Some new types of stabilizers in BL-algebras and their applications

R.A. Borzooei ${ }^{1}$ and A. Paad ${ }^{2}$
${ }^{1}$ Rajab Ali Borzooei, Department of Mathematics, ShahidBeheshtiUniversity, Theran, Iran
${ }^{2}$ Akbar Paad, Department of Mathematics, ShahidBeheshtiUniversity, Theran, Iran
borzooei@sbu.ac.ir,a_pad@sbu.ac.ir

Abstract

In this paper we introduce some new types of stabilizers in BL-algebras and we state and prove some theorems which determine the relations among stabilizers, MV-algebras and G "odel algebras. We define the concept ofZRScondition in BL-algebras and we find a relation between this class of BL-algebras and MV-algebras. Finally, we show that the (semi) normal filters and fantastic filters are equal in BL-algebra.

Keywords: BL-algebra, MV -algebra, G "odel algebra, fantastic filter, stabilizer filter, normal filter.
Mathematical subject classification (2000): 06D33, 06E 99, 03G 25

Introduction

BL-algebras are the algebraic structures for H'ajek's Basic logic [7], in order to investigate many valued logic by algebraic means. His motivations for introducing BLalgebras were of two kinds. The first one was providing an algebraic counterpart of a propositional logic, called Basic Logic, which embodies a fragment common to some of the most important many-valued logics, namely LukasiewiczLogic, G"odelLogic and Product Logic. This Basic Logic (BL) is proposed as "the most general" manyvalued logic with truth values in $[0,1]$ and B-algebras are the corresponding Lindenbaum-Tarski algebras. The second one was to provide an algebraic mean for the study of continuous t-norms (or triangular norms) on $[0,1]$. Most familiar example of a BL-algebra is the unit interval $[0,1]$ endowed with the structure induced by a continuous t-norm. In 1958, Chang introduced the concept of an MValgebra which is one of the most classes of BL-algebras. MV-algebra, G "odel algebra and product algebra are the most known classes of BL- algebras. H'ajekin [7]introduced the notions of filters and prime filters in BLalgebra and by using the prime filters of BL-algebras, he proved the completeness of BL. Filter theory plays an important role in studying these algebras. From logical point of view, various filter correspond to various set of provable formulas. Turunen[12, 13], studied some properties of filters and prime filters of BL-algebra (He called them deductive system and prime deductive system respectively). Now, in this paper we follow [3, 9], and we introduce some new types of stabilizers in BLalgebras and we state and prove some theorems which determine the relationship between stabilizers, MValgebras and G"odelalgebras. We prove that $F(L)$ (the set of all filters on BL-algebras L) is a pseudocomplemented lattice. In the follow, we define the concept ofZRS-condition in BL-algebras and we show that, this class of BL-algebras are exactly MV-algebras and by using this condition we prove that the (semi) normal filters are exactly fantastic filters. Finally we answer to open problems that have been appeared in [3].

Definition 2.1: [7] A BL-algebra is an algebra (L, \wedge, \vee, \odot, $\rightarrow, 0,1)$ with four binary operations $\wedge, \vee, \odot, \rightarrow$ and two constant 0,1 such that
(BL1) $(L, \wedge, \vee, 0,1)$ is a bounded lattice,
(BL2) $(L, \odot, 1)$ is a commutative monoid,
(BL3) $c \leq a \rightarrow b$ b if and only if $a \bigodot_{c} \leq b$, for all $a, b, c \in L$,
(BL4) $a \wedge b=a \odot(a \rightarrow b)$,
(BL5) $(a \rightarrow b) \vee(b \rightarrow a)=1$.
A BL- algebraLis called a G"odelalgebra, if $a^{2}=a \odot a=$ a, for all $a \in L$ and BL-algebra L is called an MV algebra, if $\left(a^{*}\right)^{*}=a$ or equivalently $(a \rightarrow b) \rightarrow b=$ $(b \rightarrow a) \rightarrow a$, for alla, $b \in L$, where $a^{*}=a \rightarrow 0$.
Lemma 2.2.[4, 5, 7] In each BL-algebra L, the following relations hold for all $a, b, c \in L$:
(BL6) $a \odot b \leq a, b, a \odot b \leq a \wedge b, a \odot 0=0$,
(BL7) $a \leq b$ implies $a \odot c \leq b \odot c$,
(BL8) $a \leq b$ if and only if $a \rightarrow b=1$,
(BL9) $1 \rightarrow a=a, a \rightarrow a=1, a \leq b \rightarrow a, a \rightarrow 1=1$,
(BL10) $a \odot a^{*}=0,1 \odot a=a, 0 \rightarrow a=1$,
(BL11) $a \odot b=0$ if and only if $a \leq b^{*}$,
(BL12) $a \rightarrow(b \rightarrow c)=(a \odot b) \rightarrow c=b \rightarrow(a \rightarrow c)$,
(BL13) if $a \leq b$ then $b \rightarrow c \leq a \rightarrow c$ and $c \rightarrow a \leq c \rightarrow b$,
(BL14) $a \vee b=((a \rightarrow b) \rightarrow b)) \wedge((b \rightarrow a) \rightarrow a))$,
(BL15) $\left(a^{* *} \rightarrow a\right)^{*}=0,\left(a^{* *} \rightarrow a\right) \vee a^{*}=1$.
Definition 2.3.[2, 5, 7, 8, 12] Let F be a non-empty subset of BL- algebra L. Then:
(i) F is called afilter of L, if $x, y \in F$ implies $x \odot y \in F$ and $x \in F, x \leq y$ imply $y \in F$,for all $x, y \in L$.
(ii) D is called adeductive system of L, if $1 \in D$ and if $x \in$ D and $x \rightarrow y \in D$, then $y \in D$, for all $x, y \in L$.
(iii) F is called a fantastic filter,if1 $\in F$ and $z \rightarrow(y \rightarrow x) \in$ F and $z \in F$ imply $((x \rightarrow y) \rightarrow y) \rightarrow x \in F$, for all $x, y, z \in L$. (iv) A filter F is called aprime filter, if $x_{\vee} y \in F$ implies $x \in$ For $y \in F$, for all $x, y \in L$.
(v) A filter F is called anormal filter, if $(y \rightarrow x) \rightarrow x \in$ F, then $(x \rightarrow y) \rightarrow y \in F$, for all $x, y \in L$.

