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Abstract
The Fractional Calculus, in brief FC generalizes the differentiation and integration from integer to rational order. It enables us to 
derive equations of motion with non conservative classical forces using fractional Lagrangians. In this paper fundamental properties 
of fractional derivative are outlined. The behavior of some elementary functions under the effect of the fractional differintegral oper-
ator is examined. Using the Riemann-Liouville differintegral, Fractional Euler-Lagrange equation is obtained. Fractional Hamilton’s 
canonical equations are formulated. Different canonical transformations with different generating functions are derived. Fractional 
Poisson bracket is introduced. Fractional Hamilton-Jacobi equation is presented.

Keywords: Riemann-Liouville derivative; Fractional Euler-Lagrange equation; Fractional Hamilton’s canonical equations.

1. Introduction
 The Fractional Calculus generalizes the ordinary differentiation and integration so as to include any arbitrary irrational or-
der instead of being only the positive integers (Samko et al., 1993) Kilbas et al., 2006; Magin, 2006; Podlubny, 1999). In a letter to 
L’Hopital in 1695, Leibniz raised the possibility of generalizing the operation of differentiation to non-integer orders, and L. Hospital 
asked what would be the result of half-differentiating x. Leibniz replied, It leads to a paradox, from which one day useful consequenc-
es will be drawn. The paradoxical aspects are due to the fact that there are several different ways of generalizing the differentiation 
operator to non-integer powers, leading to inequivalent results. During the second half of the twentieth century, many authors have 
explored the world of FC giving new insight into many areas of scientific research in physics, mechanics and mathematics. Miller and 
Ross (1993) pointed out, there is hardly of science or engineering that has remained untouched by the new concepts of FC. 
 To move from the integer-order calculus to the FC version of a system we replace the time derivative in an evolution equa-
tion with a derivative of fractional order. Riewe (1996), (1997) has formulated Lagrangian and Hamiltonian mechanics to included 
derivatives fractional order. It has been shown that Lagrangianinvolving fractional time derivatives lead to equations of motion with 
non conservative classical forces such as friction using certain functional. In these references, fractional derivative terms were intro-
duced in functional to obtain neoconservative terms in the desired differential equation. Agawal in a very interesting series of papers 
(Agrawal, 2002; 2006; 2007) has developed fractional calculus of variations dealing with Lagrangian involving Riemann-Louville 
(R-L) fractional derivatives. He has presented fractional Euler-Lagrange equations involving Caputo derivatives. Baleanu and Mus-
lih (2005a; b) developed a fractional Hamiltonian in terms of Caputo derivatives. Baleanu (2008) compared the results of fractional 
Euler-Lagrange equations corresponding to several fractional generalized derivatives. He presented fractional Lagrangians which 
differ by a fractional Riesz derivative. He showed the difference of the obtained fractional Euler-Lagrange equations when several 
fractional derivatives are used, namely the Riemann- Liouville, Caputo and Riesz derivatives. 
 In fact Poisson brackets constitute important part of Hamiltonian mechanics. Entire Hamiltonian mechanics can be restat-
ed    in terms of the fractional Poisson-brackets. In view of this a generalization of Poisson-bracket (fractional version) is suggested. 
Hamilton canonical equations (fractional case) havebeen expressed in terms of fractional Poisson bracket. A nil word is that with the 
fractional mechanics we can describe both conservative and non-conservative systems with only one equation of motion. 
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1.1 The fractional derivatives

 The ordinary derivative of a function f (x)  is defined as 
     

Iterating this operation yields an expression for the thn  derivative of a function denoted by 
n

n
xn

d D
dx

= . As can be easily seen and proved by 
induction for any natural number n

where, the binomial coefficient is given by the factorial function that is defined only for integer numbers as

Such an expression could be valuable for instance in a simple program for plotting the thn  derivative of a function. Viewing this expression one 
asks immediately if it can be generalized to any non-integer, real numbers   or even to complex number   . 

