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Abstract 
Many heuristic optimization methods have been developed in recent years that are derived from Nature. These methods take in-
spiration from physics, biology, social sciences, and use of repeated trials, randomization, and specific operators to solve NP-hard 
combinatorial optimization problems. In this paper we try to describe the main characteristics of heuristics derived from “Newton’s 
law of gravitation”, namely a gravitational emulation local search algorithm and a gravitational search algorithm. We also present the 
detailed survey of distinguishing properties, parameters and applications of these two algorithms. 
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1. Introduction
Heuristic techniques are developed for solving combinato-

rial optimization problems (COP) with exponential search spaces 
because exact techniques are not practical for these cases.  Using 
heuristics designed from natural and social systems is one of the 
most important and promising research fields of late. These non-
deterministic heuristic methods are used to obtain very good re-
sults for solving NP-hard combinatorial optimization problems. 
In the literature various heuristic approachesderived from nature 
have been developed by researchers, namelyGenetic Algorithms 
(GA) (Tang et al., 1996), Simulated Annealing(SA)(Kirkpatrick 
et al., 1983),Ant Search Algorithm(ASA)(Dorigo et al., 1996), 
Particle Swarm Optimization(PSO)(Kennedy and  Eberhart, 
1995), Neural Nets(NN)(Hopfield, 1982; Righini,1992),Tabu 
Search (TS)(Glover,1989;  Glover, 1990), etc. These algorithms 
are analyzed and applied in many areas (Badrand Fahmy, 2004; 
Berghand Engelbrecht2006; Ellabib et al., 2007; Hamzaçebi, 
2008; Lozano et al., 2008; Tripathi and Bandyopadhyay, 2007). 
Performances of these algorithms differ from problem to prob-
lem, and there is no single approach to achieve the best solution 
for all COP. 

These heuristics are obtained by using a fixed number of 
repeated iterations, employing one or more agents (neurons/
particles/chromosomes/ants/etc.), operating with a mechanism 
of competition-cooperation, and/or embedding procedures of 
self-modifications.Nature has two operations: first, it selects the 
stronger individuals and penalizes the weaker ones, and second 
it introduces elements of randomness and permits the generation 
of new individuals. This same idea is used in the heuristic: selec-
tion is the basic idea for optimization, and mutation is the basic 
idea for non-deterministic search. The characteristics of these 
heuristics aremodeling a phenomenon that exists in nature, non-
determinism, parallel structure and adaptability. 

Recently, the Gravitational Emulation Local Search Algo-

rithm (GELS) and Gravitational Search Algorithm (GSA) were 
developed by researchers for solving COP by using Newton’s 
law of gravitation:  “Every particle in the universe attracts every 
other particlewith a force that is directly proportional to the prod-
uct of their masses and inversely proportional to the square of the 
distancebetween them”.Many applications of these two gravita-
tional algorithms are available in the literature (Abbas Bahrolol-
oumet al.,  2012; Barzegaret al.,  2009; Behranget al.,2011;Binod 
Shaw et al., 2012; Chaoshun Li, and Jianzhong Zhou, 2011;Min-
ghao Yin et al., 2011; Raja Balachandar and Kannan,2007; 2009; 
2010; Rashedi et al. 2009;Rashediet al., 2010; Sarafraziet al., 
2011; Rashediet al., 2011; SoroorSarafrazi,2013; Webster, 2004).

This paper is organized as follows:Section 2 provides back-
ground on the law of gravitation.  GELS and the application of 
GELS are presented in Sections 3 and 4, respectively.  Sections 
5 and 6, respectively, are dedicated to GSA and its application. 
Convergence analysis and concludingremarks are discussed in 
Section 7 and Section 8, respectively. 

2. Gravitation.
Gravitation is one of the four fundamental interactions (in-

cluding the electromagnetic force, the weak nuclear force, and 
the strong nuclear force) innature (Schutz, 2003). It isthe tenden-
cy of masses to accelerate toward each other; everyparticle inthe 
universe attracts every other particle. The inescapability of grav-
ity makes it different from allother natural forces.The way New-
ton’s gravitational force behaves is called “action at a distance”, 
which means gravity acts between separatedparticles without 
any intermediary and without any delay. Newton’s law of gravity 
states that each particle attracts every otherparticle with a “gravi-
tational force” (GF)(Schutz, 2003; Hollidayet al., 1993).

