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1.Introduction 

The evolutionary fuzzy model generates a fuzzy system 
automatically through incorporating evolutionary learning 
procedures [1-6], where the well-known procedure is the genetic 
algorithms (GAs). In [1], Karr applied GAs to the design of the 
membership functions of a fuzzy controller, with the fuzzy rule 
set assigned in advance. Many researchers have applied GAs to 
optimize both the parameters of the membership functions and 
the rule sets [2] on the basis of. Lin and Jou [3] proposed 
GA-based fuzzy reinforcement learning to control magnetic 
bearing systems. In [4], Juang et al. proposed genetic 
reinforcement learning in the design of fuzzy controllers. The GA 
adopted in [4] was based upon traditional symbiotic evolution 
which, when applied to fuzzy controller design, complemented 
the local mapping property of a fuzzy rule. In [5], Tang proposed 
a hierarchical genetic algorithm. The hierarchical genetic 
algorithm enables the optimization of the fuzzy system design for 
a particular application. In [6], Lin proposed a hybrid evolution 
learning algorithm (HELA). The HELA combines the compact 
genetic algorithm (CGA) and the modified variable-length 
genetic algorithm to perform the structure/parameter learning for 
constructing the network dynamically. However, these 
approaches encounter one or more problems as below: 1) all the 
fuzzy rules are encoded into one chromosome; 2) the population 
cannot evaluate each fuzzy rule locally.

Recently, Fuzzy Controllers have been applied to diagnosis 
system [7-10] in several researches. Genetic algorithm optimized 
fuzzy neural network (GA-FNN) proposed by Levente et al. [7]
was trained on a dataset of 177 HIV-1 protease ligands with 
experimentally measured IC50 values. Benamrane et al. [8]

propose an approach for detection and specification of anomalies 
present in medical images. The idea is to combine three 
metaphors: Neural Networks, Fuzzy Logic and Genetic 
Algorithms in a hybrid system. The advanced fuzzy cellular 
neural network (AFCNN), Wang et al. [9] proposed is a variant of 
the fuzzy cellular neural network (FCNN) and is proposed to 
effectively segment CT liver images. The Neuro-Fuzzy 
Controller (NFC) proposed by Jafar

et al. [10] has position control of robot arm. A five layer neural 
network is used to adjust input and output parameters of 
membership function in a fuzzy logic controller.

In this paper, as same with [7-10], we also proposed Fuzzy 
Controllers to diagnosis system. Therefore, TSK-type Neuro 
Fuzzy controllers (TFC) with a group interaction-based 
evolutionary algorithm (GIEA) is proposed for constructing the 
tubercle bacilli diagnosis system (TBDS). In TBDS, testing for 
acid-fast bacilli (AFB) often needs a lot of time and manpower to 
read a slide with phlegm merely through naked eyes and a 
microscope. Generally speaking, this process is time consuming 
and exhausting, and is likely to produce incorrect results. To 
reduce errors and increase analysis efficiency, this study 
proposes image technology and identification methods to count 
tubercle bacilli [11]. 

This paper applies digital image to identify and count 
tubercle bacilli on a slide through a microscope by automatic 
image processing and pattern recognition. This paper focuses on 
the Ziehl-Neelsen’s [12] method of analyzing AFB. 
Ziehl-Neelsen’s [12] method is a special bacteriological stain 
used to identify acid-fast organisms, especially Mycobacteria. 
Tubercle bacilli are the most important part of organisms. This 
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approach makes it easier to find tubercle bacilli since their lipid 
rich cell walls make them resistant to Gram stain. Ziehl-Neelsen’s 
[12] method can also be used to stain other bacteria, such as 
Nocardia. If we apply it to medical clinical science, we do not 
need to analyze all images. Generally speaking, there are 300 
images on a slide. This approach only requires a few images (9 or 
more tubercle bacilli in an image) to determine whether a patient 
suffers from tuberculosis or not. It can reduce the manpower and 
time to correctly diagnose a patient with tuberculosis. Foreroa [11] 
applied a technique of counting color steps to fluorescence 
micrograph. Otsu’s [13] method which selects a threshold 
automatically from a gray level histogram was derived from 
discriminant analysis. Otsu’s [13] method directly deals with 
evaluating the goodness of thresholds, and the optimal threshold 
(or a set of thresholds) is selected by the discriminant criterion. 
Liu’s [14] proposed Shape Model-Based technique for cutting 
blood cells. 