Definition 2.4.[6]Let L be a BL-algebra and $X \subseteq L$. The filter of L generated by X will be denoted by $\langle X\rangle$. We have that $\langle\emptyset\rangle=1$ and if $X \neq \emptyset$,
$<X>=\left\{y \in L \mid x_{1} \odot \ldots \odot x_{n} \leq y\right.$ for some $n \in \mathbb{N}$ and $x_{1}, \ldots, x_{n} \in X$ \}.
Theorem 2.5. [8, 11] Let F be a filter of BL-algebra L. Then
(i) every filter of L is a fantastic filter if and only if L is an MV-algebra.
(ii) F is a fantastic filter if and only if $((x \rightarrow 0) \rightarrow 0) \rightarrow x \in F$,for all $x \in L$.
(iii) Let $F \subseteq G$ where F be a fantastic filter and G be a filter. Then G is a fantastic filter.
Theorem 2.6. [7] Let F be a filter of BL-algebra L. Then the binary relation \equiv_{F} on L which is defined by
$x \equiv_{F} y$ if and only if $x \rightarrow y \in F$ and $y \rightarrow x \in F$
is a congruence relation on L. Define ., $\lrcorner, \sqcup, \Pi \circ \frac{L}{F}$, the set of all congruence classes of L, as follows :
$[x] .[y]=[x \odot y],[x]-[y]=[x \rightarrow y]$,

$$
[x] \sqcup[y]=[x \vee y], \quad[x] \sqcap[y]=[x \wedge y]
$$

Then $\left(\frac{L}{F}, ., \rightarrow, \sqcup, \Pi,[0],[1]\right)$ is a BL-algebra which is called quotient BL-algebra with respect to F.
Theorem 2.7.[4,14] Let P be a proper filter of BL-algebra L. Then P is a prime filter if and only if_{P}^{L} is a BL-chain.
Definition 2.8.[1]An element a of lattice L with bottom element 0 is called anatom, if $0 \prec a$ where $x \prec y$ means that $x<y$ and there is $\operatorname{noz} \in L \backslash\{0\}$ such that $x<z<y$. An element b of lattice L with top element 1 is called acoatom, if $b \prec 1$.
Definition 2.9. [1]For lattice L whit 0 and $a \in L, b \in L$ is called thepseudocomplementedof a, if $a \wedge b=0$ and for each $c \in L, c \wedge a=0$ implies that $c \leq b$. A lattice in which every element has a pseudocomplemented is called pseudocomplemented lattice.
Theorem2.10. [11] Let F be a filter of a BL-algebra L. Then we have F is a fantastic filter if and only if the quotient algebra $\frac{L}{F}$ is an MV-algebra.
Note.From now on, in this paper we let (L, \wedge, \vee $, \odot, \rightarrow, 0,1)$ or simply L is a BL-algebra, unless otherwise state.

Stabilizer filters in BL- algebras

In [9], the notion of stabilizer X, for any $\emptyset \neq X \subseteq L$, have been defined by $\{a \in L \mid a \rightarrow x=x, \forall x \in X\}$ and denoted by \bar{X}. But, in this paper we denoted \bar{X} by $\overrightarrow{S_{t}}$ r
(X) and we define the other notions such as $\overrightarrow{S t}_{l}(X)$ andSt ${ }_{\circ}(X)$.
Definition 3.1.Let $\emptyset \neq X \subseteq L$.Thenleft, right and product stabilizerof X is defined as follows:
$\overrightarrow{S t}_{l}(X)=\{a \in L \mid x \rightarrow a=x, \forall x \in X\}$

$$
\begin{aligned}
& \overrightarrow{S t}_{r}(X)=\{a \in L \mid a \rightarrow x=x, \forall x \in X\} \\
& S t_{\odot}(X)=\{a \in L \mid x \odot a=a \odot x=x, \forall x \in X\}
\end{aligned}
$$

