a z−1 operator in Z-transform notation. The
output y of a linear time invariant system is determined by

convolving its input signal x with its impulse response h.
For a discrete-time FIR filter, the output is a weighted sum
of the current and a finite number of previous values of the
input. The operation is described by the following equation,
which defines the output sequence y[n] in terms of its input
sequence x[n]:

	 y(n) b x(n) b x(n 1) b x(n N)0 1 N= + − + + −

	
= b x(n i)i

i 0

N
−∑

= �
(1)

where,

x[n] is the input signal,
y[n] is the output signal,
bi are the filter coefficients, also known as tap weights

that make up the impulse response.

The transfer function of the FIR filter is

	 H(Z) Z {h(n)}=

	
= h(n) z n

n 0

−

=
∑
N

	
= b zn

n

n 0

N −

=
∑

�
(2)

FIR filters are clearly Bounded Input Bounded Output
(BIBO) stable system, since the output is a sum of a finite
number of finite multiples of the input values. h (n) is the
impulse response of the filter.
Third order FIR Filter (Figure 2):

N order filter has,

Coefficients N•	 +1
Multiplier N•	 +1
Adder N.•	

 Figure 1.  FIR filter with multiplier.

Figure 2.  3rd order FIR filter.

6_5_12.indd 4486 5/30/2013 11:11:23 AM

M. Yazhini and R. Ramesh 4487

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (5) | May 2013

Output of 3rd order FIR filter is

	
y(n) h(k)x(n k)

k 0

3
= −∑

=

	

y (n) h(0) x(n) h(1) x(n 1)
h(2) x (n 2) h(3) x (n 3)

= + −
+ − + − � (3)

For 3rd order FIR filter required 4 coefficients, 4 multipli-
ers and 3 adders. For this output requires 4 multiplication
and 3 addition operation. Multiplication is the strongest
operation. It require large portion of chip area. Power con-
sumption is more.

3.  FIR Filter with Distributed
Arithmetic Architecture

3.1  Distributed Arithmetic
Distributed Arithmetic (DA) technique is bit-serial in
nature. It is actually a bit-level rearrangement of the
multiply and accumulation operation. The basic DA is a
computational algorithm that affords efficient implementa-
tion of the weighted sum of products, or dot product. DA
is a bit-serial operation used to compute the inner (dot)
product of a constant coefficient vector and a variable input
vector in a single direct step and is given by

	
y A xk k

k 1

K
= ∑

= �
(4)

where,
y    - Output response
Ak - Constant filter coefficients
Xk - Input data

Let Xk be a N-bits and can be expressed in scaled two’s com-
plement number as

	
x b b 2k k0 knn 1

N 1 n= − + ∑
=

− −

�
(5)

Substituting Xk into equation y,

	
y A b b 2k

k 1

K

k0 knn 1

N 1 n= ∑ − + ∑
= =

− −









	
y b .A (b .A)2k0 k

k 1

K

kn k
n

n 1

N 1

k 1

K
= − ∑ + ∑∑

=

−

=

−

=











Rearranging the summation based on power terms and
then grouping the sum of the products,

y b .A [b .A b .Ak0 k
k=1

K
1n 1 2n 2

n=1

N 1
b .A] 2Kn K

n= − ∑ + + + +∑
−

−

The final formulation,

	
y A .b A .b 2k k0

k 1

K

k kn
k 1

K

n 1

N 1 n= − ∑ + ∑∑
= ==

− −









�
(6)

3.2  FIR Filter Realization using DA
The DA of FIR filter consists of Look Up Table (LUT), Shift
registers and scaling accumulator. In DA all the cumulative
partial product outcomes are precomputed and stored in a
Look Up Table (LUT) which is addressed by the multiplier
bits. A filter with N coefficients the LUT has 2N values.

In the above equation, each term inside the brackets
indicates a binary AND operation involving a bit of the
input variable and all the bits of the constant. The plus signs
denote arithmetic addition operations. The exponential
factors denote the scaled parts of the bracketed pairs to the
total sum. Using this, a look-up table can be constructed
that can be addressed by the same type of scaled bit of all
the input variables and can access the sum of the terms
within each pair of brackets.