  The GF between two particles is directly proportional to the 
productof their masses and inversely proportional to the square 
of the distance between them (Hollidayet al., 1993):
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In (1),F, G, M1, M2 and R represent the magnitude of the 
gravitational force, the gravitational constant, the mass of the 
first and secondparticles, and the distance between the two parti-
cles, respectively. Newton’s second law says that when a force, F, 
is appliedto a particle, its acceleration, a, depends only on the 
force applied and the mass, M, of the particle:

From(1) and (2), we conclude that there is an attracting 
gravity force among all particles of the universe, where the ef-
fect becomes greater with increasing mass of the particles and 
decreasing distance between them.In the literature, two differ-
ent gravitational algorithms are available and based on equation 
(1), namely GELS and GSA.  Researchers have designed these 
two approaches for solving various COP. In the next section we 
discuss the GELS approach, parameters, properties and applica-
tions.

3. Gravitational Emulation Local Search
Algorithm (GELS)

Preliminary work done with GELS
For the study of GELS, a conceptual framework was first 

developed by Webster (2004) called the Gravitational Local 
Search Algorithm (GLSA). As there are a number of places in 
the litera-ture where the abbreviation“GLS” is used to refer to 
guided local search (Voudourisand Tsang,1995), this name was 
later changed to GELS. Two separate versions of GLSA were 
implemented us-ing the C computer programming language.  
They differ in two key areas: the first version, dubbed GLSA1, 
used as its heuristic Newton’s equation for gravitational force 
between two objects, and included a“pointer” object that moved 
through the search space one position at a time, iteratively 
examining solutions to the COP.  The second version, dubbed 
GLSA2, used as its heu-ristic Newton’s method for gravitational 
field calculation, and the pointer object was allowed to move 
multiple positions at a time (i.e. to a different area of the search 
space). These issues are pre-cisely elaborated in (Webster, 2004).

Both versions of the original algorithm had operational pa-
rameters that the user could set to tune its performance. These were 
density(DENS), drag (DRAG), friction(FRIC), gravity(GRAV), 
initial velocity (IVEL), iteration limit(ITER), mass(MASS), 
radius(RADI), silhouette(SILH), and threshold(THRE).  Of 
these, GELS uses only four – velocity, iteration limit, radius and 
direction of movement. Webster (2004) has beautifully designed 
this robust algorithm (GELS) which had overcome the following 
difficulties: 

(i) increased number of iterations caused by characteristics 
of the search space

 (ii) poor solutions caused by determination of objective 
function values of neighboring solutions.

Webster(2004) calculated objective function values of 
neighboring solutions as a function of the quality of those solu-
tions as compared to earlier solutions examined by the algorithm. 
Because of this, objective function values of invalid solutions to 
the problem were tactically avoided from the beginning. He has 
also avoided the sensitive and redundant parameters of GLSA, 
because with these parameters finding the points of equilibrium 
was extremely difficult.

3.1  GELS Algorithm
Parameters used in the GELS algorithm
(a)	 Max velocity:

Defines the maximum value that any element within the 
pointer object velocity vector can have – used to prevent veloci-
ties that became too large to use.
(b)	 Radius:

Sets the radius value in the gravitational force formula – used 
to determine how quickly the gravitational force can increase or 
decrease.
(c)	 Iterations:

»» Defines a number of iterations of the algorithm that will be 
allowed to complete before it is automatically terminated 
– used to ensure that the algorithm will terminate.

(d)	 Pointer:
Used to identify the current location and direction of move-

ment of the pointer object within the search space.
Gravitational Force (GF)

The GELS algorithm uses the formula for the gravitational 
force between the two solutions as 

where,
G = 6.672  (Universal constant of gravitation)
CU = objective function value of the current solution
CA = objective function value of the candidate solution.
R = value of radius parameter

Webster’s algorithm

Webster designed the GELS algorithm by using two meth-
ods and two stepping modes, which are:
GELS11:

»» Computes the GF between a given single solution and the 
current solution

»» Pointer object moves sequentially within the current local 
searchneighborhood
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GELS12:
»» Computes the GF between a given single solution and the 

current solution
»» Pointer object can move to areas outside of the 

neighborhood
GELS21:

»» Computes the GF among all solutions within the 
neighborhood

»» Pointer object moves sequentially within the neighborhood
GELS22:

»» Computes the GF among all solutions within the 
neighborhood

»» Pointer object can move to areas outside of the 
neighborhood

During the development of GELS the default settings of the 
parameters was arrived at through trial and error.  Some settings 
caused repetitive visits to the same solution within a neighbor-
hood, and others generated large numbers, causing the algorithm 
to behave erratically. Webster, after a number of tests, settled the 
default values of the algorithm at 10 for maximum velocity, 4 
for radius and 10000 for the maximum number of iterations. Af-
ter a number of tests, we have settled the RGES algorithm at 7 
for maximum velocity,7 for radius, and 1000 for iterations. The 
RGES algorithm and its explanation are given in section 5.

