
Providing a New Optimization Structure
for Quickening the Performance of the

Unstructured Solicitations
Shahla kiani1*, Hossein Shirazi2 and Mahdi Javanmard3

1 Graduate Student of PNU University, Tehran, Iran; Sh.kiani.h@gmail.com
2 Department of Computer Engineering, Malek-Ashtar University of Technology, Tehran, Iran; shirazi@mut.ac.ir

3 Department of Computer Engineering, Payam Noor University, Tehran, Iran; javanmard@pnu.ac.ir

Abstract
Through this paper, we will demonstrate that how we can decrease the performance duration of the solicitations on XML
large files; and why such files can’t be read as a single file through the memory; or why doesn’t the typical detection and
derivation mechanism of XML (e.g. DOM – SAX) perform quickly for implementing solicitations, or why are they ineffective
during processing. We defined a new concept as Skeletal Documents that is preserved and maintained in memory as a file,
which by using of parser is read PULL. This affair is used to show the document structure and to select its components.

Keywords: XML-Documents, Skeletal Documents, Query, Unstructured, Semantic Web

1.  Introduction
The problem of transmitting XML large files has been
identified from years ago, and the best way to examine
it is using STX method, which is a XML - based lan-
guage for transmitting XML documents to other XML
documents without producing an entire tree in memory.
STX defines new transmitting language and questions,
which add some limitations to standard XPath and
XSLT. The object of such conversions is supporting that
alternative patterns can be applied during conducting
conditions in events which continuously and consecu-
tively is perceived from a XML analyzer.STX depends
on a data sample, which saves a node of the tree and
a pile of its parents to the root during a certain period
of time. Our procedure is a similar providing as well
as STX structure, but it’s much more moderate in the
object completion. [1]

2.  SAX
SAX that is an abbreviation for Simple API for XML is not a
parser, but a Standard Interface which is set up by different
parsers. Such an API contains several interfaces. SAX uses
Stream Model to pars; i.e. XML document is converted into
a stream of element by such a parser. Also XML document
is once reviewed by parser and a tree schema is not created
by this parser. So SAX is really useful, but it’s not appropriate
for advance tasks on document, for it requires designing and
creating a schema at performance duration by developer that
takes a long time and is error – prone (Figure 1).

3.  DOM
Document Object Model is an interface independent to
the language and the platform. Unlike to SAX, For access-
ing and updating XML document, DOM access to XML

* Corresponding author:
Shahla kiani (Sh.kiani.h@gmail.com)

Indian Journal of Science and Technology

Providing a New Optimization Structure for Quickening the Performance of the Unstructured Solicitations4464

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (5) | May 2013

documents via a structural tree, which is made from
element nodes and text nodes (Figure 2).

This tree is produced in memory, thus it requires much
memory, when using DOM. The advantage of DOM is that
programming through it is much easier and simpler than
SAX [2]. DOM tree is created just by using some lines of
programming code, and it could be traversed toward any
side, as it is produced.

4.  XSLT
Extensible Stylesheet Language Transformation is applied
to convert XML documents to any desirable format such as
HTML, WML, XHML and so on. An engine or transformer

processor takes a XML document as an input and as
you can see at Figure 3, turns it into a new document by
XML.[3, 4]

5.  Providing an Optimization
Structure
XML is on the basis of a steady, simple and powerful model
of data organization of generalized tree diagram. Left part
of the Figure 4 shows a small XML file, which describe ini-
tial and basic marking. An optional name is given to a tree
node between two marks, < and > that is called Initial Tag.
Each thing which is corresponding to get a final tag forms
content that could be a tree by itself. Components can
contain characteristic data and composition characteristic

Figure 1.  SAX Procedure.

XML
Document

Provided
Handler

Input

Parser

Events

Figure 2.  DOM Procedure.

XML
Document

Input

Parser

Tree

Figure 3.  XSLT Procedure.

XML
Document

XML
Stylesheet

XML
Document

Input

XSLT
Engine

Document

Figure 4.  XML file and tree diagram corresponding to it.

Shahla kiani, Hossein Shirazi and Mahdi Javanmard 4465

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (5) | May 2013

components. XML elements having no contents with an
immediate final tag can be shown that follow initial tag and
can be shortened as a tag with no components.