To generalize the ordinary operator so as to compute the fractional order differentiation, we need a function that is not singular for the fractional 
factorials. Fortunately it is exists a special function, the gamma function, that has the property of generalization of the factorial function over the real 
numbers except zero and the negative integers. The gamma function is defined as: 

That the generalization of the factorial by the gamma function allows:

which is valid for all real numbers except for  the negative integers? 
The likeness of to the binomial formula:

which can be generalized to any real or complex number a by

which is convergent if b a .<  

The integral (3) is defined for z 0 >  (or ( )Re z 0 >  if z ∈ ) and can be checked by elementary integration that for z  integer this function 
coincide with the factorial; more precisely it holds: (n 1) n!Γ + = . We are ready now to define a real-indexed derivative, or more generally, a complex-

indexed derivative xDa  with (or )a ∈ a ∈  , of a monomial xb  as

              

Since Gamma function is not defined for zero and the negative integers, then 1 0,  1,  2,  nb + ≠ − − − . 
Now let us consider the case where the index of the monomial is negative integer valued: 1 0,  1,  2,  nb + ≠ − − − . and we operate with the ordinary 
integer derivative.
Consider the monomial function          with m a positive definite integer, from which we obtain, 

or using the properties of gamma functions:

1
x h 0

d f (x h) f (x)f (x) D [f (x)] lim
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+ −
= = (1)
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If we restrict ourselves to real indices, then again proceeding by analogy we write for 0 1< a < ; 

But we have to change the definition of the gamma functions when the argument in the numerator is a negative integer. This new definition 

transforms real functions into complex functions and vice versa, because there is the complex factor  
i( 1) ea − aπ− = .

1.2 Properties of the fractional derivative
 The fractional derivative operator shares the ordinary one in the following general properties

  1- Existence and continuity for m times derivable functions, for any n m≤ .

  2- For 0a =  the result should be the function itself; for ( 0) +a ≠ ∈  positive integers values it should be equal to the ordinary derivatives and 

for ( 0) −a ≠ ∈  the negative integer values it should be equal to ordinary integrations regardless the constant of integration.
  3- Composition (or semi group) is satisfied:

  4- Linearity is satisfied

  5- Subclass, for na = ∈  the natural numbers, is satisfied

 

  6- Zero application of the operator yields the unitary mapping
 

  7- If f (x)  is known function at the point x, then we may compute ( )f x h+  using the fractional Taylor’s expansion proposed by (Riemann, 

1876) as 
m

m
x

m

hf (x h) D f (x)
(m )

+a∞
+a

=−∞

+ =
+ a∑  

  8- The fractional derivative operator obeys Leibniz rule for taking the derivative of the product of two functions. This property enables us to 
compute the n-th derivative of an analytic function expressed in terms of Taylor’s series as

And since a   is not integer the upper limit of the sum in (11) is infinite. If one of the functions in the product is a constant, say ( )g x   C= , 
then (11)  reduces to

Since only the k 0 =  term survives in the series because the integer derivatives of the constant vanish. Thus, property (1) is retained by the 
generalized Leibniz rule (6), i.e., k

xD C 0= .

1.3 The fractional differ integral operator
 In what follows we shall examine the behavior of some elementary functions under the effect of the fractional differ integral operator. The 
differintegral is an operator that unites the derivative and the integral. Since these two operators complement each other, with the exception of the 
lower limit required in the integral, this can be done. A differintegral is of a positive order for a derivative and a negative order for an integral. 

m (m )
x

(m )D [x ] ( 1) x ,
(m)

a − a − +aΓ + a
= − a ∈

Γ


(5)
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Constant function

 We define A( ) a  to be the set of constant functions under the real indexed derivative xD .a  As a the second example; let ( )f x   C A ( )= ∈ a  
the half derivative can be evaluated as:

We see that the fractional derivative of a constant function is not zero as usual in the ordinary differentiation. This problem can be solved by 
defining a local fractional derivative operator. 
Monomial function
 Consider the functions ( ) 1/ 2f x   x−= . The half fractional derivative can be computed using  Eq. (6) to obtain 