Distinguishing properties of GELS algorithm
The versions of the GELS algorithm have various distin-

guishing features from other algorithms like GA, SA, and HC 
in terms of search space, number of iterations, etc.  In particular,

»» Introduction of the velocity vector and relative 
gravitational force in each direction of movement 
emulated the acceleration effect of the process towards 
its goal.

»» Multiple stepping procedures helped the solution pointer 
to show the next direction and amount of movement 
within the search space, leading to the other solutions.

»» The algorithm is designed in such a way that it terminates 
on either of two conditions:  either all the elements in 
the pointer object velocity vector have gone to zero, or 
the maximum allowable number of iterations has been 
completed.

Webster (2004) tested four different versions of the algo-
rithms, and one of the items that differentiated the versions was 
the “stepping factor”. As GELS executes, there is a pointer that is 
“moving” through the solution space, at a certain rate of “speed” 
and in a particular direction. The stepping factor related to the 
rate at which that speed could be altered.  In two of the ver-
sions, if the pointer was affected by the gravitational influence 
of a nearby solution, then its speed could increase or decrease by 
only one unit at a time.  In the remaining two versions, the speed 
could be increased or decreased by more than one unit at a time, 

depending on the strength of the gravitational influence(relative 
quality) of a nearby solution. In both cases, the algorithm stopped 
when the speed of its pointer dropped to zero(or after a specified 
maximum number of iterations, in order to prevent the possibility 
of a non-terminating execution).

4. Applications of GELS
Webster (2004)tested thesefour versions of GELS on three

famous NP-hard problems, namelythe Traveling Salesman prob-
lem, the Bin Packing problem, and the File Assignment problem.  
Instances of these problems were randomly generated using sev-
eral different problem sizes, then solved using three well-known 
comparison algorithms, namely Hill Climbing, Genetic Algo-
rithm, and Simulated Annealing.  The experimental results were 
rigorously analyzed using a variety of statistical techniques.  Fi-
nally, Webster (2004) stated that with respect to the overall com-
posite cases, Simulated Annealing and GELS 21 (method two 
with single stepping) were virtually tied in terms of performance. 

Raja Balachandar (2007) has designed a new version of 
GELS called the Randomized Gravitational Emulation Search al-
gorithm (RGES) for solving symmetric travelling salesman prob-
lems (STSP).  This algorithm introducesa randomization concept 
along with the two of the four primary parameters, “velocity”and 
“gravity”, in physics through swapping in terms of groups by us-
ing random numbers in the existing local search algorithm GELS 
in order to avoid local minima and thus can yield global mini-
mum for STSP.  Benchmark problems have been taken from OR-
Library (Beasley,1990) to validate the performance of RGES and 
they havecompared with other heuristics,namely Genetic Algo-
rithm (GA), Simulated Annealing (SA), and Hill Climbing(HC), 
in addition to the four variants of GELS.  The overall compara-
tive computational study of chosen benchmark problems shows 
that this RGES algorithm is an effectivetool for solving STSP.

RGES Procedure

The next application of GELS is in Grid Computing sys-
tems. Barzegar (2009) had used GELS to solve the scheduling 
and advance reservation of resources.  The name of the algorithm 
offered for this problem is Gravitational Emulation Local Search 
Advanced Reservation algorithm (GELSAR) and was compared 
with GA to analyze the performance.  The final results show that 
the accepted jobs by applying GELSAR has been increased 7.5 

1: Set the parameters(radius, velocity, direction of movement)
 2: Set the current solution
 3: While( termination condition are not met) do
         -Construct neighborhood solutions based on direction of movement
         -Compute gravitational force between current solution and
         -best(candidate) solution in the neighborhood