From equation 6, A .bk kn
k 1

K

=
∑









 has only 2K possible

values and it can be pre calculated for all possible values
of b1n b2n …bKn… We can store these in a look-up table
of 2K words addressed by K bits. For e.g., if the number of
inputs is 4, then the LUT will have 24 = 16 memory words.

Each product term consists of a variable (signal) and
a constant (coefficient) both in fixed point binary format
but not necessarily of the same word length; Rather than
compute the product on a term by term basis, the partial
products of all terms are computed simultaneously, and in
the time it would take to compute a single partial product
on bit by bit basis. These partial products are generally the
filter coefficients. These partial product filter coefficients of
all terms are cumulated on bit by bit basis .Finally all the
cumulative partial products of each bit are added and the
result is produced.

In DA, all the cumulative partial product outcomes
are precomputed and stored in a look up table which is
addressed by the multiplier bits. All input variables are

Figure 3.  FIR filter using Look Up Table.

6_5_12.indd 4487 5/30/2013 11:11:26 AM

FIR Filter Implementation using Modified Distributed Arithmetic Architecture4488

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (5) | May 2013

sequenced simultaneously, bit serial first to address the
LUT; its outcome is added to the accumulated partial
products. The complete dot product computation takes M
clocks where M is the number of input variable bits, and is
independent of the number of input variables. During the
first iteration, the Least-Significant Bits x0(n), x0(n-1),..., of
the K input samples form an K-bit address to the Look Up
Table for f(x,0), and that table’s output becomes the initial
value of the accumulator. During the second iteration, the
next-to-least significant bits x1(n), x1(n-1),..., x1(n-K+1)
of the K input samples form another K-bit address to the
lookup table for f(x,1), and the adder sums the Look up
Table output to the contents of the accumulator shifted by
one bit. This process continues until the last iteration, where
the most-significant bits xN-1(n), xN-1(n- 1),..., xN-1
(n-K+1) of the K input samples form an K-bit address to
the Lookup Table for f(x, N-1) and the adder sums the Look
up Table output to the contents of the accumulator after
shifting it to the corresponding position [5].

3.3  DA Technique for 3rd Order FIR Filter
 Coefficients = 4
No.of inputs = 4
     LUT size = 24 = 16 memory location

In this method possible outputs are pre computed and
stored in LUT.LUT addressed through input of the filter.
For 4 tap filter,4 tap represents the no. of co-efficient of the
filter as well as it represents the no. of inputs to the filter
and address bit for the LUT.

Each location has different output for the corresponding
inputs .The possible inputs for this filter is 0(0000) -
15(1111).For each input the computation of output is easy
by using this technique.

	 Input •	 = 1011 means
	Output •	 = 1.h0 + 0. h1 + 1. h2 + 1.h3

	 = h0+h2+h3

	 Input •	 = 1111 means
	 Output = h0+ h1+h2+h3

	 Input •	 = 0101 means
	 Output = h1+h3

	 Input •	 = 1010 means
	 Output = h0+h2

It represents the addition of high level input co-efficient.
We can easily find 16 output for corresponding input with-
out any mathematical calculation. Table 1 shows the content
of the LUT for 3rd order filter.

For Example:
Input = X0, X1 ,X2 ,X3
  X0 = 1011=11
  X1 = 1101=13
  X2 = 1010=10
  X3 = 1001=9
   h0 = h1 = h2 = h3 = 1

Step 1:
Store the values in input buffer.

X0[0] X1[0] X2[0] X3[0] =1101
X0[1] X1[1] X2[1] X3[1] =1010
X0[2] X1[2] X2[2] X3[2] =0100
X0[3] X1[3] X2[3] X3[3] =1111

Step 2:
Read the values from LUT for corresponding values in
buffer.