Note: Let $\varnothing \neq X \subseteq L$, Since by (BL10), $1 \odot x=x \odot 1=x$,for all $x \in X$, then $1 \in S t_{\odot}(X)$ and so $S t_{\odot}(X) \neq \phi$. Moreover, since by (BL9), $1 \rightarrow x=x$, for all $x \in X$, then $1 \in \overrightarrow{S t}_{r}(X)$ and so $\overrightarrow{S t}_{r}(X) \neq \phi$.
Example 3.2.[8](i) Let $L=\{0, a, b, 1\}$ be a chain such that $0<a<b<1$ and operations \odot and \rightarrow on L are defined as follows:

\odot	0	a	b	1
0	0	0	0	0
a	0	0	0	a
b	0	0	a	b
1	0	a	b	1

	0	a	b	1
0	1	1	1	1
a	b	1	1	1
b	a	b	1	1
1	0	a	b	1

Then $(L, \wedge, v, \odot, \rightarrow, 0,1)$ is a BL-algebra and $\overrightarrow{S t}_{r}(\{a\})=\{1\}, \overrightarrow{S t}_{l}(\{a\})=\varnothing, S t_{\odot}(\{b\})=\{1\}$
(ii) LetL $=\{0, a, b, c, 1\}$, and operations $\wedge, \mathrm{v}, \odot$ and \rightarrow on L are defined as follows :

V	0	c	a	b	1
0	0	c	a	b	1
c	c	c	a	b	1
a	a	a	a	1	1
b	b	b	1	b	1
1	1	1	1	1	1

\wedge	0	c	a	b	1
0	0	0	c	0	0
c	0	c	c	c	c
a	0	c	a	c	a
b	0	c	c	b	b
1	0	c	a	b	1

\rightarrow	0	c	a	b	1
0	1	1	1	1	1
c	0	1	1	1	1
a	0	b	1	b	1
b	0	a	a	1	1
1	0	c	a	b	1

\odot	0	c	a	b	1
0	0	0	c	0	0
c	0	c	c	c	c
a	0	c	a	c	a
b	0	c	c	b	b
1	0	c	a	b	1

Then $(L, \wedge, v, \odot, \rightarrow, 0,1)$ is a BL-algebra and $\overrightarrow{S t}_{r}(\{a\})=\{1, b\}, \overrightarrow{S t}_{l}(\{1\})=\{1\}, S t_{\odot}(\{b\})=\{1, b\}$
Proposition3.3.Let $\emptyset \neq X, Y \subseteq L$. Hence,
(i) if $\overrightarrow{S t}_{l}(X)=\{1\}$, then $X=\{1\}$. Also, if $1 \in X$, then $\overrightarrow{S t}_{l}(X)=\{1\}$,
(ii) $\overrightarrow{S t}_{r}(\{1\})=S t_{\odot}(\{0\})=L$,
(iii) if $S t_{\odot}(X)=L$, then $X=\{0\}$,
(iv) if $X \subseteq Y$, then $\overrightarrow{S t}_{r}(Y) \subseteq \overrightarrow{S t}_{r}(X)$ and $S t_{\odot}(Y) \subseteq S t_{\odot}(X)$,
(v) $\overrightarrow{S t}_{r}(X) \cup \overrightarrow{S t}_{r}(Y) \subseteq \overrightarrow{S t}_{r}(X \cap Y)$ and $S t_{\odot}(X) \cup S t_{\odot}(Y) \subseteq$ $S t_{\odot}(X \cap Y)$,
(vi) $\overrightarrow{S t}_{r}(X \cup Y) \subseteq \overrightarrow{S t}_{r}(X) \cap \overrightarrow{S t}_{r}(Y)$ and $S t_{\odot}(X \cup Y) \subseteq$ $S t_{\odot}(X) \cap S t_{\odot}(Y)$,
(vii) ifF is a filter of L, then $S t_{\odot}(F)=\{1\}$ and $\overrightarrow{S t}_{l}(F) \subseteq F$.