One of the basic problems is the size of XML files, which
can be developed very rapidly, and this makes accessing to
their contents difficult and complex. Detection and deriva-
tion devices of XML files depend on XPath processors that
evaluate the textual expression on the basis of tree struc-
ture toward data kind and location in the tree. To assess
such expressions, XPath processor reads and makes firstly
the file in the memory and inside tree structure of the file
toward the evaluated phrase. Such a problem is not for
small files, but it’s problematic for larger files. It means tree
structure file in memory is larger than the basic file, so it
decreases the speed of the performance and response to
requests on a XML file. To derive some small parts of the
large textual files, we often recourse frequent and continual
reading of each line, and decide for each one of the lines in any
condition whether or not they are saved in memory [2, 5].
Utility and usefulness of this method is possible accord-
ing to Grep operation so that it reads a file line by line and
copies only the ones in a file, which are in conformity with
regular expressions. [7]

Grep procedure is not useful for XML files with tree
structure, because regular expression technique can’t con-
sider tags replacement structure, and the worse matter is
that most of XML files are produced just from one line, for
lines end do not mean any special and particular concept
except for ordering characters present in XML file.

That is the tree structure, which is important and
should be considered for derivation process. Through this
paper, we have provided an equivalent line in XML file with
tree structure, for being able to process the file continually
with evaluating the limited shape and form of XML file,

but useful of XPath expression to select some parts of XML
documents without applying loading total structure of the
tree in memory after evaluating regular expression and
beneficial using of the memory.

The XPath expressions about evaluating nodes can be
applied for perception of the structure of a XML docu-
ment, and this output with limited and certain line can
be composed with other Unix devices. As an instance, the
direction of the first column content of Figure 5 is demon-
strated content in central column of Figure 5 that shows the
number of regular expressions on the basis of different level
in XML document tree and repetition of regular expression
and shows them in terms of a frequency reduction order
and alphabetic order in equivalent repetition number.

	 Sort/ uniq – c/ sort – n – r – s – t –

We can introduce a simpler form and format to show the
quantity, we wanted them to be systematic and regular
XPath expression and not to change the method funda-
mentally. When we know the form of the created structure
by -nodes in XML file, one of X Path expressions could be
used for deriving the considered node efficiently that this is
possible by evaluating its increasing in skeletal documents
that is made by applying a same process [6].

Figure 5 shows the evaluation results of r/b/c in content
of Figure 4. This structure is one of the formed standard
XML documents, which is the content of the file node in
accordance with XPath expression. The root elements
names can be customized with order line reasoning and the
style sheet of preceding XSLT can be used for each derived
group. This allows deriving parts of XML file by using XPath
expression within an appropriate and useful space, which
is evaluated just in skeletal documents. XPath expressions
are not limited only to the regular expressions that are

Figure 5.  XPath Expression and its Content Description.

Providing a New Optimization Structure for Quickening the Performance of the Unstructured Solicitations4466

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (5) | May 2013

produced by detection mechanism, but they should begin
from the root, not from grandchild and grandchildren for
every branch and sub-branch. If not the survey would be
more complex and takes longer time, and addressing in
each level would not be directly. In addition, to research the
document other than this mode the entire branch should
be loaded in memory that is not an appropriate method for
optimizing memory utilization and decreasing the survey
duration.

	 <root>
	 <c id=lli311>e</c>
	 <c id=li4”>f</c>
	 </root>

5.1  The Detection of XML File
We show how we create the settings of the skeletal docu-
ments using single transit XML analyzer. Pull analyzer,
which is available from Java 1.6 as an API Stream for XML
(STAX) allows the programmer to control when reading
a XML file via pointer concept that reviews documents
length from the outset to the end. The pointer can only
move toward ahead and points to a separate point in XML
file. Just a small part of the entire XML document requires
loading in memory in every time, so this procedure is really
effective in memory utilization.

Since the programmer control that when there is a mark
in a pointer, what is it called, there is a possibility of textual
information storage in reviewing the mark. A mark can be
an initial tag, a final tag, character content and so on.

To show the existent information setting in skeletal doc-
uments, we read each mark and produce a DOM structure.

When we move forward in XML file, skeletal docu-
ments are made as additive XML file and are produced as
mark by mark as shown in algorithm 1.

Algorithm.1. The Detection of XML File Using skeletal
Documents

While there are tokens left in the XML file do
token←next token
if tokenis a start-tag then
convert token to an element node;
add it as child of the bottom node of the skeleton document;
output the XPath expression describing the leaf of the
document
else if tokenis a character-data then

convert token to a text-node;
add it as child of the bottom node of the skeleton
document;
output the XPath expression describing the leaf of this
document;
remove this character-element from the skeleton document
else if tokenis an end-tag then
remove the bottom node of the skeleton document
else if tokenis a whitespace only element then
skip it

5.2  Nodes Derivation from XML File
When only several nodes require to be extracted from XML
file, internal structure for the entire file completely takes
time for preserving some nodes after evaluation. Ideally,
it is desirable to evaluate XPath expression in a structural
dynamic structure as the file is read.

