
On Studying the Effect of Sample Size in Evaluation of Bug Classifiers

Naresh Kumar Nagwani, Dr. Shrish Verma

1Assistant Professor, Computer Science & Engineering;  2Associate Professor & Head, Electronics & Tel. Communication Engg.
National Institute of Technology Raipur,

1nknagwani.cs@nitrr.ac.in,  2shrishverma@nitrr.ac.in

Abstract
Sampling is an important and necessary step in mining large size databases and is also very useful in performing mining operations, 
where performance is a critical issue. This study focuses on identifying the effect of sample size in classification of software bugs. 
To analyze the effect of sample size, experiments are performed using a number of classification algorithms with verities of sample 
sizes using the software bug repositories of three large open source software’s namely Android, Mozilla and MySql. The relationship 
between the sample size with two primary classification performance parameters accuracy and F-measure is explored in this study. 
From experiments, it is identified that the parameter F-measure is affected more by the sample size than accuracy.

Keywords: Sampling, Sample Size, Classification, Software Bug, Performance, Classifier Evaluation

1.  Introduction
Software bug classification is the task of categorizing the 

software bugs into the various pre-defined categories. Software 
bug classification is an important activity in software bug min-
ing; it helps in understanding the domain of bug and its effects 
on the modules. A bug can be of any type like bugs related to 
memory, graphical user interface (GUI) or logical etc. The bug 
classification process is shown in Fig. 1. Generally the classifica-
tion is performed in three stages, in the first stage the software 
bugs are collected from repositories, pre-processed and stored in 
the local database for applying data mining operations. In second 
stage classification algorithm is applied for categorizing the bugs 
and finally in third stage classification parameters are evaluated 
and result is post-processed for output representation.

Software bug repositories are not only consisting of defect 
information but also having the information of enhancement and 
other development tasks. The enhancement and small develop-
ment tasks are also treated like defects which need to be imple-
mented and resolved, and mostly included in the bug repositories. 
The software bug repositories for bigger software’s are consist of 
thousands of the software bugs and its size (number of bugs) is 
still growing because of more bugs of newly modules and en-
hancement works are reported frequently. It is not possible to 
accommodate all the thousand number of bugs for evaluation and 
development of bug classifier, because it will make the classifier 
development process complex. To simplify this process sampling 
techniques can be used effectively. Sampling plays a major role 
in classification, and almost everywhere where the classifiers are 
developed, sampling techniques are frequent used for faster de-
velopment and validation of the classifiers. 

Fig.1. Software Bug Classification Process.

1.1  Classification Algorithms
There are a number of bug classification techniques pro-

posed [Antoniol et. al., 2008; Ferzund et. al., 2009; Fluri et. al., 
2008; Grottke and Trivedi, 2005; Guo and Sampath, 2008].  A 
software bug is consisting of a number of attributes like sum-
mary, description, comments, reported-date, assigned-to, report-
ed-by etc. The textual attributes (surface features) summary, 
description and comments consist of important information of 
a bug and are the primary features used in classification [Jalbert 
and Weimer, 2008;  Antoniol et al, 2008]. To evaluate the effect 
of sample size on various software bug classifiers five different 
classification algorithms are selected for experiments in this pa-
per. The algorithms are Naïve Bayes (NB) classifier [Mccallum 
and Nigam, 1998], J48 [Quinlan, 1993], Support Vector Machine 
(SVM), [Vapnik, 1995; EL-Manzalawy, 2005], Classification 
Using Clustering (CC) [Kyriakopoulou and Kalamboukis, 2006] 
and CLUBAS (CLassification of software bugs Using Bug At-
tributes Similarity) [Nagwani and Verma, 2012b].

1.2  Naïve Bayes Classifiers (NB)
The Naïve Bayes classifier [Mccallum and Nigam, 1998] 

works on the basis of Bayes rule of conditional probability. It 
uses every attribute contained in the data, and analyses them in-

Indian Journal of Science and Technology Vol: 6    Issue: 1    January 2013   ISSN:0974-6846

Research Article www.indjst.org3849
11



dividually. It is assumed that all the attributes are uniformly im-
portant and independent of each other. 