Proof.(i) Let $\overrightarrow{S t}_{l}(X)=\{1\}$. Then by (BL9), $x=1 \rightarrow x=$ 1 , for all $x \in X$ and so $X=\{1\}$. Now, let $1 \in X$. Then by (BL9), for any $a \in \overrightarrow{S t}_{l}(X), a=1 \rightarrow a=1$ and so $\overrightarrow{S t}_{l}$ $(X)=\{1\}$.
(ii) By (BL6), $\overrightarrow{S t}_{r}(\{1\})=\{a \in L \mid 1 \rightarrow a=1\}=L$ and by (BL6), $S t_{\odot}(\{0\})=\{a \in L \mid a \bigodot 0=0\}=L$.
(iii) Let $S t_{\odot}(X)=L$. Since $0 \in L$, then $0 \in S t_{\odot}(X)$ and so for all $x \in X, x \odot 0=0 \odot x=x$. Now, by (BL6), $x \odot 0=0 \odot x=$ 0 , for all $x \in X$ and so $x=0$. Hence, $X=\{0\}$.
(iv) Let $X \subseteq Y$ and $a \in S t_{\odot}(Y)$. Then $a \odot y=y$, for all $y \in Y$. Since $X \subseteq Y$, then $a \odot y=y$, for all $y \in X$. That is, $a \in S t_{\odot}(X)$. Hence, $S t_{\odot}(Y) \subseteq S t_{\odot}(X)$. By the similar way, we can prove the other case.
(v) Since $X \cap Y \subseteq X, Y$, then by (vi), $\overrightarrow{S t}_{r}(X) \subseteq \overrightarrow{S t}_{r}(X \cap Y)$ and $\overrightarrow{S t}_{r}(Y) \subseteq \overrightarrow{S t}_{r}(X \cap Y)$. Therefore, $\overrightarrow{S t}_{r}(X) \cup \overrightarrow{S t}_{r}(Y)$ $\subseteq \overrightarrow{S t}_{r}(X \cap Y)$. By the similar way, $S t_{\odot}(X) \cup S t_{\odot}(Y) \subseteq$ $S t_{\odot}(X \cap Y)$.
(vi) Since $X, Y \subseteq X \cup Y$, then by (vi), $\overrightarrow{S t}_{r}(X \cup Y) \subseteq \overrightarrow{S t}_{r}(X)$, $\overrightarrow{S t}_{r}(Y)$. Hence, $\overrightarrow{S t}_{r}(X \cup Y) \subseteq \overrightarrow{S t}_{r}(X) \cap \overrightarrow{S t}_{r}(Y)$. By the similar way, $S t_{\odot}(X \cup Y) \subseteq S t_{\odot}(X) \cap S t_{\odot}(Y)$.
(vii) Let $a \in S t_{\odot}(F)$. Since $1 \in F$, then $a \odot 1=1 \odot a=1$. Then by (BL10), $a=1$ and so $S_{\odot}(F)=\{1\}$.
Now, let $x \in \overrightarrow{S t}_{l}(F)$. Then for all $y \in F, y \rightarrow x=y \in F$. Since F is a filter and $y \in F$, then $x \in F$.
Hence, $\overrightarrow{S t}_{l}(F) \subseteq F$.
Theorem3.4. L is a G"odelalgebra if and only if $\{x\} \subseteq S t_{\odot}(\{x\})$, for all $x \in L$.
proof.Lis a G"odelalgebra if and only if $x \odot x=x$, for all $x \in L$, if and only if $x \in S t_{\odot}(\{x\})$, for all $x \in L$.
Theorem 3.5.Let $\emptyset \neq X \subseteq L$, Then $\overrightarrow{S t}_{r}(X)$ and $S t_{\odot}(X)$ are filters of L.
Proof.Let $a, b \in \overrightarrow{S t}_{r}(L)$. Then $a \rightarrow x=x \operatorname{and} b \rightarrow x=x$, for all $x \in X$. Hence, by (BL7), $(a \odot b) \rightarrow x=a \rightarrow(b \rightarrow x)=$ $a \rightarrow x=x$, for all $x \in X$ and so $a \odot b \in \overrightarrow{S t}_{r}(X)$. Now, let $a \leq b$ and $a \in \overrightarrow{S t}_{r}(X)$. Then $a \rightarrow x=x$, for all $x \in X$. Hence , by (BL13), $b \rightarrow x \leq a \rightarrow x=x$. Since by (BL9), $x \leq b \rightarrow x$, then $b \rightarrow x=x$ and so $b \in \overrightarrow{S t}_{r}(X)$. Therefore, $\overrightarrow{S t}_{r}(X)$ is a filter of L. Now, let $a, b \in S t_{\odot}(X)$. Then $a \odot x=x \odot a=x$ and $b \odot x=x \odot b=x$, for all $x \in X$. Since (L, \odot) is a monoid, hence,$(a \odot b) \odot x=a \odot(b \odot x)=a \odot x=x$ and so $a \odot b \in S t_{\odot}(X)$. Finally, let $a \leq b$ and $a \in S t_{\odot}(X)$.
Note: $\overrightarrow{S t}_{l}(L)$ is not a filter of L in general.
Example3.6.Let $X=\{b\}$ in the Example 3.2(i). Then $\overrightarrow{S t}_{l}$ $(X)=\{a\}$, which is not a filter of L.

Theorem 3.7. (i) If $a \in L$ is an atom of L, then $S t_{\odot}(\{a\})$ is a prime filter.
(ii) If $b \in L$ is a co-atom of L, then $\overrightarrow{S t}_{r}(\{b\})$ is a prime filter.

