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Abstract 
In this paper, we solve the nonlinear Volterra-Fredholm integral equations system by using the Chebyshev 
polynomials. First we introduce the Chebyshev polynomials and approximate functions via their application. Then, we 
use Chebyshev polynomials as a collocation basis to change the nonlinear Volterra-Fredholm integral equations 
system to a system of nonlinear algebraic equations. Finally, the convergence analysis is considered, and numerical 
examples given to illustrate the efficiency of this method. 
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Introduction  

System of nonlinear Volterra-Fredholm integral 
equations are defined as follows:  
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where, for nji 0,1,2,...,=,  the functions ),(),( tsksf iji  

and ),(' tskij  are known and )(sgi  is the unknown 

functions to be determined, also 1, ii qp  are positive 

integers. Equation (1) introduces a system of 1n  
equations and 1n  unknowns.  

Up to now several methods have been proposed for 
solving Volterra-Fredholm equations and it's systems. 
Yalsinbas (2002) used Taylor polynomials to approximate 
Volterra-Fredholm integral equations. Also Maleknejad 
and Mahmodi (2003) applied Taylor polynomials for 
solving high-order Volterra-Fredholm integro-differential 
equations. Rabbani et al., (2007) solved Volterra-
Fredholm integral equations system using an expansion 
method. Jumarhan and Mckee (1996) presented a 
numerical solution method based on integration to solve 
the nonlinear Volterra-Fredholm integral equations 
system. Solving the system of Volterra-Fredholm integral 
equations by Adomian decomposition method is 
considered in (Maleknejad & Fadaei Yami, 2006). 
Chuong and Tuan (1996) used Spline-collocation method 
for solving nonlinear Volterra-Fredholm equations 
system. Brunner (1990) solved the nonlinear Volterra-
Fredholm integral equations by using collocation method. 
Maleknejad et al. (2007) solved nonlinear Volterra 
integral equations using Chebyshev polynomials. Also 
Cerdik-Yaslan & Akyuz-Dascioglu (2006) applied 
Chebyshev polynomials for solving Volterra-Fredholm 
integro-differential equations. Very recently, we used 
Chebyshev polynomials for solving nonlinear Volterra-
Fredholm integral equations (Ezzati & Najafalizadeh, 
2011). 

Chebyshev polynomials of the first kind of degree n  are 
defined as follows (Chihara, 1978):  

0.),(arccos=),(cos=)( nsnsTn   

Also we'll have the following recursive formula for these 
polynomials (Chihara, 1978):  

1,=)(0 sT  

,=)(1 ssT  

1,2,3,...=),()(2=)( 11 nsTssTsT nnn  
  
(2) 

 Inner product in the interval [-1,1] for Chebyshev 
polynomials is defined by (Chihara, 1978):  
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 where   
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 ss  
With respect to the inner product which is defined in (3) 
Chebyshev polynomials are orthogonal (Chihara, 1978):  
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In this paper, we approximate functions by using 
Chebyshev polynomials and we present operational 
matrices for integration of vectors. Then Chebyshev 
polynomials defined in (2) are used as a collocation basis 
to solve system (1) and reduce it to a system of algebraic 
equations. The generated algebraic system, which 
according to the type of system (1) would be either linear 



 
 
Indian Journal of Science and Technology                                                        Vol. 5     No. 2    (Feb  2012)               ISSN: 0974- 6846 
 

Research article                                                                                                       “Volterra-Fredholm”                                                                                      Ezatti & Najafalizadeh            
Indian Society for Education and Environment (iSee)                                         http://www.indjst.org                                                                                              Indian J.Sci.Technol. 

2061

or nonlinear. Newton's iterative method can be used for 
solving nonlinear algebraic system. Finally, we introduce 
two theorems and proofs for convergence analysis.  
Approximation the function by using a series of 
Chebyshev polynomials 

If )(sf  be a function in ],[ ba  and 
0=}{ ii  be 

orthogonal on this interval, then )(sf  can be shown as 
follows:  

),(=)(
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 where i  are Fourier coefficients that are as [11,12]:  

)),(),((= ssf ii   (6) 

 As we mentioned above, we also can write the above 
series for the Chebyshev orthogonal basis, if )(sf  is 
defined in the interval [-1,1], by using Chebyshev 
polynomials of the first kind, relation (5) can be written as 
follows:  
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 if the infinite series in (7) is truncated, then we'll have:  
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 where C  and T  are 11)( N  definite vectors as 

follows:  
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 Coefficients ic  are given as (6) where inner product with 

the weight function 1/22 )(1=)(  ss  is:  
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 For the positive integer powers of a function ,)(sf  we 
have:  

),(=)]([)]([ * sTCsTCsf
T

p
pTp   (12) 

where C  and T  are defined vectors in (9), (10), and *
pC  

is a column vector and it's elements are nonlinear 

combinations of the elements of vector C. *
pC  is called 

operational vector of p th power. Maleknejad et al. 
(2006) compute the second and third product operational 
vector  by using Chebyshev polynomials as follows:  
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Similarly, regarding a function ),,( tsk  with two variables, 
which is defined on [-1,1], we'll have:  
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 where  
 

))).(),,((),((= tTtsksTK jiij  (14) 

 By choosing )(sT  as (10) and K  as a 

1)(1)(  NN  matrix with elements of ijk , equation 

(13) can be written as follows:  
 

).()(),( tKTsTtsk T  (15) 
The operational matrices for integration 

In this section we present the operational matrix as 
P  for computing the integral of vector (10), (Rao, 1983) 
We have the following relation about Chebyshev 
polynomial:  
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 also for )(0 sT  and )(1 sT  we have:  
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 Equations (16) and (17) allow us to write:  
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 where P  is the 1)(1)(  NN  operational matrix as 
follows:  
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 For Chebyshev polynomials we have:  

),(~)()( sTCCsTsT TT   (21) 

 where C  is a vector in (9) and C~  is a 1)(1)(  NN  

square matrix as follows:  
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 where ]
2

[= Ni . 