Output of LUT:

O1 = 0011 = 3
O2 = 0010 = 2
O3 = 0001 = 1
O4 = 0100 = 4

Step 3:
If the value is multiplied by 2, it implies left shift.

Output = O1 + Shift the value of O2 one time + Shift the
value of O3 2 times + Shift value of O4 3 times.
Output = 3 + 4 + 4 + 32 = 43.

Table 1.  LUT table for 3rd order filter

Address Data

0000 0
0001 h3

0010 h2

0011 h2 + h3

0100 h1

0101 h1 + h3

0110 h1 + h2

0111 h1 + h2 + h3

1000 h0

1001 h0 + h3

1010 h0 + h2

1011 h0 + h2 + h3

1100 h0 + h1

1101 h0 + h1 + h3

1110 h0 + h1 + h2

1111 h0 + h1 + h2 + h3

6_5_12.indd 4488 5/30/2013 11:11:26 AM

M. Yazhini and R. Ramesh 4489

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (5) | May 2013

Disadvantage
A filter with N coefficients the LUT has 2N values. For
higher order filter LUT size will increase, it required more
memory space.

3.4  LUT Partitioning
The above technique holds good only when we go for lower
order filters. For higher order filters, the size of the LUT
also increases exponentially with the order of the filter. For
a filter with N coefficients, the LUT have 2N values. This in
turn reduces the performance.

Therefore, for higher order filters, LUT size to be
reduced to reasonable levels. To reduce the size, the LUT
can be subdivided into a number of LUTs, called LUT
partitions. Each LUT partition operates on a different set
of filter taps. The results obtained from the partitions are
summed [4].

Suppose the length LK inner product, then Eq.6
becomes

	
y A xk k

k 1

LK
= ∑

= �
(7)

Then the sum can be partitioned into L independent Kth
parallel DA LUTs resulting in

	
y X ALI LI n

n 0

N 1

l 0

L 1
= +∑∑ +

=

−

=

− 








�

(8)

For 3rd order filter

Number of partition •	 = 2
2 LUT tables are used .Each has 2 inputs•	
Memory location •	 = no .of partition * 2n

	 = 2*22

	 = 8 location
n •	 = number of inputs of LUT

3.5  3rd Order FIR Filter with Partition
Method:
LUT is divided into LUT 1&LUT 2.Each LUT has 2 inputs
and 4 memory location. It shown in figure 4.

Input = 1011 means
First 2 bits are address bit of LUT 1, output becomes 10 = h0

Remaining 2 bits are address bit of LUT 2, output
becomes 11 = h2 + h3

Output = output of LUT1 + output of LUT 2 = h0+
h2 + h3

In this method the memory location reduced to 8 loca-
tions. Previous method 16 memory location required to
produce the same output.

3.6  Summary
3rd order FIR filter:

Normal method use
4 multiplier
3 adders

In DA technique
Memory location = 24 =16 location

LUT partition method
Memory location = 2*22 = 8 location

3.7  Realization of 16 Tap Fir Filter using
Partial Tables
For 16-tap filter:

No Partition•	
Memory locations = 216 = 65,536
Partition 8•	
Partial Tables = 8; each with 2 inputs
Memory locations = 8* (22) = 32

It shown in Figure 5.
Partition 4•	
Partial Tables = 4; each with 4 inputs
Memory locations = 4 * (24) = 64
Partition 2•	
Partial Tables = 2; each with 8 inputs
Memory locations = 8 * (28) = 2048
16 tap Fir filter:

Advantages:
Power consumption is reduced.•	
Memory access time is less than multiplication time.•	
It reduces area and system latency.•	

Figure 4.  3rd order FIR filter with partition method.

6_5_12.indd 4489 5/30/2013 11:11:28 AM

FIR Filter Implementation using Modified Distributed Arithmetic Architecture4490

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (5) | May 2013

Table 3.  Performance Analysis – Area (slice)

Filter
tap

Address
size

No
partition Partition 8 Partition 4 Partition 2

4

2 82 - - 32
4 134 - - 55
8 245 - - 110

16 460 - - 221

8

2 2097 - 66 171
4 3362 - 127 277
8 5893 - 250 490

16 10953 - 495 915

16

2 - 142 348 4203
4 - 276 564 6731
8 - 529 989 11781

16 - 1038 1845 21886

Figure 5.  16 tap Fir filter with partition 8.