       -Update the velocity and direction of movement by using gravi-
tational Force

      End

Indian Journal of Science and Technology Vol: 6    Issue: 2    February 2013   ISSN:0974-6846

www.indjst.org4143
169



CurrentSolution = BestSolution = MonteCarloSolution
SolutionsExamined = 0
Iterationsremaining = Max Iterations Parameter
Velocity Sum = 0
For each Index in Velocity Vector
Velocity Vector [Index] = random integer between 1 and 
Max Velocity Parameter
Velocity Sum = Velocity Sum  + Velocity Vector [Index]
end for
Direction = Maximum ValueIn (Velocity Vector)
while (Velocity Sum > 0 and Iterations Remaining > 0)
Generate Neighborhood (Current Solution)
if Method One selected 
Candidate Solution = Neighborhood (Direction)
if Objective function (Candidate Solution) < Objective 
function (Best Solution)
Best Solution = Candidate Solution
end if 
Solutions Examined = Solutions Examined + 1
Force = Integer (6.672 * (Objective Function (Current 
Solution ) – Objective solution     (Candidate solution)) / 
Radius Parameter **2) 
Velocity Vector [Direction] = Velocity Vector [Direction] + 
Force
if Velocity Vector [Direction] < 0
Velocity Vector [Direction] = 0
end if 
if Velocity Vector [Direction] > Max Velocity Parameter
Velocity Vector [Direction] = Max Velocity Parameter 
end if
Velocity Sum = 0
for each index in Velocity Vector
Velocity Sum = Velocity Sum + Velocity Vector [Index]
end for
Direction = Maximum ValueIn (Velocity Vector)
else if Method Two Select
for each index in Neighborhood

if Velocity Vector [Index] > Max Velocity Parameter
Velocity Vector [Index] = Max Velocity Parameter 
end if
end for
Velocity Sum = 0
for each index in Velocity Vector
Velocity Sum = Velocity Sum + Velocity Vector [Index]
end for
Direction = Maximum ValueIn (Velocity Vector)
end if
if SingleSteppingSelected
if TSPProblemBeingSolved
CurrentSolution = Neighborhood [random]
Else
CurrentSolution = Neighborhood [Direction]
End if

If ObjectiveFunction (CurrentSolution) <ObjectiveFunction 
(BestSolution)
BestSolution = CurrentSolution
End if
SolutionsExamined = SolutionsExamined + 1
ElseifMultipleSteppingSelected
For 1 to VelocityVector[Direction]
If TSPProblemBeingSolved
CurrentSolution = Neighborhood [random]
Else
CurrentSolution = Neighborhood[Direction]
Endif
If ObjectiveFunction (CurrentSolution) <ObjectiveFunction 
(BestSolution)
BestSolution = CurrentSolution
End if
SolutionsExamined = SolutionsExamined + 1
GenerateNeighborhood (CurrentSolution)
Endfor

Candidate Solution = Neighborhood (Index)
if Objective function (Candidate Solution) < Objective 
function (Best Solution)
Best Solution = Candidate Solution
end if 
Solutions Examined = Solutions Examined + 1
Force = Integer (6.672 * (Objective Function (Current 
Solution ) – Objective solution     (Candidate solution)) / 
Radius Parameter **2) 
Velocity Vector [Index] = Velocity Vector [Index] + Force
if Velocity Vector [Index] < 0
Velocity Vector [Index] = 0
end if 

Endif

IterationsRemaining = IterationsRemaining – 1

endWhile

return BestSolution, ObjectiveFunction (BestSolution), Solution-
sExamined

Pseudo-code for GELS
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percent and the computation time of the new algorithm lowered 
down to 50 percent when compared to GA.

Procedure GELSAR

5. Gravitational Search Algorithm (GSA)
In this section, we employthe second version of a gravi-

tational algorithm, namely the gravitational search algorithm 
(Rashedi, 2007) based on (1).

In physics, agents’ performance is measured by their masses, 
and they are considered as objects.  Based on gravitational force, 
the agents are attracted to each other, and their tendency is to-
wards heavier masses.  As a result, the heavy masses move in a 

manner much slower than the lighter ones, and this induces the 
exploitation.

Each and every mass (agent) has four specifications: posi-
tion, inertial mass, active gravitational mass, and passive gravi-
tational mass in GSA.  The algorithm updates gravitational and 
inertia masses with the help of heavy masses and finds the op-
timum. This artificial world of masses obeys Newton’s law of 
gravity and motion (Rashedi, 2007).Next, we present the GSA 
approach.