Thus, a particular function is effectively a constant with regard to a certain fractional derivative. 
Remark: These two examples demonstrate that there are functions that, under real-indexed derivatives, are additive constants and additive 
constants that under real-indexed derivatives are functions. These functions that behave as constant under fractional derivative can destroy the 
composition property of the index of derivation. In fact, let f(x) be a function having a power series representation and assume that there exist 
derivatives x xD f (x), D f (x)µ ν  and xD f (x)a  with a =m+n; if f(x) does not contain function that are constant for the derivative operator xD f (x)µ

and xD f (x)ν then
      

Exponential function
 The case of the exponential function is especially simple and gives some clues about the generalization of the derivatives. Following

It should be notes that the fractional differential operator preserves the exponential function  ( ) xf x   e=

The above limit exists for any complex number. However, it should be noted that in the substitution of the binomial formula a natural number has 
been considered. To overcome this difficulty we have to express the exponential function in terms of an infinite series, using (6) yields

We can use the fractional differintegral operator to define the generalized exponential function xEa  as

Let us consider, for example the situation when the real-valued index in Eq. (16) is a negative integer 1, 2, 3,  a = − − − … Using Eq. (16) we have 
for 1a = −

So that rendering the series (set j k 1= + ) we obtain
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x

(1) 1 CD [C] C 1 x X( )
2

Γ  = =  π Γ
(13)

1/ 2 1
x

1( )1 2D x 0, (0)
(0)x

−
Γ  = → Γ = ∞  Γ 

(14)

x x x xD f (x) D [f (x)] D [D [f (x)]]a µ+ν µ ν= = (15)

( )kx ah( k
x

h 0 k 0

1D [e ] lim 1 e )
kh

∞
a a a−

a
→ =

a   = −     
∑

x ax k ah( k
x

h 0

ax h ax

h 0

1D [e ] e lim ( 1) e )
kh

1e lim (e 1) e e
h

a a a−
a

→

a a a
a

→

a   = −     

= − =

x x
xD [e ] ea =

k k k
x

x x
k 0 k 0 k 0

x (k 1)x xD [e ] D
k! (k 1 )k! (k 1 )

−a −a∞ ∞ ∞
a a

= = =

  Γ +
= = =  Γ + − a Γ + − a 

∑ ∑ ∑ (16)

k
x

x x
k 0

xE D [e ]
(k 1 )

−a∞
a a

=

= =
Γ + − a∑ (17)

k 1
1 1 x

x x
k 0

xE D [e ]
(k 2)

+∞
− −

=

= =
Γ +∑

j j
1 1 x x

x x
k 0 j 0

x xE D [e ] 1 e 1
( j 1) ( j 1)

∞ ∞
− −

= =

= = = − = −
Γ + Γ +∑ ∑

3485



Research article www.indjst.org

Indian Journal of Science and Technology Vol:5    Issue:10    October 2012    ISSN:0974-6846

Of course, we can also write the negatively indexed generalized exponential as the first-order integral as

We can generalize Eq. (16)  to include functions ( ) xf x e ,a= a ∈

Choose 1a = −   we can use (17) to write:

which we can further use this to define another generalized exponential function

Both Eqs. (17) and (19) make it abundantly clear that the function x*Ea
−  is not xEa  calculated with x− ; the new function differs from the 

old by the phase factor ie πa . Using the property of Eq. (9) we have

where, xEa
−  is a function in the complex field. For real functions it is convenient to define x*Ea

−  as xEa
−  calculated with x− , but in order to do this 

we need to define the generalized exponential as
 

                   

where, it is possible to evaluate this function for both positive and negative values of the independent variable. In general, however, when we are 

dealing with complex functions we use the first definition of the generalized exponential given by Eq. (16).