1.3  J48
J48 [Quinlan, 1993] is one of the decision tree classifiers. A 

decision tree is a predictive machine-learning model that decides 
the dependent value of a new sample based on diverse attribute 
values of the existing data. The internal nodes of a decision tree 
denote the different attributes; the branches between the nodes 
indicates the possible values that these attributes can have in the 
observed samples, where as the leaf nodes indicates the final val-
ue (class values) of the dependent variable. The J48 decision tree 
classifier follows the simple algorithm to classify a new item; it 
first needs to create a decision tree based on the attribute values 
of the available training data. So, whenever it encounters a set of 
items (training set), it identifies the attribute that discriminates 
the various instances most clearly. 

1.4  Support Vector Machine (SVM)
A support vector machine (or SVM) [Vapnik, 1995; EL-

Manzalawy, 2005] is an algorithm that works as follows. It uses 
nonlinear mapping to transform the original training data into 
a higher dimension. Within this new dimension, it searches for 
the linear optimal separating hyper-plane. With an appropriate 
nonlinear mapping to a sufficiently high dimension, data from 
two classes can always be separated by a hyperplane. The SVM 
finds this hyperplane using support vectors and margins. SVM’s 
are supervised learning methods used for classification. 

1.5  Classification Using Clustering (CC)
In classification using clustering [Kyriakopoulou and Kal-

amboukis, 2006] technique, classification is performed using 
text clustering. The algorithm consists of three steps: clustering, 
expansion and classification step. It is considered that there is a 
one-to-one association between classes, topics and clusters.

1.6  Classification of Bugs Using Bug Attributes Simi-
larities (CLUBAS)

CLUBAS [Nagwani and Verma, 2012b] is a hybrid algo-
rithm, and is designed by using text clustering, frequent term 
calculations and taxonomic terms mapping techniques. The algo-
rithm CLUBAS is developed using classification using clustering 
model. The algorithm works in three major steps, in the first step 
text clusters are created using software bug textual attributes data 
and followed by the second step in which cluster labels are gen-
erated using label induction for each cluster, and in the third step, 
the cluster labels are mapped against the bug taxonomic terms to 
identify the appropriate categories of the bug clusters.

2.  Classifier Performance Evaluation 
The accuracy and performance of prediction models for 

classification problem is typically evaluated using a confusion 
matrix. A confusion matrix contains information about actual and 

predicted classifications performed by classifiers. In this study, 
accuracy and F-measure are used to evaluate the classification 
models. These measures are derived from the confusion matrix, 
which is shown in the Fig. 2. TP stands for true positive, which 
indicates a positive value that the system has predicted as posi-
tives, TN is true negatives, that is negative values the system 
identifies as negatives, FP is false positives, negative values the 
system identifies as positives and FN is false negatives, positive 
values that the system predicted as negative.

Fig.2. A confusion matrix

    Predicted

    positives Negatives

A
ct

ua
l positives TP FN

negatives FP TN
Precision is the ratio of the number of correctly classified 

software bugs and the actual number of software bugs which was 
assigned to the type. Precision is the measurement of correctness 
and is also defined as the ratio of the true positives (TP) to total 
positives (TP+FP) and is calculated using Eq. (1). Recall rate is 
the ratio of the number of correctly classified software bugs and 
the number of software bugs which belongs to the type. It reflects 
the classifier’s ability of searching extension and is calculated 
using Eq. (2).

 F-Measure or F1-Measure is a combined measure of Preci-
sion and Recall parameters. F-measure considers both precision 
and recall equally important by taking their harmonic mean. F-
measure or F1-measure is calculated using Eq. (3). Accuracy, or 
correctness of classifiers, is defined as the ratio of the number of 
bugs correctly classified to the total number of bugs and is calcu-
lated using Eq. (4) or Eq. (5).