The advantages of the proposed GIEA are summarized as 
below: 1) The GIEA uses group-based population to evaluate the 
fuzzy rule locally. 2) The GIEA uses the EICS method to let the 
better solutions from different groups cooperate to generate better 
solutions in the next generation. 3) It indeed can obtain better 
performances and converge faster than other traditional genetic 
methods.  

2. Materials and Methods 

2.1 Review A TSK-Type Neuro Fuzzy controllers 

A Takagi-Sugeno-Kang (TSK) type Neuro Fuzzy 
controllers (TFC) [26] employs different implication and 
aggregation methods than the standard Mamdani controller. 
Instead of using fuzzy sets the conclusion part of a rule, is a 
linear combination of the crisp inputs. 
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(1)                         
where ijm , and ijs  represent a Gaussian membership function 

with mean and deviation with ith dimension and jth rule node. 

0 jw represents the first parameter of a linear combination of 

input variables with jth rule node and ijw  represents the ith 

parameter of a linear combination of ith input variable. Since the 
consequence of a rule is crisp, the defuzzification step becomes 
obsolete in the TSK inference scheme. Instead, the control output 
is computed as the weighted average of the crisp rule outputs, 
which is computationally less expensive then calculating the 
center of gravity. 

The structure of TFC is shown in the fig. 1, where n and M 
is, respectively, the number of input dimensions and the number 
of rules. It is a five-layer network structure. The functions of the 
nodes in each layer are described as follows: 

Fig.1. The TSK-type neural fuzzy networwk. 
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Layer1 (Input Node): No function is performed in this layer. The 
node only transmits input values to layer 2. That is 

ii xu =)1(                                         (2) 

Layer2 (Membership Function Node): Nodes in this layer 
correspond to one linguistic label of the input variables in layer1; 
that is, the membership value specifying the degree to which an 
input value belongs to a fuzzy set is calculated in this layer. For 
an external input ix , the following Gaussian membership 

function is used: 
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where ijm and ijs are, respectively, the center and the width of 

the Gaussian membership function of the jth term of the ith input 
variable ix . 

Layer 3 (Rule Node): The output of each node in this layer is 
determined by the fuzzy AND operation. Here, the product 
operation is utilized to determine the firing strength of each rule. 
The function of each rule is 

∏=
i

ijj uu )2()3(                                   (4) 

Layer 4 (Consequent Node): Nodes in this layer are called 
consequent nodes. The input to a node in layer 4 is the output 
delivered from layer 3, and the other inputs are the input 
variables from layer 1 as depicted in the fig. 1. For this kind of 
node, we have 
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where the summation is over all the inputs and where ijw are the 

corresponding parameters of the consequent part. 

Layer 5 (Output Node): Each node in this layer corresponds to 
one output variable. The node integrates all the actions 
recommended by layers 3 and 4 and acts as a defuzzifier with 
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where M is the number of fuzzy rule. 

2.2 Group Interaction-based Evolutionary Algorithm 

This section will introduce the proposed group 
interaction-based evolutionary algorithm (GIEA) method. 
Recently, many researches try to enhance the traditional GAs 
have been made [15-19]. One category of them tries to modify 
the structure of a population. Examples in this category include 
the distributed GA [16], the cellular GA [17], and the symbiotic 
GA [18]. 

This study proposes the group interaction-based 
evolutionary algorithm (GIEA) for improving the symbiotic GA 
[18]. In the proposed GIEA, the algorithm is developed from 
symbiotic evolution. The idea of symbiotic evolution was first 
proposed in an implicit fitness-sharing algorithm that is used in 
an immune system model [19]. The authors developed artificial 
antibodies to identify artificial antigens. Because each antibody 
can match only one antigen, a different population of antibodies 
is required to effectively defend against a variety of antigens. As 
shown in [3] and [19], partial solutions can be characterized as 
specializations. The specialization property ensures diversity, 
which prevents a population from converging to suboptimal 
solutions. A single partial solution cannot “take over” a 
population since there must exists other specializations. Unlike 
the standard evolutionary approach which always causes a given 
population to converge, hopefully at the global optimum, but 
often at a local one, the symbiotic evolution find solutions in 
different, unconverted populations [3] and [19]. The GIEA is 
different from the traditional symbiotic evolution; with each 
population in the GIEA is divided to several groups. Each group 
represents a set of the chromosomes that belong to a fuzzy rule. 