Proof. (i) Let $a \in L$ be an atom of L. Hence, $a \neq 0$. We claim that $0 \notin S t_{\odot}(\{a\})$. Since if $0 \in S t_{\odot}(\{a\})$, then by (BL6), $0=0 \odot a=a \odot 0=a$, which is impossible. Now, let $x \vee y \in S t_{\odot}(\{a\})$ but $x \notin S t_{\odot}(\{a\})$ and $y \notin S t_{\odot}(\{a\})$, by the contrary. Hence, $(x \vee y) \odot a=a$, but $x \odot a \neq a$ and $y \odot a \neq a$. Now, by (BL6), $x \odot a<a$ and $y \odot a<a$. Since a is an atom, then $x \odot a=0$ and $y \odot a=0$ and so by (BL11), $x \leq a^{*}$ and $y \leq a^{*}$. Hence, $x \vee y \leq a^{*}$ and so by (BL11), $a=(x \vee y) \odot a=0$, which is a contradiction. Thus, $x \in S t_{\odot}(\{a\})$ or $y \in S t_{\odot}(\{a\})$ and so $S t_{\odot}(\{a\})$ is a prime filter of L.
(ii) Let $b \in L$ be a co-atom of L. Hence, $b \neq 1$. We claim that $0 \notin \overrightarrow{S t}_{r}(\{b\})$. Since if $0 \in \overrightarrow{S t}_{r}(\{b\})$, then $0 \rightarrow b=b$. Since $0 \leq b$, then $0 \rightarrow b=1$ and so $b=1$, which is impossible. Now, let $x \vee y \in \overrightarrow{S t}_{r}(\{b\})$ but $x \notin \overrightarrow{S t}_{r}(\{b\})$ and $y \notin \overrightarrow{S t}_{r}(\{b\})$, by the contrary. Then $(x \vee y) \rightarrow b=b$, but $x \rightarrow b \neq b$ and $y \rightarrow b \neq b$. So by (BL9), $b<x \rightarrow b$ and $b<y \rightarrow b$. Since b is co-atom, then $x \rightarrow b=$ 1 and $y \rightarrow b=1$ and so $x \leq b$ and $y \leq b$. Hence, $x \vee y \leq b$ and so $(x \vee y) \rightarrow b=0$, which is impossible. Therefore, $x \in \overrightarrow{S t}_{r}(\{b\})$ or $y \in \overrightarrow{S t}_{r}(\{b\})$ and so $\overrightarrow{S t}_{r}(\{b\})$ is a prim filter of L.
Corollary 3.8.If $a \in L$ is an atom and $b \in L$ is a co-atom, then $\frac{L}{S t \odot(\{a\})}$ and $\underset{\overrightarrow{S t}_{r}(\{b\})}{L}$ are BL-chain.
Proof. By Theorem 2.7 and 3.7, the proof is clear.
Proposition 3.9.[6]Let $F(L)$ be the set of all filters of L. Then $(F(L), \wedge, \vee,\{1\}, L)$ is a bounded complete lattice, where for every family $\left\{F_{i}\right\}_{i \in \text { I }}$ of filters of L, we have that $\Lambda_{\mathrm{i} \in \mathrm{I}} F_{i}=\bigcap_{\mathrm{i} \in \mathrm{I}} F_{i} \mathrm{and}_{\mathrm{i} \in \mathrm{I}} F_{i}=<\mathrm{U}_{\mathrm{i} \in \mathrm{l}} F_{i}>$
Theorem 3.10. Let F be a filter of L. Then $\overrightarrow{S t}_{r}(F)$ is a pseudocomplemented of F.
Proof. First, we prove that $F \cap \overrightarrow{S t}_{r}(F)=\{1\}$. Let $x \in F \cap$ $\overrightarrow{S t}_{r}(F)$. Since $x \in \overrightarrow{S t}_{r}(F)$, then for any $a \in F, x \rightarrow a=a$. Now, Since $x \in F$, hence for $a=x$ we then $x \rightarrow x=x$. But, by (BL9), $x=1$. Hence $F \cap \overrightarrow{S t}_{r}(F)=\{1\}$. Now, let G be a filter of L such that $F \cap G=\{1\}$. Let $a \in G$. Then for any $x \in F$, since $a, x \leq a \vee x, x \in F, a \in G, F$ and G are filters of L, then $a \vee x \in F$ and $a \vee x \in G$ and so $a \vee x \in F \cap G=\{1\}$. Hence, $\quad a \vee x=1$. Now, by (BL14), $((a \rightarrow x) \rightarrow x) \wedge((x \rightarrow a) \rightarrow a)=1$ and so $(a \rightarrow x) \rightarrow x=1$. Hence, $a \rightarrow x \leq x$. Since, by (BL9), $x \leq a \rightarrow x$, then $a \rightarrow x=x$ and so $a \in \overrightarrow{S t}_{r}(F)$.Thus, $G \subseteq$
$\overrightarrow{S t}_{r}(F)$.Therefore, $\overrightarrow{S t}_{r}(F)$ is a pseudocomplemented of F.
Corollary3.11. $\quad(F(L), \wedge, \vee,\{1\}, L) \quad$ is pseudocomplemented lattice.
Proof. By Theorem 3.10, the proof is clear.

BL-algebras with ZRS-condition

Definition4.1 We say BL-algebra L satisfyZero Right Stabilizer condition or brieflyZRS-conditionif $\overrightarrow{S t}_{r}$ $(\{0\})=\{1\}$.
Example 4.2.[10] Let $L=\{0, a, b, c, d, 1\}$. Then L by the following diagram is a bounded lattice.

Now, let operations " \rightarrow " , "*" and " \odot " on L are defined as follows:

\rightarrow	0	a	b	c	d	1							
0	1	1	1	1	1	1							
a	d	1	d	1	d	1	*	0	a	b	c	d	1
b	c	c	1	1	1	1		1	d	c	b	a	0
c	b	c	d	1	d	1							
d	a	a	c	c	1	1							
1	0	a	b	c	d	1							

Then $(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ is a BL-algebra.Since $\overrightarrow{S t}_{r}$ $(\{0\})=\{1\}$, then L is a BL-algebra with ZRS-condition.