3.  Experiments

3.1  Data (Bug Repositories)
To evaluate the effect of sample size on software bug clas-

sifiers, bugs are selected from three major open source software 
repositories namely Android, Mozilla and MySql. There reposi-
tories contains the bug information online and can be accessed 
online by any user.

Precision TP
TP FP

=
+

Recall TP
TP FN

=
+

(2)

recallprecision
recallprecisionF

+
=

**2
1

TP TNAccuracy
TP TN FP FN

+
=

+ + +

100*
__

___
(%)

bugsSoftwareTotal
BugsSoftwareClassifiesCorrectlyAccuracy =

(3)

(4)

(5)

(1)

Vol: 6  Issue: 1   January 2013  ISSN:0974-6846 Indian Journal of Science and Technology

www.indjst.org Research Article3850
12



3.2  Sampling
Random sampling technique is used in the experiments, and 

to fetch the random records from the software bug repositories, 
random number generator has written in java to generate the ran-
dom integer numbers. Using these numbers as the bug ids, bug 
records are extracted from the online software bug repositories 
using URL (Uniform Resource Locator) programming in java. 
(For example for the URL of Mozilla bug repositories, “https://
bugzilla.mozilla.org/show_bug.cgi?id=X”, where X can be ap-
pended to retrieve a particular software bug record from Mozilla 
repository.) The sample size of 200, 300, 500, 700, 1000, 1300, 
1600 and 2000 is taken for the experiments from the repositories 
for the evaluation of the classifiers. 

3.3  Programming Environment
Experiments are performed using Java and Weka API 

(Waikato Environment Knowledge Analysis – Application Pro-
gramming Interface) for the implementation of random number 
generation (for bug-ids) and implementation of classification 
algorithms. Weka API provides the implementation of most of 
the algorithms used in this paper for the study of sample size 
effect on classifiers. Support Vector Machine (SVM) classifica-
tion algorithm is implemented with the help of LIBSVM. LIB-
SVM [Chang and Lin, 2001] is an open source implementation 
of SVM, which can be integrated into Weka. The 10-fold cross 
validation technique is applied to measure the accuracy of these 
classifiers. The accuracy and F-measure performance parameters 
are calculated for all the classifiers. 

3.4  Pre-processing and Generation 
of Taxonomic Terms

The taxonomic terms are generated using frequent terms 
analysis, tf-idf (Term Frequency – Inverse Domain Frequency) 
analysis and manual inspection [Nagwani and Verma, 2012a]. 
These terms serves the purpose of making the differentiation of 
the software bugs for different categories. Terms are generated 
using 2000 random sample software bugs selected from the three 
open source bug software projects in aggregation. Experiments 
in this paper are performed for binary classification of the bugs, 
where the bugs are categorized into the two categories – bugs and 
non-bugs (enhancement and other development tasks).

3.5  Classifier Evaluation
The experiment is first applied using the Android bug re-

pository. Different numbers of random samples are selected from 
this repository and the algorithms CC, CLUBAS, NB, J48 and 
SVM are applied for classification and the parameters accuracy 
and F-Measures are calculated at each sampling point (for each 
sample size). The results for accuracy and F-measures for dif-
ferent number of samples are plotted in Fig. 3(A) and Fig. 4(A) 
respectively. From the plot Fig. 3(A), it is observed that initially 
as the sample size increases, some variation (minor increase and 

decrease) is identified in accuracy values, and after a certain level 
the accuracy values drops slightly. This is because the classifier 
update itself with new learning samples, and finally the classifier 
get established and gives the continuous stable accuracy values 
with slight variations. Accuracy wise the algorithms NB, SVM 
and J48 gives stable values of accuracy. Whereas the text cluster-
ing based algorithms CC and CLUBAS, some drop in accuracy 
values is observed with respect to increase in number of samples 
taken for classification. Another reason behind the behavior of 
accuracy is, at the initial level when the number of samples are 
less, less discriminative terms are identified for classification and 
classification gives better accuracy values, as the sample size in-
creases more number of discriminative terms are identified by 
classification algorithm which causes drop in accuracy values 
because of higher true-negative and false-positive values (i.e. 
classifiers gets confused with the discriminative terms and causes 
wrong classification).