In the proposed GIEA, the structure of the population 
consists of several groups. Each group represents a set of the 
chromosomes that belong to a fuzzy rule. The structure of the 
chromosome in the GIEA is shown in the fig. 2. However, to let 
groups that can cooperate to generate better solutions, the GIEA 
proposes the elites-base interaction crossover strategy (EICS) to 
let the better solutions form different groups can cooperate to 

generate better solutions in the next generation.  

Fig.2. The structure of the chromosomes in GIEA. 
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In the proposed GIEA, the coding structure of the chromosomes 
must be suitable that each chromosome represent only one fuzzy 
rule. The fig. 3 describes a fuzzy rule that had the form of Eq. (1) 
where ijm  and ijs  represent a Gaussian membership function 

with mean and deviation with ith dimension and jth rule node. 

Fig.3. Coding a rule of a TFC into a chromosome in the GIEA. 
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The learning process of the GIEA in each group involves 

six major operators: initialization, fitness assignment, elite-based 
reproduction strategy (ERS), elites-base interaction crossover 
strategy (EICS), and mutation. The whole learning process is 
described step-by-step as follows: 

a. Initialization step: 
Before the GIEA is designed, individuals forming several 

initial groups should be generated. The initial groups of the GIEA 
are generated randomly within a fixed range. The following 
formulations show how to generate the initial chromosomes in 
each group: 
Deviation: Chrg,c [p]=random[ mins , maxs ] 

where p=2, 4, …, 2n; g=1, 2, …, M; c=1, 2, …, NC;    (7) 
Mean: Chrg,c [p]= random[ minm , maxm ] 

where p=1, 3, …, 2n-1;                           (8) 
Weight: Chrg,c [p]= random [ minw , maxw ] 

where p=2n+1, 2n+2, …, 2n+(1+n),                 (9) 

where Chrg,c represents cth chromosome in gth group; M 
represents total number of groups and NC is the total number of 
chromosomes in each group; p represents the pth gene in a Chrg,c; 
and [ mins , maxs ], [ minm , maxm ], and [ minw , maxw ] 

represent the range that are predefined to generate the 
chromosomes. 
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b. Fitness assignment step: 
As previously state, for the GIEA, the fitness value of a rule (an 

individual) is calculated by summing up the fitness values of all 
the possible combinations in the chromosomes that are selected 
randomly from M groups. The details for assigning the fitness 
value are described step by step as follows:  

• Step 1. Randomly choose one fuzzy rule from each group such 
that the size is NC. 

• Step 2. Evaluate every TFC that is generated from step1 to 
obtain a fitness value. The fitness value is defined as follows: 

1

1_ ,(1 ( , ))

where ( , ) ( )
N

i i
i

Fitness Value E y y

E y y y y
=

= +

= −∑
                   (10) 

where iy  represents the desired value of the ith output, iy  

represents the predicted value, ),( yyE is a error function and N 

represents a numbers of the training data of each generation. The 
average fitness value represents the performance of a rule 
(individual). 

• Step 3. Divide the fitness value by M and accumulate the 
divided fitness value to the selected rules with their fitness value 
records that were set to zero initially. 

• Step 4. Repeat the above steps until each rule (chromosome) in 
each group has been selected a sufficient number of times, and 
record the number of TFC models in which each individual has 
participated. 

• Step 5. Divide the accumulated fitness value of each 
chromosome by the number of times it has been selected. The 
average fitness value represents the performance of a rule.  

c. Elites-based Reproduction Strategy (ERS):  
Reproduction is a process in which individual strings are 

copied according to their fitness value. A fitness value is assigned 
to each chromosome in each group according to a fitness 
assignment method in which high numbers denote a good fit. The 
goal of the GIEA is to maximize the fitness value. For keeping 
the stable of the algorithm, this study proposes an elite-based 
reproduction strategy (ERS) to let the best combination of 
chromosomes in each group can be kept in the next generation. In 
the GIEA, the chromosome that has best fitness value may not be 
the chromosome in the best combination. About this, in the ERS, 
every chromosome in the best combination in each group must be 
kept by performing reproduction step. In the other chromosomes 
in each group, this study uses the roulette-wheel selection method 
[20] – a simulated roulette is spun – for this reproduction process. 
The best performing chromosomes in the top half of each group 