Trigonometric functions

 Since i xcos x isin x e± aa ± a = , then we can apply the fractional differintegral operator using the obtained results on the exponential 
function

Solving this system we have the next definition for the sine and cosine derivatives. 
Equating the real and imaginary parts on each side we obtain
\
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These expressions can be written in matrix form as:

Generalized trigonometric functions
 The generalized complex exponential function can be used as:
 

From the real part of Eq. (22) we obtain the equation for the generalized cosine and sine functions as

We can also express the generalized sine and generalized cosine functions in series form using the series definition of the generalized exponential. 
The obtained generalized cosine function reads

The above results agree with the ordinary differentiation and integration when is positive and negative integers respectively and when    a = 0   
yields the ordinary function itself. 

2. Ordinary differentiation of the generalized trigonometric functions

  It is useful to study the derivatives of the generalized trigonometric functions in order to understand how these periodic functions differ from 
those in the standard form. Consider the first-order time derivative of the generalized cosine function:

So that re-indexing the series (set k j 1= + ) we get

Separating the j 1= −  term from the series and using the trigonometric identity:
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where, we have used Eq. (26) to replace the series. We see that the formal relation resulting from the derivative of the generalized cosine differs 
from that of the derivative of the ordinary cosine by a term that decays as an inverse power law in the independent variable. Thus, as x ;  → ∞  the 
formal relation for the two derivatives approaches one another: 

The inverse power-law form of the term in Eq. (27) is quite suggestive, since the memory in dynamical processes that make it impossible to join 
the microscopic and macroscopic descriptions of complex phenomena are exactly of this inverse power-law form. 
Let us now examine the derivative of the generalized sine function
 

So that re -indexing the series (set k j 1= + ) we obtain

Separating the j 1= −  term from the series and using the trigonometric identity:

yields

where, we have used Eq. (29) to replace the series. We see that the formal relation resulting from the derivative of the generalized sine differs 
from that of the derivative of the ordinary sine by a term that decays as an inverse power law in the in dependent variable. Thus, as  x ;→ ∞   the 
formal relations for the two derivatives approach one another 

                     

Fractional rotation matrix
 We have examined what happens to a generalized trigonometric function when we take an ordinary derivative. Now let us examine what 
happens to an ordinary trigonometric function when we take a fractional derivative. Consider the fractional derivative of the sine and cosine 
functions

So that using the Euler relations for both the exponential and generalized exponential and combining terms we obtain

Similarly for the cosine function we have    
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A geometrical interpretation Eq. (31) and (32) can be obtained by introducing the rotation matrix R as

and the vector

So that we can write

Equation (34) represents more general rotation transform. The generalized functions reduce to their ordinary counterparts when a = 0. It seems that the 
length of the rotation matrix is unity whatever the value of a  is.

Binomial function

 Given the binomial function  ( ) ( )a 1f x  a bx ,−= +  applying the fractional derivative we obtain 

So that in terms of the fractional derivative of a constant and the integer k  derivative of the function we have

Using the relations:

The above relation can be written as:

The binomial relation

 
Setting   

yields 
                

(33)
cos sin

2 2

sin cos
2 2

R

aπ aπ 
 

=  
aπ aπ −  

0

sin x sin x
V , V

cos x cos x
a

a
a

  
= =   

   

x 0D [V ] [V ]Ra
a= (34)

( )

1
x

k 0

k 0 k 1
x x

( 1)D [a bx]
(k 1 )

D [x ] D [ bx] 35

∞
a a−

=

a− a−

Γ a +
+ =

Γ + − a

× a +

∑
(35)

k
1

x
k 0

k 1 k

( 1) xD [a bx] ( 1)
(k 1 ) (k 1)

( 2).....( k 1)b [a bx]

−a∞
a a−

=

a− −

Γ a +
+ = a −

Γ + − a − a +

× a − a − − +

∑

k

( ) ( 1)( 2)....( k 1) ( k)

( k)(k 1 )
sin( k)

sin( k) ( 1) sin

Γ a = a − a − a − − Γ a −

π
Γ a − + − a =

a − π

a − π = − aπ

( )

1
1

x

k

k
k 0

[ bx] sin( )D [a bx] ( )
x

bx( 1)
(k 1 ) [a bx]

a−
a a−

a

∞

=

a + πa
+ = Γ a

π

−Γ a +
×

Γ + − a +∑

k

k 0

( 1)(1 z) z
(k 1 )