From the F-measure point of view (Fig. 4(A)), the same be-
havior like accuracy is observed in the experiments at different 
sampling point. Initially for small samples size some variation 
takes place in F-measure, then there is drop in F-measure values 
and finally the stable values are seen after the establishment of the 
classifiers learning and stability.

Fig.3. Accuracy of various classifiers for (A) Android (B) Mozilla 
(C) MySql bug repository 

Indian Journal of Science and Technology Vol: 6    Issue: 1    January 2013   ISSN:0974-6846

Research Article www.indjst.org3851
13



Similarly, the experiments are performed on Mozilla and 
Mysql bug repositories using the mentioned classification algo-
rithms. The accuracy and F-measure results for these repositories 
are plotted against the different number of samples in Fig. 3-4(B-
C) respectively.  It is observed from the plots that the sample 
size is having less effect on the parameter accuracy, some minor 
drop in accuracy is observed with increase in the sample size for 
bug classification. But from the F-measure point of view the F-
measure values starts falling after a certain increase in the sample 
size. The primary reason behind this is, as the number of bugs 
increase in the participation of classification, the classifiers dis-
crimination system will get new information and upgrade itself 
for further learning, which results in drop of precision and recall 
values (and hence the F-measure, since F-measure is combined 
measure of precision and recall).  

For NB, NBM and J48 algorithms, as sample size increase 
accuracy and F-measure fluctuate initially and then drops, after 
a particular level the values again increases and achieves stable 
values with minor fluctuations. This is due to the learning process 
and improvement in the probabilistic function for classifying the 
software bugs. At initial level, when there are less number of re-
cords (small sample size) the algorithms NB, NBM and J48 han-
dles the discrimination of records effectively and hence the ac-
curacy and F-measures and having good values, when the sample 
size starts increasing the discrimination power of the algorithms 
becomes less and there is drop in the parameters values (True-
Positives decreases) and after a particular stage when there is 
enough learning in the probabilistic functions associated with the 
algorithms, again the parameter values increase (False-Positives 
and True-Negatives decreases and parameter values increases).

For clustering based (CC and CLUBAS) algorithms also the 
accuracy and F-measures fluctuates initially and after a particu-
lar stage the values drops and again fluctuate but never gain the 
higher values after this drop. The reason behind this is using these 
techniques an optimum number of text clusters are generated at 
any particular point then the newer data points falls in outliers.

Fig.4. F-Measure of various classifiers for (A) Android (B) Mozilla 
(C) MySql bug repository

For better understanding of sample size effect for various 
classifiers, 3D (three dimensional) views are created as contour 
maps. The contour map of parameter accuracy for the three bug 
repositories is presented in Fig. 5 (A-C). The sample size in thou-
sands is mentioned along the X-axis, Y-axis represents the algo-
rithm (numbered 1 to 5 i.e. 1-CC, 2-CLUBAS, 3-J48, 4-NB and 
5-SVM) and accuracy values for the combination of X and Y 
values are represented as contour lines (Z values). It is observed 
from the figure that for Android and MySql bug repositories 
the accuracy values are always more than 80%, irrespective of 
sample size selected for classification, however in case of Moz-
illa bug repository the accuracy values drops below 80% (in the 
range of 60%-80%) for the algorithms CC, CLUBAS and SVM 
using the sample size more than 500. The primary reason behind 
this is observed manually which is the randomness in the textual 

Vol: 6  Issue: 1   January 2013  ISSN:0974-6846 Indian Journal of Science and Technology

www.indjst.org Research Article3852
14



information present in Mozilla bug repository, the information in Mozilla repository is very vast and as the sample size grows more 
records are not likely to fit in the classifiers and hence minor drop in accuracy is observed. The other reason is CC, CLUBAS creates 
the optimum number of clusters and some bugs may fall is outliers resulting minor drop in accuracy values, similarly SVM optimizes 
the hyper-plane after enough increase in samples which may lead to minor drop in accuracy values.