4.  Result Analysis

Table 2.  Performance Analysis-LUT

Filter
Tap

Address
Size

No
Partition Partition 8 Partition 4 Partition 2

4

2 155 - - 59
4 255 - - 102
8 472 - - 204

16 892 - - 408

8

2 3872 - 120 319
4 6283 - 233 526
8 11106 - 458 940

16 20748 - 910 1768

16

2 - 261 647 7718
4 - 508 1064 12495
8 - 963 1882 22041

16 - 1894 3534 41141

Figure 6.  Performance Analysis-LUT.

Table 2 represents the number of look up tables for
various partitions.

The number of look up tables is reduced by using
partition 8 method which shown in figure 6.

Table 3 represents the number of slices (area) for various
partitions.

The area of 16 tap FIR filter is reduced by using parti-
tion 8 method which is shown in Figure 7.

6_5_12.indd 4490 5/30/2013 11:11:30 AM

M. Yazhini and R. Ramesh 4491

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (5) | May 2013

Table 4.  Performance Analysis – Delay (ns)

Filter
tap

Address
size

No
partition

Partition 8 Partition 4 Partition 2

4

2 24.587 - - 19.409
4 29.105 - - 23.962
8 39.853 - - 33.128

16 59.745 - - 53.150

8

2 38.794 - 25.52 26.973
4 44.825 - 30.472 32.203
8 55.848 - 40.352 42.181

16 76.621 - 59.904 62.217

16

2 - 29.922 30.729 40.472
4 - 34.871 35.95 45.986
8 - 43.69 45.873 56.884

16 - 63.154 65.909 77.801

Figure 7.  Performance Analysis-Area.

Figure 8.  Performance Analysis-Delay.

The number of look up tables is reduced by using parti-
tion 8 method which shown in Figure 7.

The delay is reduced due to partition 8 method which is
shown in Figure 8.

The area of 16 tap FIR filter is reduced by using parti-
tion 8 method which is shown in Figure 8.

The delay is reduced due to partition 8 method which is
shown in Figure 9.

5.  Conclusion and Future Work
Finite Impulse Response filter plays an important role
in many Digital Signal Processing applications. In this
method, the multiplier less FIR filter is implemented using
Distributed Arithmetic which consists of Look Up Table
and then partitioning is involved. Memory access time
is less than multiplication time. LUT partition reduces
memory requirements. This technique reduces the delay,
area, power consumption. The performance can be further
improved by pipelining all the partial tables. This architec-
ture provides an efficient area-time power implementation
which involves significantly less latency and less area-delay
complexity when compared with existing structures for
FIR Filter.

6.  References
1.	 Kyung-Saeng K, Lee K (2003). Low-power and area efficient

FIR filter implementation suitable for multiple tape, Very
Large Scale Integration (VLSI) Systems, vol 11, No 1.

2.	 Meyer-Base U (2004). Digital Signal Processing with Field
Programmable Gate Arrays, 2nd Edn., Chapter 2, 60–66.

3.	 Meyer-Base U (2004). Digital Signal Processing with Field
Programmable Gate Arrays, 2nd Edn., Chapter 3, 112–113.

4.	 Meher P K (2006). Hardware efficient systolization of DA-
based calculation of finite digital convolution of finite digital
convolution, IEEE Transactions on Circuit and Systems II:
Express Briefs, vol 53(8), 707–711.

5.	 Meher P K, Chandrasekaran S et al. (2008). FPGA realization
of FIR filters by efficient and flexible systolization using dis-
tributed arithmetic, IEEE Transactions on Signal Processing,
vol 56(7), 3009–3017.

Table 4 represents the path delay for various partitions.

6_5_12.indd 4491 5/30/2013 11:11:33 AM