Now, consider a system with N agents (masses). We define 
the position of the ith agent by:

wherexd
i represents the position of ith agent in the dth dimen-

sion.  At a specific time “t”, we define the force acting on mass 
“i” from mass “j” as follows:

where Majis the active gravitational mass related to agent j, 
Mpiis the passive gravitational mass related to agent i, G(t) is the 
gravitational constant at time t, εis a small constant, and Rij(t) is 
the Euclidian distance between two agents iand j:

To give a stochastic characteristic to our algorithm, we sup-
pose that the total force that acts on agent iin a dimension d be 
arandomly weighted sum of the dth components of the forces ex-
erted by other agents:

whererandjis a random number in the interval [0, 1].  Hence, 
by the law of motion the acceleration of the agent iat time t, and 
in direction d, ad

iis given as follows:

whereMiiis the inertial mass of ith agent.Furthermore, the 
next velocity of an agent is considered as a fraction of its current 
velocity added to its acceleration.Therefore, its position and its 
velocity could be calculated as follows:

whererandiis a uniform random variable in the interval [0, 1].  
We use this random number to give a randomized characteristicto 
the search.The gravitational constant, G, is initialized at the be-

Number of solution dimensions is predefined number ‘n’
 dim;   --- Dimension iteration counter 
cnt   --- Loop iteration counter 
begin
for dim =  1 to ndo
     --- Assign a predefined starting solution component as the current 
solution component 
          for
     --- dimension “dim” and as the best solution component seen thus 
for that dimension 
     --- Randomly  assign an initial velocity in the dimension “dim” 
within the bounds of 
          IVEL
end;
cnt = 0;
    --- Calculate an initial vector velocity sum, based on the random 
initial velocity
         components 
    ---- assigned in the previous step
while ( the velocity sum <> 0 ) and  ( cnt< ITER) do
    ---- Reset the velocity sum to 0
for dim=1 to ndo
    ---- calculate the solutions adjacent to the current solution adjacent 
to the
          current solution and their respective RF values
    ---- If any of these is better than the best solution seen thus for, then 
make 
           that solution and
    ---- the new best solution 
    ---- calculate the net difference in gravitational “force” between the 
adjacent solutions  and
     ---- the current solution for the current dimension “dim”, using the 
Newtonian 
           equation for
     ---- gravitational attraction 
      ---- calculate change in acceleration for the current dimension 
“dim”
      ----  Calculate change in velocity for the current dimension “dim”
      ---- Calculate new current solution component for the dimension 
“dim”, which
             will be the next 
       --- adjacent node in the dimension “dim” in the current direction 
of movement 
            as indicated 
       ---- by the velocity component for the dimension “dim”
 end;
       --- calculate the new velocity  sum
cnt = cnt +1;
end;
return best solution found, its RF value, and the iteration count ( cnt) 
end  
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ginning and will be reduced with time to control the search ac-
curacy.In other words, G is a function of the initial value (G0) 
and time (t):

Gravitational and inertia masses are simply calculated by the 
fitness evaluation.  A heavier mass means a more efficientagent.  
This means that better agents have higher attractions and walk 
more slowly. Assuming the equality of the gravitationaland iner-
tia masses, the values of masses are calculated using the map of 
fitness. We update the gravitational and inertialmasses by the fol-
lowing equations:

	 wherefiti(t) represent the fitness value of the agent iat 
time t, and, worst(t) and best(t) are defined as follows for a max-
imization problem,

One way to perform a good compromise between explora-
tion and exploitation is to reduce the number of agents with lap-
seof time in Eq. (6). Hence, we propose only a set of agents with 
bigger mass apply their force to the other. However, we shouldbe 
careful of using this policy because it may reduce the exploration 
power and increase the exploitation capability.

In order to avoid local optima trapping the algorithm, we 
must use the exploration at beginning. Bylapse of iterations, ex-
ploration must fade out and exploitation must fade in. To im-
prove the performance of GSA by controllingexploration and 
exploitation only the Kbestagents will attract the others.  Kbestis 
a function of time, with the initial valueK0 at the beginning and 
decreasing with time. In such a way, at the beginning all agents 
apply the force, and as timepassesKbestis decreased linearly.  At 
the end, there will be just one agent applying force to the others.  
Therefore, Eq. (6) could be modified as:

whereKbestis the set of the first K agents with the best fit-
ness value and biggest mass. 

Distinguishing properties of GSA
To see how the proposed algorithm is efficient some remarks 

are noted:
»» Since each agent can observe the performance of 

the others, the gravitational force is an information-
transferring tool.

»» Due to the force that acts on an agent from its neighborhood 
agents, it can see space around itself.

»» A heavy mass has a large effective attraction radius and 
hence a great intensity of attraction. Therefore, agents 
with ahigher performance have a greater gravitational 
mass.  As a result, the agents tend to move toward the 
best agent.