Example 4.3.BL-algebrain the Example 3.2 (ii), does not satisfy in the ZRS-condition. Since $\overrightarrow{S t}_{r}(\{0\})=\{1, a, b, c\}$.
Theorem 4.4.Lis an MV-algebraif and only if L satisfies in the ZRS-condition.
Proof. (\Rightarrow) Let L be an MV-algebra and $x \in \overrightarrow{S t}_{r}(\{0\})$. Then $x \rightarrow 0=0$ and so $x=\left(x^{*}\right)^{*}=(x \rightarrow 0) \rightarrow 0=$ $0 \rightarrow 0=1$. Hence, $\overrightarrow{S t}_{r}(\{0\})=\{1\}$.
(\Leftarrow) Let L satisfies in the ZRS-condition. Then $\overrightarrow{S t}_{r}$ $(\{0\})=\{1\}$. Now, let $x \in L$. Then by (BL12)
$x \rightarrow x^{* *}=x \rightarrow((x \rightarrow 0) \rightarrow 0)=(x \rightarrow 0) \rightarrow(x \rightarrow 0)=1$
Since by (BL15), $\left(x^{* *} \rightarrow x\right)^{*}=0$, then $\left(x^{* *} \rightarrow x\right) \rightarrow 0=0$.
Hence, $x^{* *} \rightarrow x \in \overrightarrow{S t}_{r}(\{0\})=\{1\}$.
Therefore, $x^{* *} \rightarrow x=1$ and so $x^{* *}=x$. Thus, L is an MValgebra.
Proposition 4.5.Lsatisfiesin the ZRS-condition if and only if for any $x, y \in L, x \rightarrow y$ and $y \rightarrow x \in \overrightarrow{S t}_{r}(\{0\})$, imply $x=y$. proof. (\Rightarrow) Let L satisfies in the ZRS-condition, $x, y \in L$ and $x \rightarrow y$ and $y \rightarrow x \in \overrightarrow{S t}_{r}(\{0\})$. Since $\overrightarrow{S t}_{r}(\{0\})=\{1\}$, then $x \rightarrow y=y \rightarrow x=1$, and so $x=y$.
(\Leftarrow) Let $\in \overrightarrow{S t}_{r}(\{0\})$. Since by (BL9), $x \rightarrow 1=1 \in \overrightarrow{S t}_{r}$ ($\{0\}$) and $1 \rightarrow x=x \in \overrightarrow{S t}_{r}(\{0\})$, then by hypothesis, $x=1$. Hence, $\overrightarrow{S t}_{r}(\{0\})=\{1\}$.
Corollary4.6(i) Lsatisfies in the ZRS-condition if and only if every filter of L is a fantastic filter.
(ii) F is a fantastic filterif and only if $\frac{L}{F}$ satisfies in the ZRScondition.
(iii) If L satisfies in the ZRS-condition, then for any filter of $L, \frac{L}{F}$ satisfies in the ZRS-condition.
Proof.(i) (\Rightarrow)Let Lsatisfies in the ZRS-condition. Then by Theorem 4.4, L is an MV-algebra and so by Theorem 2.5 (i), every filter of L is a fantastic filter.
(\Leftarrow) Let every filter of L is a fantastic filter. Then by Theorem 2.5 (i), L is an MV-algebra and so by Theorem 4.4, L satisfies in the ZRS-condition.
(ii) By Theorem 2.10, F be a fantastic filter of L if and only if $\frac{L}{F}$ is an MV-algebra.Also, by Theorem $4.4, \frac{L}{F}$ satisfies in the ZRS-condition if and only if $\frac{L}{F}$ is an MV-algebra. Therefore, F is a fantastic filterif and only if $\frac{L}{F}$ satisfies in theZRS-condition.
(iii) Let L satisfies in the ZRS-condition and F be a filter of L. Let $x \in L$ such that $[x] \in \overrightarrow{S t}_{r}(\{[0]\})$. Then $[x] \rightarrow[0]=$ [0] and so $[x \rightarrow 0]=[0]$ and this means that $\left(x^{*}\right)^{*}=$ $(x \rightarrow 0) \rightarrow 0 \in F$. Since by Theorem 4.4, L is an MValgebra , Then $\left(x^{*}\right)^{*}=x$ and so $x \in F$. Now, since $1 \in F$,then $1 \rightarrow x \in F$ and $x \rightarrow 1 \in F$ and this means that $[x]=[1]$. Hence, $\overrightarrow{S t}_{r}(\{[0]\})=\{[1]\}$.Therefore, $\frac{L}{F}$ satisfies in the ZRS-condition.

Vol. 5 No. 1 (Jan 2012)

Note: The converse of Corollary 4.6 (iii) is not true in general. Consider following example:
Example 4.7.[8]Let $L=\{0, a, b, 1\}$ be a chain such that $0<a<b<1$ and operation \odot and \rightarrow on L are defined as follows :

\odot	0	a	b	1
0	0	0	0	0
a	0	0	a	a
b	0	a	b	b
1	0	a	b	1

\rightarrow	0	a	b	1
0	1	1	1	1
a	a	1	1	1
b	0	a	1	1
1	0	a	b	1

Then $(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ is a BL-algebra and it is clear that $F=\{b, 1\}$ is fantastic filter. Now by Theorem $2.10, \frac{L}{F}$ is MV-algebra (satisfies in the ZRS-condition), but L is not MV-algebra. Since $\left(b^{*}\right)^{*}=1$. Therefore, L dose note satisfy in the ZRS-condition.