[3] advance to the next generation. The other half is generated to 
perform crossover operations on chromosomes in the top half of 
the parent generation. In the reproduction step, the top half of the 
population for each group must be kept the same number of 
chromosomes. 

d. Elites-base Interaction Crossover Strategy (EICS):  
Although the ERS operation can search for the best existing 

individuals, it does not create any new individuals. In nature, an 
offspring has two parents and inherits genes from both. The main 
operator working on the parents is the crossover operator, the 
operation of which occurs for a selected pair with a crossover rate. 
In this paper, for letting groups that can cooperate to generate 
better solutions, the elites-base interaction crossover strategy 
(EICS) is proposed to perform the crossover operation. The EICS 
mimics the cooperation phenomenon in society, in which 
individuals become more suited to the environment as they 
acquire and share more knowledge of their surroundings. In the 
EICS, the elites of each group will select to perform crossover 
operation in the next generation. The best performing individuals 
in the top half of each group that are called elites are used to 
select the parents for performing the EICS. Details of the EICS 
are shown below. 

• Step 1. The first one of the parents that is used to perform the 
crossover operation is selected from the original group by using 
the following equations: 
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where 
tgRatioFitness ,_  is a fitness ratio of the fitness value of 

tth chromosome in the gth group; ]1,0[][_ ∈gValueRand  is the 
random values of gth group; ][_ gSiteAParent  is the site where 

the first parent is. According to Eq. (13), if the 
][_ gValueRand  is greater than the fitness ratio at (t-1)th 

chromosome in gth group and smaller or equal to the fitness ratio 
at tth chromosome in gth group, the site of the first parent of gth 
group is assigned to t. 

•Step 2. After determining the first parent, the best performing 
elites every group is used to determine the other parent. In this 
step, the total fitness ratio of every group is computed according 
to the following equations: 
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where gFitnessTotal _  represents the summation of the 

fitness value of every chromosomes in gth group; 

wRatioFitnessTotal __  is a total fitness ratio of wth group. 

•Step 3. Determine the group where the chromosome is selected 
from to be the other parent for performing crossover with the 

][_ gSiteAParent th chromosome in gth group according to 

the following equations: 
_ _ [ ] [0,1]
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where ]1,0[][__ ∈gValueRandGroup  is a random values 

of gth group;  ][__ gSiteBGroupParent  represents the site 

of the group that the second parent is selected from. 

•Step 4. After the ][__ gSiteBGroupParent th group is 

selected, the ECCS determines the other present in the selected
][__ gSiteBGroupParent th group according to the 

following equations: 
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where tgSelectedRatioFitness ,__  is a fitness ratio of the 

fitness value of tth chromosome in the 
][__ gSiteBGroupParent th group; and ][_ gSiteBParent  

is the site where the second parent is. 
After the EICS selects the presents form the gth group and 

][__ gSiteBGroupParent th group, the individuals 

( ][_ gSiteAParent th chromosome and the _ [ ]Parent SiteB g th 

chromosome) are crossed and separated using a two-point 
crossover in the gth group. The two-point crossover exchanges 
the site’s values between the selected sites of parents’ individual 
create new individuals. After this operation, the individuals with 
poor performances are replaced by the newly produced offspring. 

e. Mutation: 
Although ERS and EICS methods would produce many 

new strings, they do not introduce any new information to the 
population at the site of an individual. Mutation is an operator 
that randomly alters the allele of a gene. Mutation can randomly 
alter the allele of a gene. In this paper, a uniform mutation [20] is 
adopted, and the mutated gene is drawn randomly from the 
domain of the corresponding variable. 

The aforementioned steps are done repeatedly and stopped 
when the predetermined condition is achieved. 

2.3 The Tubercle Bacilli Diagnosis System (TBDS) 

The tubercle bacilli diagnosis system (TBDS) is introduced 
in this section. The proposed method can be divided into the 
following three steps. First, segment the image and collect the 
characteristics of the segmented images. Second, segment the 
images, categorize them basing on the length, roundness, and 
area of the tubercle bacilli. Third, classify them by TFC-GIEA 
which will be used to train them, and then perform that training 
of TFC-GIEA according to the form and characteristics of the 
tubercle bacilli.  