»» The inertia mass is against the motion and make the mass 
movement slow. Hence, agents with heavy inertia mass 
moveslowly and hence search the space more locally. So, 
it can be considered as an adaptive learning rate.

»» The gravitational constant adjusts the accuracy of 
the search, so it decreases with time (similar to the 
temperature in a Simulated Annealing algorithm).

»» GSA is a memory-less algorithm. However, it works 
efficiently like the algorithms with memory. Our 
experimental results show a good convergence rate of the 
GSA.

Here, we assume that the gravitational and inertia masses 
are the same. However, for some applications different values for 
each can be used. A bigger inertia mass provides a slower motion 
of agents in the search space and hence a moreprecise search. 
Conversely, a bigger gravitational mass causes a higher attraction 
of agents, which permits a fasterconvergence.

6. Application of GSA
Rashedi(2009) first tested the GSA with 23nonlinear bench-

mark problems (Yao et al., 1999).The details of all the bench-
mark problems are also presented in(Rashedi,2009), alongwith 
their optimum solutions. They have also compared the perfor-
mance of GSA with other heuristics, namely Particle Swarm Op-
timization (PSO), Central Force Optimization (CFO), and Real 
Genetic Algorithm (RGA). They have proven that GSA reached 
superior results in most cases and in all cases are comparable 
with PSO, RGA, and CFO.

GSA Procedure
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a)Search space identification.
b)Randomized initialization.
c)Fitness evaluation of agents.
d)Update G(t), best(t), worst(t) and Mi(t) for i= 1,2,. . .,N.
e)Calculation of the total force in different directions.
f)Calculation of acceleration and velocity.
g)Updating agents’ position.
h)Repeat steps c to h until the stop criteria is reached.
i)End.

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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Recently, Raja Balachandar(2009,2010) designed a binary 
version of GSA for solving the set covering problem(SCP) and 
the vertex covering problem(VCP). These two problems are 0-1 
integer programming problems. These problems are already 
proved as NP-hard COP. To convert the infeasible solutions gen-
erated by GSA a problem-specific operator (called repair opera-
tor)has been designed for each problem.  Benchmark problems 
have been taken from the OR-Library (Beasley, 1990) to check 
the performance of GSA, and to validate the computational ef-
ficiency of GSA comparisons have been made with other recent 
heuristics that are available in the literature and report the effi-
ciency of their proposed algorithm. 

Revised  GSA Algorithm

Sarafrazi(2011) developed a new operator-based GSA 
called Improved Gravitational Search Algorithm(IGSA) to im-
prove the exploration and exploitation abilities of the standard 
Gravitational SearchAlgorithm (GSA).  A novel operator called 
“Disruption”, originating from astrophysics, was proposed. 
Thedisruption operator is inspired by nature and, with the least 
computation, has improved the ability ofGSA to further explore 
and exploit the search space. The proposed improved GSA has 
been evaluated on23 nonlinear benchmark functions(Yao et al., 
1999)and compared with standard GSA, the genetic algorithm 
and particleswarm optimization. It was proved that theproposed 
method confirmed the high performance insolving various non-
linear functions from obtained results, Another version of GSA 
is known asthe Binary Gravitational Search Algorithm (BGSA), 
which was designed by Rashedi(2010). This proposed algorithm 
was also tested on 23 nonlinear benchmark problems(Yao et 
al., 1999), and results have been compared with GA and Binary 
Particle Swarm Optimization (BPSO) to prove the efficiency of 
BGSA. 

Binod Shaw(2012) presented an opposition-based gravita-
tional search algorithm for combined economic and emission 
dispatch problems of power systems. The novelty of this al-
gorithm is to accelerate the performance ofthe GSA. The pro-
posed opposition-based GSA (OGSA) of the present work em-
ploys opposition-basedlearning for population initialization and 
for generation jumping to improve the convergence rate of the 
GSA.  The author has tested the proposed algorithm on a com-

prehensive set of 23 complex benchmark test functions(Yao et 
al., 1999). In addition, four standard power systems problems of 
combined economicand emission dispatches (CEED) are solved 
by the OGSA to establish the optimizing efficacy of theproposed 
algorithm. The results obtained confirm the potential and effec-
tiveness of the proposed algorithmcompared to some other algo-
rithms that have surfaced in the recent state-of-the art literature.