(Semi) Normal filters and fantastic filters

In this section, we study a new class of filters that called semi normal filter. This is important for us, because this class of filters give a connection between normal filters and fantastic filter. In fact by the above definition, we solved the following open problems in [2]
Open problem 1. [2]Under what suitable conditions, a normal filter becomes a fantastic filter?
Open problem 2.[2] Under what suitable conditions, extension property for normal filter holds?
Definition 5.1.Let F be a nontrivial filter of L. Then F is called a semi-normal filter of, if for all $x \in L$,
$x \in F$ if and only if $x^{* *} \in F$.
Example 5.2.(i) Let $F=\{1, a, c\}$ in the Example 4.2. Then F is a semi-normal filter. Since $a^{* *}=a, c^{* *}=c$ and $1^{* *}=1$.
(ii) In any MV-algebra, every filter is a semi-normal filter.

Theorem 5.3.Let F be a normal (fantastic) filter of L. Then F is a semi-normal filter of L.
Proof. Let F be a normal filter and $x \in F$. Since $(x \rightarrow 0) \rightarrow(x \rightarrow 0)=1$, then by (BL12), $x \rightarrow((x \rightarrow 0) \rightarrow 0)=1$ and this means that $x \leq x^{* *}$. Since F is a filter and $x \in F$, then $x^{* *} \in F$. Now, let $x^{* *} \in F$. Hence, $(x \rightarrow 0) \rightarrow 0 \in F$ and Since F is normal filter then $(0 \rightarrow x) \rightarrow x \in F$. But, by (BL10), $(0 \rightarrow x) \rightarrow x=x$, hence $x \in F$. Therefore, F is a semi-normal filter of L. Now, let F be a fantastic filter of L, and $x \in F$. Similar to the proof of above, $x^{* *} \in F$. Now, let $x \in L$ such that $x^{* *} \in F$. By Theorem 2.5(ii), $x^{* *} \rightarrow x \in F$. Since $x^{* *} \in F$ and F is a filter of L, then $x \in F$. Hence, F is a semi-normal filter of L.
Theorem 5.4. Let F be a semi-normal filter of L. $\operatorname{Then} \frac{L}{F}$ is an MV-algebra.
Proof. Let F be a semi-normal filter of L. Since F is a filter of L, then $\frac{L}{F}$ is a BL-algebra. We will show that $\frac{L}{F}$ satisfies in the ZRS-condition. Let $[x] \in \overrightarrow{\operatorname{St}}_{r}(\{[0]\})$. Then $[x] \rightarrow[0]=$
[0] and this means that $x^{* *}=(x \rightarrow 0) \rightarrow 0 \in F$ and F is a semi-normal filter of L, then $x \in L$ Hence, $x \rightarrow 1=1 \in F$ and $1 \rightarrow x=x \in F$ and so $[x]=[1]$. Thus, $\overrightarrow{S t}_{r}(\{[0]\})=$ $\{[1]\}$ and so $\frac{L}{F}$ satisfies in theZRS-condition.Therefore, by Theorem 4.4,,$\frac{L}{F}$ is a MV-algebra.
Note.Now, in the following Theorem we answer to the open problems that been in [2].
Theorem 5.5.Let F be a filter of L. Then F of L is a normal filter if and only if F is a fantastic filter.
Proof. (\Rightarrow) Let F be normal filter. Then by Theorem 5.3, F is a semi-normal filter and so by Theorem 5.4, $\frac{L_{F}}{\mathrm{~L}}$ is an MV-algebra. Now, by Theorem 2.10, Fis a fantastic filter. (\Leftarrow) Let F be a fantastic filter of L. Then by Theorem 2.10, $\frac{L}{F}$ is an MV-algebra. But, in MV-algebras any filter is a normal filter and since $\{[1]\}$ is a filter of $\frac{F_{F}}{\underline{L}}$, then $\{[1]\}$ is a normal filter of $\underset{F}{L}$. Now, we show that F is a normal filter of L. Let $((x \rightarrow y) \rightarrow y) \in F$, for $x, y \in L$. Then $(([x] \rightarrow$ $[y]) \rightarrow[y])=[1]$ and so $(([x] \rightarrow[y]) \rightarrow[y]) \in\{[1]\}$. Since $\{[1]\}$ is a normal filter, then $(([y] \rightarrow[x]) \rightarrow[x])=$ [1]. Hence, $(y \rightarrow x) \rightarrow x \in F$ and this means that F is a normal filter.
Corollary 5.6. (Extension property)Let F and G be filter of $L, F \subseteq G$ and F be a normal filter. Then G is a normal filter Proof. By Theorems 2.5 (iii) and 5.5 , the proof is clear.
C orollary 5.7.Let F be a semi-normal filter of L. Then F is a normal (fantastic) filter.
Proof.Let F be a semi-normal filter of L. Then by Theorems $5.4, \frac{L}{F}$ is a MV-algebra and by Theorem $2.10, F$ is a fantastic (normal) filter.