Fig.5. Contour Map of Accuracy of various classifiers for (A) Android (B) Mozilla (C) MySql bug repository 

Fig.6. Contour Map of F-Measure of various classifiers for (A) Android (B) Mozilla (C) MySql bug repository 

Indian Journal of Science and Technology Vol: 6    Issue: 1    January 2013   ISSN:0974-6846

Research Article www.indjst.org3853
15



Similarly the 3D representation of F-measure for various 
classifiers using different number of samples is presented n Fig. 6 
(A-C).  The axis annotations are same as Fig. 5. From the figure it 
is observed that the F-measure values have more effect of change 
is sample size, it is found that after a certain point increase in 
sample size may drop the F-measures.  Android bug repository is 
more affected than the other two bug repositories. This is because 
of the less correlation between the information present in the An-
droid bug repositories and aggregate taxonomic terms generated 
for categorization of bugs from all the three bug repositories. The 
taxonomic terms are dominated by the other two software bug 
repositories i.e. Mozilla and MySql. The taxonomic terms are 
generated from the three repositories in aggregation and Mozilla 
and MySql bug repositories are dominating here being as mature 
repositories with more number of software bugs. Similarly minor 
effect is observed for Mozilla bug repository also, because of the 
same reason. 

The above three dimensional representations can also be 
used for target programming, i.e. target based selection of sam-
ple size and algorithms. For example in Android bug repository 
if 95% accuracy is desirable then algorithm number 3, i.e. J48 
algorithm can be used with the sample size around 1500. Simi-
larly the same target driven programming models can be used for 
the F-measure values for different sample size and algorithms. 
These representations give the programmer a way to choose the 
algorithm and sample size for desired accuracy and F-measure 
values.

3.6  Threats to Validity
Three software bug’s repositories namely, Android, Mozilla 

and MySql are selected for experimentations of identifying the 
effect of sample size for evaluating the bug classifiers. Differ-
ent numbers of random samples are selected from every reposi-
tory for analyzing the effect of sample size on various classifiers. 
Although the experiments are performed number of times and 
validation is also performed for the results, still there is a prob-
ability that the calculated parameter values may vary for other 
samples (selected randomly), where the textual bug attribute 
information is pitiable (the software bugs, where bug informa-
tion is not described in details). The other limitation of the work 
can be derived from the Zipf’s power distribution law [Li, 1992; 
Reed, 2001]. It states that most of users make use of restricted 
number of words commonly in the text documents. So if the se-
lected records are user specific, some variation in results may 
also be observed. 

4.  Conclusions and Future Scope
The effect of sample size in bug classification task is ex-

plored in this work. The sample size parameter has the less ef-
fect on the classifier parameter accuracy and only minor varia-
tions are observed in accuracy for different number of samples, 

selected for classification. However the sample size have some 
effect on the F-measure values and it is observed from the experi-
ments that as the sample size increases after a particular level, 
the F-measure values start decreasing and never get the higher 
values again. Two and three dimensional graphs are also gener-
ated for the analysis of sampling size effect in bug classification 
task. These graphs can also be used by programmers for target 
driven programming, where the programmers can choose the al-
gorithms and sampling size for the desired values of accuracy 
and F-measure values. Random sampling is selected in this work 
for studying the effect of sample size, since it is the most com-
mon and effective sampling technique is software bug classifica-
tion. Other sampling techniques like cluster sampling, stratified 
sampling and their effect on classification can also be taken as the 
future work to cover the overall sampling effect on the classifica-
tion of software bugs. 

5.  References
1.  Android Bug Repository - available at https://code.google.

com/p/android/issues/list 

2.  Antoniol G, Ayari K, Penta M D (2008) Is it a Bug or an 
Enhancement? A Text-based Approach to Classify Change 
Requests. Proceedings of the 2008 conference of the center 
for advanced studies on collaborative research (CASCON 
’08), New York, USA, 304–318.