IGSA Procedure

Clustering is used to group data objects into sets of disjoint 
classes called clusters so that objects withinthe same class are 
highly similar to each other and dissimilar from the objects in 
other classes. K-harmonicmeans (KHM) is one of the most popu-
lar clustering techniques, and has been applied widelyand works 
well in many fields. But, this method usually runs into local op-
tima easily. Minghao Yin(2011)proposed a hybrid data clusterin-
galgorithm based on an improved version of Gravitational Search 
Algorithmand KHM, calledIGSAKHM.  The author proved that 
IGSAKHM helps theKHM clustering escape from local optima, 
but also overcomes the slow convergence speed of the IGSA. 
The proposed method was compared with some existing algo-
rithms on seven data sets, and the obtainedresults indicate that 
IGSAKHM is superior to KHM and PSOKHM in most cases.

Abbas (2012)used GSA for the classification of instances 
in multi-class data sets. The author’s proposed method employs 
GSA as a global searcher to find the best positions of the repre-
sentatives (prototypes). The proposed GSA-based classifier was 
used to test for data classification of some of the well-known 
benchmark sets. Its performance was compared with the artifi-
cial bee colony (ABC), PSO, and nine other classifiers from the 
literature. The experimental results of twelve data sets from the 
UCI machine learning repository confirmedthe effectiveness and 
efficiency of the proposed method, and that the GSA can success-
fully be applied as to classification problems.

Rashedi(2011)discussedanewlinearandnonlinearfilter-
modelingbasedonGSA. In this paper, the unknownfilterpa-
rameterswereconsideredasavector to beoptimized.Examples
ofinfiniteimpulseresponse(IIR)filter design,aswellasrational
nonlinear filter,weregiven.TheeffectivenessoftheproposedG-
SA-basedfiltermodeling was tested on differentsetsof ini-
tial populationswiththepresenceofdifferentmeasurablenoises. 
GAandPSOwerealsousedtomodelthesame examplesandsomes-

a)Search space identification.
b)Randomized initialization.
c)Repair operator design.
d)Fitness evaluation of agents.
e)Update G(t), best(t), worst(t) and Mi(t) for i= 1,2,. . .,N.
f)Calculation of the total force in different directions.
g)Calculation of acceleration and velocity.
h)Updating agents’ position.
i)Repeat steps c to h until the stop criteria is reached.
j)End.

a)Search space identification.
b)Randomized initialization.
c)Fitness evaluation of agents.
d)Update G(t), best(t), worst(t) and Mi(t) for i= 1,2,. . .,N.
e)Calculation of acceleration and velocity.
f)Updating agents’ position.
g)Disruption operator application.
h)Repeat steps c to h until the stop criteria is reached.
i)End.
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imulationresultsarecompared.Obtainedresultsconfirmedtheeffi-
ciencyofthe proposedmethod and that it is well suited to solve 
complex problems of this nature.

Chaoshun Li (2011)developed a GSA-based new optimi-
zation algorithm for parameters identification. The parameter 
identification of hydraulic turbine governing systems (HTGS) 
is crucial in precise modeling of hydropower plants and pro-
vides support for the analysis of the stability of power systems.
In this paper, the authorintroduced GSA,showed its application 
to parameter identification of HTGS, and improved this version 
of GSA throughcombining it with the search strategy of parti-
cle swarm optimization. Furthermore, a new weighted objective 
function was proposed in the identification frame. The improved 
gravitationalsearchalgorithm (IGSA), together with GA, PSO 
and GSA, was employed in parameter identification experiments, 
and the procedure was validated by comparing experimental and 
simulated results.  Consequently, IGSA was shown to locate 
more precise parameter values than the compared methods, with 
higher efficiency.

Behrang (2011) presented a novel approach for oil con-
sumption modeling to forecast future oil demand in Iran. Grow-
ing energy demands in the world required the major oil and gas 
exporting countries to play a critical role in the energy supply. 
The geostrategic situation of Iran and its access to huge hydro-
carbon resources placed the country among important areas and 
resulted in the development of the oil and gas industries.  Three 
demand estimation models were developed to forecast oil con-
sumption based on socio-economic indicators, using GSA.In 
the first model (PGIE), oil consumption was estimated based on 
population, gross domestic product (GDP), and import and ex-
port. In the second model (PGML) population, GDP, export mi-
nus import, and number of LDVs (light-duty vehicles) were used 
to forecast oil consumption.  Lastly, in the third model (PGMH) 
population, GDP, export minus import, and number of HDVs 
(heavy-duty vehicles) were used to estimate oil consumption.  
Linear and nonlinear forms of equations were developed for each 
model.To show the accuracy of the algorithm, the author made a 
comparison with the GA andPSO estimation models which were 
developed for the same problem.Finally, oil demand in Iran was 
forecasted up to year 2030.