The experiments in this study used a microscope eyepiece 
with 10x magnification and an objective magnification of 100x. 
A digital camera or Charge Coupled Device (CCD) was placed 
above the microscope eyepiece to take digital images of tubercle 
bacilli for analysis. The digital camera used in this study had a 
horizontal and vertical resolution of 150 dots per inch (dpi). Each 
image is 1388 pixels wide and 1040 pixels tall, with 24-bit color 
imaging. 

To obtain the characteristic value of the tubercle bacilli, it is 
necessary to segment the image. The image after segmentation is 
a binary image. The purpose of segmentation is to separate the 
tubercle bacilli from background impurities. This study uses the 
Otsu [18] automatic best value to search algorithm and color 
information to carry out segmentation. Otsu utilized statistical 
analysis to identify the method that yields the within-class 
minimum and the critical value of the between-class maximum of 
each group. This approach enables the image of a tubercle bacilli 
cell to be separated from the background [22-23].  

Although the Otsu algorithms probably still find tubercle 
bacillus, it may require an excessive amount of searching time if 
the background is complicated. To address this problem, this 
study uses a hue, intensity and saturation (HIS) in color space to 
dye the tubercle bacillus and perform color analysis. Hue can be 
defined as below： 
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Experiment results show that a difference between the R 

value and the G value. The difference increases if there is 
tubercle bacillus in the image. The H value also increases 
meanwhile, but the B value does not change. 

The proposed image segmentation method initially applies 
the Otsu algorithm to find the probable tubercle bacilli. The next 
step is to utilize these tubercle bacilli to determine the difference 
between the R value and the G value, and then use H value to 
calculate quantitative value (see equation 22). This process 
accurately identifies tubercle bacilli. 
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260,
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R G
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B

− >
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                                       (22) 

Even after roughly highlighting the tubercle bacilli, fracturing 
of the highlighted tubercle bacilli or discontinuity may occur 
because the dye on the slide may be stained or faded. Therefore, 
this study uses a morphology closing filter to repair fractured 
parts of a cell. 

The most realistic method of differentiating between true 
tubercle bacillus and excessively dyeing tubercle bacillus is to 
extract the eigenvalue of true tubercle bacillus. First, according 
to the examination results, the tubercle bacillus has a light red, 
bar shaped appearance, and is aligned in various directions. Then, 
digitize these tubercle bacilli features and identify tubercle 
bacillus through the computer. 

This method focuses on extracting and calculating the forms 
and features of tubercle bacillus, including length, roundness, 
Hu’s invariant moment, area, and perimeter. These parameters 
are regarded as training type neural parameters, as follows: 
1.  Area (A): the total number of pixels in the target area. 
2. Perimeter (P): the total number of pixels from any point to 

the tubercle bacilli along an edge in the target area. 
3. Roundness (R): this value ranges between 1 and 0. The 

rounder the body is, the closer the roundness is to 1.  
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4 AR
P
π

＝
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                                     (23) 

4. Length: the longest route after the target area gets thinned.  
5. All length: the total length of all routes after the target area 

gets thinned. 
6. Invariant moment ( ihu ) [23]: the tubercle bacilli in this 

study always have the same form, but with different angles 

and sizes. Thus, the invariant moment is included as 
extracted feature to utilize the fact that the invariant moment 
does not change with the variation, translation, rotation, and 
size of an image. 

We can deduce seven invariant moments as follows: 
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            (24) 
The invariant moment is not affected by translation, rotation and 
size. Equation 24 shows that its output values will be very large. 
Because the logarithm function is an increasing function, this 
study uses the following equations instead of equation 24. 

( )log , 1,2, ,7i ihu iφ= = …                         (25) 

In all these equations, iφ  is the value of the invariant 

moment after calculation. 
The directions and sizes of most of tubercle bacilli are similar, 

but only the directions of single tubercle bacilli are different. 
Thus, we can utilize the fact that the invariant moment does not 
change along with variations in angle and size to identify true 
tubercle bacilli. There is a fixed area within each tubercle bacilli. 
If the area of the eigenvalue exceeds the maximal area range, the 
object is overlapping tubercle bacilli. However, an excessively 
dyed area only can be the same as the area of single tubercle 
bacilli, so this study does not regard excessive dyeing as 
overlapping tubercle bacilli. 

We use three eigenvalue to conduct training with TFC-GIEA：

length, all length, and invariant moment’s first equation 

1log( )φ  respectively.  