3.  Chang C C, Lin C J (2001) LIBSVM - A Library for Support 
Vector Machines. URL http://www.csie.ntu.edu.tw/~cjlin/
libsvm/.

4.  EL-Manzalawy Y (2005) WLSVM: Integrating libsvm into 
WEKA environment. Software available at http://www.
cs.iastate.edu/~yasser/wlsvm/.

5.  Ferzund J, Ahsan S N, Wotawa F (2009) Software Change 
Classification using Hunk Metrics. Proceedings of IEEE 
International Conference on Software Maintenance (ICSM 
2009), Edmonton, Canada, 471-474.

6.  Fluri B, Giger E, Gall H C (2008) Discovering Patterns of 
Change Types. Proceedings of the 23rd International Confer-
ence on Automated Software Engineering (ASE), L’Aquila, 
Italy, 463-466.

7.  Grottke M, Trivedi K S (2005) A Classification of Software 
Faults. Journal of Reliability Engineering Association of Ja-
pan, 27(7), 425-438.

8.  Guo Y, Sampath S (2008) Web Application Fault Classifica-
tion - An Exploratory Study. Proceedings of the International 
Symposium on Empirical Software Engineering and Meas-
urement (ESEM 2008), Kaiserslautern, Germany, 303-305.

9.  Jalbert N, Weimer W (2008) Automated Duplicate Detection 
for Bug Tracking Systems. IEEE International Conference 
on Dependable Systems & Networks, Anchorage, Alaska, 

Vol: 6  Issue: 1   January 2013  ISSN:0974-6846 Indian Journal of Science and Technology

www.indjst.org Research Article3854
16

52-61.



10.  Kyriakopoulou A, Kalamboukis T (2006) Text Classifica-
tion Using Clustering. Proceedings of The 17th European 
Conference on Machine Learning and the 10th European 
Conference on Principles and Practice of Knowledge Dis-
covery in Databases (ECML-PKDD),Burlin, Germany, 28-
38.

11.  Li W (1992) Random Texts Exhibit Zipf’s-Law-Like Word 
Frequency Distribution. IEEE Transactions on Information 
Theory, 38(6), 1842-1845.

12.  Mccallum A, Nigam K  (1998) A Comparison of Event 
Models for Naive Bayes Text Classification. Proceedings of 
the Fifteenth National Conference on Artificial Intelligence 
(AAAI-98) Workshop on Learning for Text Categorization, 
Madison, Wisconsin, 41-48.

13.  Mozilla (An open-source browser)Bug Repository, avail-
able at https://bugzilla.mozilla.org/

14.  MySql - A free relational database management system, 
Bug Repository, available at http://bugs.mysql.com/

15.  Nagwani N K, Verma S (2012) A Frequent Term Based Ap-
proach for Generating Discriminative Terms in Software 
Bug Repositories. IEEE 1st International Conference on Re-
cent Advances in Information Technology (RAIT – 2012), 
Dhanbad, Jharkhand, India, 433-435.

16.  Nagwani N K, Verma S (2012) CLUBAS: An Algorithm 
and Java Based Tool for Software Bug Classification Using 
Bug Attributes Similarities. Journal of Software Engineering 
and Applications, 5(6),  436-447.

17.  Quinlan R (1993) C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann Publishers, San Mateo, CA, ISBN 
1-55860-238-0, 1-16.

18.  Reed W J (2001) The Pareto, Zipf and other power laws. 
Economics Letters, 74(1), 15-19.

19.  Vapnik V (1995) The Nature of Statistical Learning Theory. 
Springer-Verlag, ISBN:0-387-94559-8,  138-167.

20.   Weka, available at http://www.cs.waikato.ac.nz/ml/weka/

Indian Journal of Science and Technology Vol: 6    Issue: 1    January 2013   ISSN:0974-6846

Research Article www.indjst.org3855
17