SoroorSarafrazi(2013)hybridized the GSA with support vec-
tor machine (SVM), and made a novel GSA-SVM hybrid system 
to improve classification accuracy with an appropriate feature 
subset in binary problems.  To optimize the input feature subset 
selection and the SVM parameter setting, a discrete GSA was 
combined with a continuous-valued GSA in this system.  The 
author evaluated the proposed hybrid system on several UCI ma-
chine learning benchmark examples, and the results showed that 
the proposed approach is able to select the discriminating input 
features correctly, and it is also able to achieve high classifica-
tion accuracy which is comparable to or better than well-known 

similar classifier systems.

7.  Convergence analysis
In this section we present that RGES converges with prob-

ability 1 to the globaloptimal solution.  In order to describe the 
RGES, we need the following definitions:

»» A neighborhood structure is a mapping N from M into 
total (M is afinite set, i.e. for each solution x it defines 
a neighborhood N(x) of x and eachy ∈N(x) is called a 
neighbour of x. In the case of the STSP, the neighborhoodof 
a given tour x can be defined as the set of tours which can 
be generated by theRGES.

»» A generation mechanism is a rule of selecting a solution 
y from the neighborhood N(x) of given solution x. In the 
context of RGES such a generationrule is usually called 
an updation rule. The generation mechanism can be 
described by probability matrix R such that

	 R(x, y) = P {Xt+1 = y | Xt = x}(17)

»» whereXtdenotes the state of the system at 
time(iteration) t.  Clearly R(x, y) > 0if and only if 
y ∈ N  (x). By(17) a Markov chain is defined over 
the set M offeasible solutions. However, in order to 
solve STSP this Markov chain has to bemodified by 
some acceptance criterion so that “good solutions” 
are selected moreoften (i.e. with higher probability) 
than bad ones.

»» A local optimal solution is an x ∈ M such that F(x) ≤ F(y) 
for all y ∈ N(x).

»» The global optimal solution is defined by x ∈M such 
thatF(x) ≤ F(y) for all y ∈ M. For the RGES not to get 
stuck in a local optimum (whichis not globally optimal) 
it is necessary to accept also deteriorations of the 
objectivefunction with probability. A state y is reachable 
from state x if there exists z1, z2, ...,zm∈M such that 
z1∈N(x), z2∈N(z1),..., y ∈ N(zm).

The algorithm starts from an initial candidate solution set 
X0 = {x1

0, ..., x
p

0}.In each iteration t, from the current parent can-
didate solutionset Xt a group ofcandidate solutions Xt of c candi-
date solutions is generated by updation, where atleast one child is 
generated by an updation.  Then the following selection process 
isapplied:

(a) Select x as best of all the p+c solutions x1
t, ... ,x

p
t , xt

1’, ..., 
xt

c’.

(b) Select x2
t+1 arbitrarily among all the candidate solutions 

xt
1’, ...,xt

c’which have not already been selected in step (a).

(c)  Select x3
t, ...., x

p
t+1 if p > 2 by any selection rule.

(c1) Select those candidate solutions (not already selected) 
with thebest values of the objective function.

(c2) Select those solutions (candidate solutions not already 
selected)with the best value of the objective function.

(c3) Select p-2 solutions arbitrary among the candidate so-
lutions (notalready selected).
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(c4) Select p-2 solutions arbitrary among the candidate so-
lutions (notalready selected).

From the classical literature of Markov processes we can 
now formulate the following global convergence result:
Theorem 7.1 

Let the set of feasible solutions M be finite and assume, that 
forall x, y ∈ M the state y is reachable from x by the updations 
considered.  Thenthe RGES with selection rule (a) to (c) in any of 
the variants (c1)-(c4) has the followingproperty:  

limP{At least one solution in Xt is globally optimal} = 1.
The proof Theorem 7.1 is trivial.

8.  Conclusion
In this paper, we have shown the main characteristics of two 

algorithms based on the law of gravity andapplied them to the 
solution of some well-known NP-hard COPs.  In future, we will 
analyze the practical results of various problems or new NP-hard 
problems and theoretical framework, and make a commercial 
package with these algorithms and study of computational com-
plexity and related properties. In addition, we will extend our 
work to the design of “hybrid” algorithms or parallelism that will 
contain combinations of the ideas of the methods presented here.
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