To do so, we suggest that the evaluation of XPath
expression in skeletal documents is limited so that it
could be made increasingly in a single transit XML file as
described through the previous chapter. To assess XPath
expression along skeletal document for similar results as
well as the evaluation along the entire document, virtual
XPath expression language was somehow limited with fol-
lowing restrictions.

XPath expression should return a list of nodes, not a
numeral quantity, boolean and string or so, but it can
return a textual node.

•	 Expressions should be started from the root and show
each phase of the tree, not grandchild and grandchil-
dren.

•	 Predicates expression should not point to adjacent nodes
in a branch of the tree, but should point to situations
that adjacent nodes have in a branch (brother – sister)

Table 1.  Examples of division and separation process

XPath expression Parts

/r/b/c /r
/r/b

/r/b/c
/r/b [substring(©id, 2)

>111”J / c
/r

/r/b[substring(©id,2»11”J/c

Shahla kiani, Hossein Shirazi and Mahdi Javanmard 4467

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (5) | May 2013

or the number of adjacent nodes in a branch (brother –
sister).

•	 Predicative expression can’t use any variable XSLT.

To develop the evaluation usefulness of XPath expression,
we applied the tree structure of the documents and XPath
expression in accordance with increasing each phase of the
tree. XPath expression is divided into parts, which will be
evaluated as skeletal documents. While a phase includes
a predicate, the divided components and parts are in
equivalence with the phases of XPath expressions. Since a
predicate evaluation can’t predict measures and values for
low parts of the tree, XPath expression is queried to the
final phase.

Algorithm.2: shows the process of the production of Xpath
expression as in XML file moves forward.

While there are tokens left in the XML file do
token←next token;
i = 0
if tokenis a start-tag or character data then
if i < n−1 then
convert token to a node (element or text node);
add this node at the bottom of the skeleton document;
if part i of XPath matches the skeleton document then
i = i+ 1;
continue the while loop;
Else {no match}
if token is a start-tag then
skip the rest of this element (including embedded
elements)
else {i = n−1}
if token is a start-tag then
read the rest of the current element;
create an element node with its content
else{token is character-data}
convert the character-data to a text-node
add the created node at the bottom of the skeleton docu-
ment;
if the last part of the XPath matches the skeleton document
then
output the node as result
remove the bottom element of the skeleton document

else if tokenis a end-tag then
i = i−1;
remove the bottom element of the skeleton document

6.  Performance and Establishment
To find how applicable is this procedure on XL real data,
we did some establishments, and previous parts show
about three rather large files which are made to relate with
dictionary files.

As represented in the following table, the results
achieved from these experiments and assessments demon-
strate that skeletal documents structure is effective enough
to extract information from XML large files.

Times are per millisecond and are performed with 2.6
gigahertz Core 2 Duo in Windows-7.

7.  Conclusion
Through this paper, we described a simple procedure to
extract XML file contents and improve its contents using
devices based on line. We also examined Grep devices to
select nodes in XML file, and created a new XML file called
skeletal documents so that using the method we do not
need to save the entire file in memory.

This method could be fulfilled on hundreds lines of codes
and doesn’t require complex database, or a new formalism

XPath expression Recommended Method Joost

Dubois 5.7 6.3
Morphalou 7.7 13.9
GCIDE 10.9 16.1
XMark 6.4 18.1

Providing a New Optimization Structure for Quickening the Performance of the Unstructured Solicitations4468

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (5) | May 2013

or an interpreter. The results also show speed increasing
and searching time decreasing in XML large files.

8.  References
  1.	 Cimprich P, Becker O et al. (2011). Streaming transformations

for XML (STX). Technical report, Available from: http://stx.
sourceforge.net/documents/spec-stx-20070427.html.

  2.	 Damiani E, di Vimercati S D et al. (2010). Securing XML
documents, Proceedings of the 7th International Conference
on Extending Database Technology (EDBT2000), 121–135.

  3.	 Chamberlin D, Florescu D et al. (2008). XQuery Update
Facility 1.0, World Wide Web Consortium (W3C), Available

from: http://www.w3.org/TR/2008/CR-xquery-update-10-
20080314.

  4.	 Java TM Platform, Standard Edition 6 API Specification,
Available from : http://java.sun.com/

  5.	 Özsu M T, Valduriez P (2009). Principles of distributed
database systems, Prentice-Hall International, Upper Saddle
River, N.J.

  6.	 Sandhu R, Coyne E et al. (2007). Role-Based Access Control
Models, IEEE Computer, vol 29(2), 38–47.

  7.	 Sandhu R, Bhamidipati V et al. (2007). The ARBAC97
model for role-based administration of roles, ACM
Transaction on Information and Systems Security, vol
2(1),105–135.