∞
a

=

Γ a +
+ =

Γ + − a∑

( )bx
z

[a bx]
−

=
+

(36)
1

x
a sin( ) ( )D [a bx]

x a bx

a
a a−

a

πa Γ a
+ =

π +

3489



Research article www.indjst.org

Indian Journal of Science and Technology Vol:5    Issue:10    October 2012    ISSN:0974-6846

3. Riemann-Louville differintegral operator
  The development of the FC theory is due to the contributions of many mathematicians such as Euler, Liouville, Riemann and Letnikov. 
Several definitions of a fractional derivative have been proposed. These definitions include Riemann-Louville, Grunwald-Letnikov, Weyl, Caputo, 
Marched and Rises fractional derivatives,  (Miller and Ross, 1993; Riewe, 1996; Oldham  and Spanier, 1974; Baleanu, 2008).  Riemann-Louville 
derivative is the most used generalization of the derivative. It is based on the direct generalization of Cauchy’s formula for calculating an n-fold or 
repeated integral. If the first integral of a function, which must equal to deriving it to 1− , is as follows

The calculation of the second can be simplified by interchanging the integration order

This method can be applied repeatedly, resulting in the following formula for calculating iterated integrals

Now this can be easily generalized to non-integer values, in what is the Riemann-Louville derivative

where Γ  represents the Euler gamma function. Note however that in the above formulas the election of 0 as the lower limit of integration has 
been arbitrary and any other number could be chosen. Generally, the election of the integration limits in this and other generalizations of the 
derivative is indicated with subscripts. The Riemann-Louville derivative with the lower integration limit a would be       

The problem with this generalization is that if the real part of is positive integer or zero the integral diverges. So it only can be used to calculate 
generalized integrals. However, this can be solved easily by deriving first by ordinary derivative more than the amount necessary, thus making 
the remaining necessary differentiation negative and then applying the generalized derivative for completing the rest in which will be a negative 
differentiation:

                
Now, we can easily write the right and the left Riemann-Liouville fractional derivatives, in brief denoted by RRLFD and LRLFD respectively as

         
         
where, a  is the order of the derivative such that n 1 n− ≤ a < . If a  is an integer, these derivatives are defined in the usual sense, i.e.,

Note that in the literature the Riemann-Louville fractional derivative generally means the LRLFD.  From physical point of view, if  x  is 

considered as a time scale, the RRLFD represents an operation performed on the future state of the process ( )f x . This derivative has generally 
been neglected with the assumption that the present state of a process does not depend on the results of its future development. However, the derivations 
to follow will show that both derivatives naturally occur in a problem of fractional calculus of variations. 

The fractional operator a xD
a

 can be written as,

                    

x
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where the number of additional differentiations n  is equal to [a]  + 1, where [a] is the whole part of the operator a xD
a

 is a generalization of 
differential and integral operators and can be introduced as follows 

Fractional Euler-Lagrange equation

 The motion of the conservative system from time t1 to time t2 is such the line integral below (called the action) is an extremum:  

where ( )i i
i a t i a t iq , D q , D q , ta b  is a function of the generalized coordinates, left and the right fractional derivatives of the generalized coordinates 

and time has a stationary value for the actual path of the motion. We wish to find a particular path ( )iq t  such that the line integral of the function 
  between  1t   and 2t  has a stationary value relative to paths differing infinitesimally from the correct function ( )iq t . We consider only such 
varied paths for which ( )i 1 i1q t q=  and ( )i 2 i2q t q=  these paths differ only in the functional relation between iq   and  t . To find the stationary points, 
the variation of the action must be zero relative to some particular set of neighboring paths labeled by infinitesimal parameter  ε . Such a set of paths 
might be denoted by ( )i q t,ε  with ( )i q t,0  representing the correct path. If we select any function  ( )tη   that vanishes at 1t  t=  and 2t  t  =  then the 
possible set of the varied paths are given by:

For any such parametric family of curves, Eq.  (42) can be written as:

 

With the condition for obtaining the stationary points

By the usual method of differentiating under the integral sign, we find using Eq. (43)

Integrating the second and the third terms in the integrand by parts (remember that the integration is now performed using the fractional 
integration) yields:
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The conditions on all the varied curves are that they pass through the points ( ) ( )i 1 i 2q ,  t ,  q ,  t  and hence the partial derivatives
 

iq∂
∂ε

 at 1t  and 

2t   must vanish. Therefore

The quantity i

0

q ∂
 ∂ε 

 is a function of time t  that is arbitrary except for the continuity and end point conditions. Using the fundamental 
lemma of calculus of variation

For any arbitrary function ( )tη  continuous through the second derivative, then ( )M t  must identically vanish in the interval ( )1 2t , t . It therefore 
follows that   can have stationary values only if

      Equation (48) is the fractional Euler-Lagrange equation. Note that for fractional calculus of variation problems the resulting Euler-Lagrange 
equation contains both the LRLFD and the RRLFD. This is expected since the optimum function must satisfy both terminal conditions. Further, 

for a = b = 1, we have 
1t t

dD
dt

a = , and 
2t t

dD
dt

a = − , thus equation (48) reduces to the standard Euler- Lagrange as

              

Where ( )p,q,t   the Lagrangian of the system is a function of the generalized coordinates q, the generalized momenta q and time t. Since we 
have two kinds of derivatives namely LRLFD and RRLFD, so we can define two independent generalized fractional momenta as 

          

Thus the fractional Euler-Lagrange equation is obtained by replacing the classical integral derivatives with the fractional ones as 

    

and the transversality conditions: 

    

where 1
t bDa−  denotes the fractional integral of order 1a − ,  see Agrawal, (2007) for the proof.
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4. The fractional Hamilton’s equations
 An important property of classical Hamiltonian systems is that they are solutions of a variation principle, called the Hamilton least action principle. 
We can also build the fractional canonical Hamiltonian from its classical form as

where   is the generalized Lagrangian function of the form ( )t t bq, D q, D q; ta b
a .

Taking total differential of Eq. (53) yields:

From the fractional Euler-Lagrange Eq. (54)

We can get

which shows that  (q,  p ,  p ,  t) a b=   is a function of the generalized coordinates, the generalized fractional momenta and  t. 
Taking the total differentiation
    

Comparing Eq. (54) and (55), the two total differentials of   we obtain:

Transformation of ( )q,  p ,  p  a b  into new variables

 

 is canonical if there exists a new Hamiltonian  (Q,  P ,  P ,  t)a b=   which satisfies modified Hamilton principle. 

The motion of the system from time to time is such that the line integral called the action or the action integral 
2

1

t b

t a

d t
=

=

= ∫   has a stationary 
value for the actual path of the motion.  i.e., the variation of the line integral is identically zero, (Goldstein, 2001)

Thus the fractional Hamilton’s principle can be written in the form:
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As ( )q,  p ,  p  a b  are canonically conjugate, they satisfy the fractional Hamilton’s principle as

The simultaneous validity of  Eq. (57) and (58) does not mean of course that the integrands in both expressions are equal. Since the general form of the 
Hamilton’s principle has zero variation at the end points, both statements will be satisfied if the integrand differs by a total time derivative of an arbitrary 
function W , hence

Since W  is not varied at the end points, we get

The function W , which completely determines the transformation, is called as a generating function. For mechanics involving fractional 
derivatives, we introduce variables  (u ,  u ,  U ,  U )a b a b  satisfying:

         

   

For integer-order derivatives, these new coordinates are the same as the usual canonical coordinates. However, while dealing with fractional 

derivatives, the coordinates (u ,  u ,  U ,  U )a b a b  will not be canonical. So to reserve the canonical form of the equations we try the following 
kinds of the generating function. 