3. Results 

Simulation is discussed in this section. The example was 
run to evaluate the tubercle bacilli diagnosis system (TBDS). For 
the simulation, the initial parameters are given in Table 1. The 
initial parameters are determined by practical experimentation or 
trial-and-error tests [24]. 

Table 1. The initial parameters before training. 

Parameters Value Parameters Value 

Group Size 10 Time_Value 10100 
Crossover Rate 0.5 Desired_Times 10000 
Mutation Rate 0.3  [0, 2] 

min max[ , ]m m  [0, 2]  [-20, 
20] 

 

min max[ , ]s s

min max[ , ]w w
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Example. Evaluating the TBDS 
 In this experiment, a Pentium III chip with a 800MHz CPU, 

a 512MB memory, and the visual C++ 6.0 simulation software 
are applied to this experiment. In this example, the simulation of 
GIEA-TBDS is discussed. There are 50 samples used to train the 
TFC-GIEA and 200 samples used to test TFC-GIEA. Based on 
the standard for clinically diagnosing the severity of tubercle 
bacilli, the complications can be classified in three grades. Grade 
I is normal cases and slight cases complicated with gastritis. 
Grade II is acid reflux complicated with reflux esophagitis A and 
B which are included at the same level. Grade III is the more 
severe classification, which includes acid reflux complicated with 
reflux esophagitis C; duodenal ulcer; gastric ulcer; acid reflux 
complicated with reflux esophagitis and duodenal ulcer; acid 
reflux complicated with reflux esophagitis and gastric ulcer; and 
duodenal and gastric ulcer.  
The values are floating-point numbers assigned using the GIEA 
initially. The fitness function in this example is defined in 
equation 4 to train TFC. There are ten fuzzy rules used to 
construct TFC. The evolution learning processed for 500 
generations and is repeated 50 times. For comparative 
analysis, this paper uses the accuracy of three grades to 
evaluate the performance of the TBDS. After 50 runs, the 
final training and testing average accuracy of three grades 
approximates 93% and 92%. 

4. Discussion 

In order to demonstrate the effectiveness and efficiency of 
the proposed TFC-GIEA, the SE, GA, and ESP are applied to the 
same problem in this example. There are ten rules to construct the 
TFC. The parameters set in three methods are as follows: 1) the 
numbers of fuzzy rules are all set for 6; 2) the population sizes of 
SE and GA are 100 and 50 respectively; 4) the population size of 
the SE and ESP are both set for 50; 3) the crossover rates of SE, 
ESP, and GA are 0.57, 0.36, and 0.61, respectively; 3) the 
mutation rate of SE, ESP, and GA are 0.09, 0.15, and 
0.14,respectively. The evolution learning processes for 500 
generations and is repeated 50 times.  

After 50 runs, the final training average accuracy of the SE, 
ESP, and GA approximate75%, 76%, and 70% and the final 
testing average accuracy of the SE, ESP, and GA approximate 
73%, 70%, and 68%. 
The comparison about the training accuracy, testing accuracy and 
CPU times of proposed method and other methods are shown in 
table2.  

5. Conclusion 

This paper proposed a TSK-type Neuro Fuzzy controllers 
(TFC) with group interaction-based evolutionary algorithm for 
constructing tubercle bacilli diagnosis system (GIEA-TBDS). 
The proposed GIEA-TBDS can be divided into two parts. The 

first part is the learning algorithm and the group interaction-based 
evolutionary algorithm (GIEA) is proposed. The GIEA can 
evaluate the fuzzy rule locally and interact with each group to 
produce the better chromosomes by elites-base interaction 
crossover strategy (EICS). The second part is the diagnosis 
system and the TBDS trained by GIEA is proposed. The tubercle 
bacilli can be diagnosed by TBDS automatically. The 
summarization of the advantages of the proposed GIEA-TBDS 
are as follows: 1) the GIEA-TBDS evaluates the fuzzy rule 
locally with group-based population; 2) the GIEA-TBDS uses the 
EICS to make the better solutions form different groups and 
interact each other to generate better solutions in the next 
generation; 3) the GIEA-TBDS can detect the tubercle bacilli 
automatically. Computer simulations have been proved that the 
proposed method is provided with a better performance than the 
other methods. 

Table 2. Comparison of performance for different methods. 
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