Solutions for two open problems in fantastic filters in BLalgebras

In [3], the definitions almost top elements and the set of double complemented elements were studied byA.BorumandSaeidin (2009). In that paper there were two open problems for which the answer follows:
Open problem 1. [3] Under which one suitable conditions, if F is a filter of L such that $F=D(F)$, then F is a fantastic filter?
Open problem 2. [3]Under which one suitable conditions, if F is a filter of L such that $\left(\frac{L}{F}\right)=\{[1]\}$, then is a fantastic filter?
For more details, we review some related definitions and theorems.
Definition6.1.[3]Let F be a filter of L. Then
(i) the set of double complemented elements, $D(F)$ is defined by
$D(F)=\left\{x \in L \mid x^{* *} \in F\right\}$
(ii) An element $x \in L$ is called an almost top element of L, if $x^{* *}=1$.
(iii) We define $N(L)$ as follow:
$N(L)=\{x \in L \mid x$ is an almost top element of $L\}$

Indian Journal of Science and Technology
Vol. 5 No. 1 (Jan 2012) ISSN: 0974-6846
$=\left\{x \in L \mid x^{* *}=1\right\}=\left\{x \in L \mid x^{*}=0\right\}$
Corollary 6.2. $D(\{1\})=\left\{x \in L \mid x^{* *}=1\right\}$ and $D(\{1\})=$ $\{x \in L \mid$ xisanalmosttopelementof $L\}$.
Corollary6.3.We can see $N(L)$ is exactly $\overrightarrow{S t}_{r}(\{0\})$ and when $N(L)=\{1\}, L$ satisfies in ZRS-condition and so L is a MV-algebra if and only if $N(L)=\{1\}$.
Theorem 6.4.[3]Let F be a filter of L. Then
(i) if F is a fantastic filter of L, then $F=D(F)$ and $N\left(\frac{L}{F}\right)=$ \{[1]\},
(ii) $F=D(F)$ if and only if any almost top element $\operatorname{of~}_{F}^{L}$ is trivial.
Theorem 6.5.Let F be a filter of L. Then
(i) If $F=D(F)$, then F is a fantastic filter.
(ii) $1 f\left(\frac{L}{F}\right)=\{[1]\}$, then F is a fantastic filter.

Proof. (i) Since $F=D(F)$, then by Theorem 6.4 (ii), any almost top element of $\frac{L}{F}$ is trivial. Therefore, $N\left(\frac{L}{F}\right)=$ \{[1] \},and so by Corollary $6.3, \frac{L}{F}$ is an MV-algebra. Hence, by Theorem 2.10, F is a fantastic filter.
(ii) By (i), the proof is clear.

Conclusion

In this paper we introduced the notion of left, right and product stabilizers in BL-algebras. By this notion we define BL-algebras with ZRS-condition such that they are equal to class MV-algebras and we establish that F is a normal filter if and only if F is a fantastic filter if and only if $F=D(F)$. The results of this paper will be devoted to study the MV-algebra and G"odel algebra which are different extension of Basic Logic.

Acknowledgements

The authors are highly grateful to referees for their valuable comments and suggestions helpful in improving this paper.

References

1. Birkhoff G (1973) Lattice theory. Amer. Maths. Soc.
2. BorumandSaeid A and Motamed S (2009) Normal filter in BL-algebras.World Appl. Sci. J. 7, 70-76.
3. BorumandSaeidA and Motamed S (2009) Some results in BL-algebra.Math. Log. Quart. 55, 6, 649658.
4. Di Nola A and Leustean L (2003) Compact representations of BL-agebra.Archive for Maths. Logic. 42(8), 737-761. Dept. Computer Sci., Univ. Aarhus. BRICS Report Series.
5. Di Nola A, Georgescu G and Iorgulescu A (2002) Pseduo BL-algebra. Part I Mult. Val. Logic. 8(5-6), 673-714.
6. Georgescu G and Leustean L (2003)Representation of many valued Algebra. Ph.D. Thesis, Univ. of Bucharest, Faculty of Maths. \& Computer Sci.
7. H'ajek P (1988)Metmathematics of fuzzy logicKluwer Acad. Publ. Dordrecht.
8. Haveshki M and Mohamadhasani M (2010)Stabilizer in BL-algebra and its propertiesintl. MatematicalF roum. 5(57), 2809-2816.
9. HaveshkiM, BorumandSaeid A, Eslami E (2006) Some type of filter in BL-algebra. Soft Computing, 10 , 657-664.
10. Iorgulescu A (2003)Class of BCK algebra part III, Preprint Series of the Institute of Mathematics of the Romanian Academy Preprint. 3,1-37.
11. Kondo M and Dudek WA (2008) Filter theory of BLalgebras, SoftC omput. 12, 419-423.
12. Turunen E (1999) Mathematics behind fuzzy logicP hysicaVerlag.
13. Turunen E (2001) Boolean deductive systems of BLalgebras, Arch. Maths. Logic.40, 467-473.
14. Turunen E and Sessa S (1999)BL-algebra and basic fuzzy logic,Maths Ware \& Soft Comput.pp: 49-61.