Generating function of the first kind

 The generating function will be of the form 1W (u ,  u ,  U ,  U , t)a b a b . The total differential of 1W  can be written as

 Comparison between the two expressions Eqs. (60) and (61) yield  
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Generating function of the second kind

 The generating function will be of the form 2 W (u ,  u ,  P ,  P ,  t)a b a b . The total differential of 1W  can be rewritten as:

 We can rearrange the terms to yield an easy comparison of the expressions as

Now let:

Since 2 W   is a function of  (u ,  u ,  P ,  P ,  t)a b a b   we can write

 Comparison between the two expressions Eq. (63) and (64) yields
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Generating function of the third kind

 The generating function will be of the form 2 W (u ,  u ,  U ,  U ,  t)a b a b . The total differential of W1 can be rewritten as:

We can rearrange the terms to yield an easy comparison of the expressions as

Now let:

Since W3   is a function of (Pa, Pb, Ua, Ub, t) we can write

 
 Comparison between the two expressions Eq. (66) and (67) yields:
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Generating function of the fourth kind

 The generating function will be of the form 4 W (p ,  p ,  P ,  P ,  t)a b a b . The total differential of  1W  can be rewritten as:

We can rearrange the terms to yield an easy comparison of the expressions as

 Now let

Since 4 W  is a function of (p ,  p ,  P ,  P ,  t)a b a b  we can write

 Comparison between the two expressions yields

 It is observed from all transformation that the partial differentiation of any generating function with respect to time is the difference between the 
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new and the old Hamiltonian functions W ( )
t

∂
= −

∂
  . If the generating function does not depend explicitly on time then we can conclude that (

−  ).
 Fractional Poisson bracket
 Based on the concepts of FC, Hamiltonian mechanics can be reformulated in terms of the generalized Poisson brackets (fractional version). If 

functions F (q,  p ,  p ,  t)a b   and W(q,  p ,  p ,  t)a b  depend on the generalized coordinate, generalized fractional momenta and time, we can 

generalize Poisson bracket of F and W, denoted as ( )F ,W  so as to include the fractional derivatives as:

All the properties of the ordinary Poisson bracket are holding true for the fractional Poisson brackets; e.g.

and 

 Fractional Hamilton-Jacobi equation
 The Hamilton-Jacobi (H-J) equation results from a canonical transformation for which the new variables are constant. For 
integer-order derivatives, such a transformation will follow automatically if the new Hamiltonian   is identically zero, since from 
the equations of motion we then have

The method aims to find a suitable generating function that must satisfy the partial differential Eq. (73)

For the fractional derivatives, we can derive a similar relationship by putting:

5. Conclusion
 We outlined the fundamental properties of fractional derivative and examined the behavior of some elementary functions under the effect of 
the fractional differintegral operator. We obtained a fractional form of the Euler Lagrange equation using the Riemann-Lowville differ integral 
operator. Also we formulated the fractional Hamilton’s canonical equations. We derived different canonical transformations with different 
generating functions. Finally we introduced the fractional Poisson bracket.

F W W W F F(F,W)
q p p q p pa b a b

   ∂ ∂ ∂ ∂ ∂ ∂
= + − +      ∂ ∂ ∂ ∂ ∂ ∂   

1 2 1 2(F,W) (F,W), (F F ,W) (F ,W) (F ,W)

W F F F(F,q) , (F,P ) (F,P )
q p p qa b

a b

= − + = +

 ∂ ∂ ∂ ∂
= − + = =  ∂ ∂ ∂ ∂ 

1 2 3 2 2 1 3 2 1

(q,p ) (p ,p ) 1

(q,q) (p ,p ) (p ,p ) (p ,p ) 0

(F ,(F ,F )) (F ,(F ,F )) (F ,(F ,F )) 0

a a b

a a b b a b

= =

= = = =

+ + =

Q 0 P
P Q

∂ ∂
= = = −

∂ ∂
 

W (q,p, t) 0
t

∂
+ =

∂


t t b

W (q, p, t) 0
t

W (q, D q, D q, t) 0
t

W W W, , t 0
t u u

a b
a

a b
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∂
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