Description of the method  
In this section, we solve the nonlinear Volterra-

Fredholm integral equations system by using the 
Chebyshev polynomials of the first kind. 

With respect to the method of Section 2 for 
nji 0,1,2,...,=,  we have:  
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 where *

jjpG  and *

jjqG are operational vectors defined in 

Section 2 and iG  is a 11)( N  vector  
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 Now, with substituting equation (23) in system (1) we'll 
have:  
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Hence Equation (26) represent a system with 1)( n  

equations and 1)(1)(  Nn  unknowns, so we rewrite 
each equation of the system at the collocation points of 


0=}{ kks  in the interval [-1,1]. Then we'll have a system 

with 1)(1)(  Nn  equations and 1)(1)(  Nn  
unknowns:  
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 Relation (27)  leads to a linear or nonlinear system of 
equations such that the unknown coefficients can be 
found.  
Convergence analysis 

We can show the nonlinear terms in equation (1) by 
jp

jj tggF )]([=)(  and jq
jj tggF )]([=)(' . Let 

( [ 1,1], . )C   be the Banach space of all continuous 

functions on interval [-1,1] with norm  

.)(max ]1,1[ sff s 
  Suppose the nonlinear terms 

)(uF  and )(' uF  are satisfied in Lipschitz condition  

,|||)()(| 1 vuLvFuF   
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.|||)()(| 2
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We also assume for all ,0,1,2,...,=, nji  Mtskij |),(|  

and '' |),(| Mtskij  . We show exact solutions of the 

nonlinear Volterra-Fredholm integral equations system by 
)(sg j  and approximate solutions of the nonlinear 

Volterra-Fredholm integral equations system for N  by 
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)(sg jN . Moreover, we define 2
'

1 21)(= LMsML  . 

So, we are ready for presenting two theorems about 
convergence analysis.  
Theorem 5.1 For 0=n  the solution of the nonlinear 
Volterra-Fredholm integral equation by using Chebyshev 

polynomials is convergent  if 0 < < 1 .  

Proof.  
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 By selection 1<<0   we'll have:  
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so the proof is completed.  
Theorem 5.2 For 1n  the solution of the nonlinear 
Volterra-Fredholm integral equations system by using 
Chebyshev polynomials is convergent if 
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Proof. Let us consider the following norm for the i th 
equation of system (1.1):  
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 If we rewrite relation (29) for ni 0,1,2,...,=  and then 
add up the obtained unequal extremes, we'll have:  

=0 =0

( 1) ,
n n

i iN j jN
i j

g g n g g
 

     
 

(30) 

 so  

=0

(1 (1 ) ) 0,
n

i iN
i

n g g


      (31) 

 according to relation (31) by selecting 
n1

1<<0   

we'll have:  
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so the proof is completed.  
Examples 

In this section, the efficiency of the presented method 
is shown in following three examples. In examples 1 and 
2, we use Newton's iterative method for solving the 
generated nonlinear system. Mathematica 5.2 software is 
applied in computing examples. 
Example 1. As a first example we have the following 
system with 2 equations and 2 unknowns:  

,)(1)()()(=)( 2

1

11
21

111 dttgstdttgstsgsf   
 

,)(2)()()(=)( 211122 dtttgdttgtssgsf
ss

 
  (32) 

 where 12=)(1 ssf  and 1
3
2=)( 3

2  ssf . The exact  

solutions of the above system are 12=)(1 ssg  and 

1=)(2 ssg . Table 1 illustrates the numerical results for 

9=N  and 11=N . 
Example 2. Consider the following nonlinear integral 
equations system:  

,)()]([16)(=)( 2
321

1

2
1111 dttgtsdttgstsgsf

s

 
  

Table 1.  The Numerical results of Example 6.1. 
     Exact solution 

  
 Approximation 
solution with N=9   

 Approximation 
solution with N=11   

 ix
  )(1 sg   )(2 sg    )(1 sg    )(2 sg    )(1 sg    )(2 sg   

 -1   -3   0  -2.99998  -0.00977  -3  0.00011 
-0.75   -2.5   .25  -2.49998  0.24262   -2.5 0.25005 
-0.5   -2   .5  -1.99998  0.49506   -2  0.50002 
-0.25   -1.5   .75  -1.49998  0.74751   -1.5 0.75  
0   -1   1  -0.99998  1   -1  1  
0.25   -0.5   1.25 -0.49998  1.25   -0.5 1.25  
0.5   0   1.5   0.00002  1.50506   0  1.49999 
0.75   .5   1.75  0.50002  1.75763   0.5  1.74997 
1   1   2   1.00002  2.01023   1  1.99999 
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2

=)(1
ssg  and 1=)(2 ssg . Table 2 

illustrates the numerical results. 

Example 3. As a last example, we have the following 
nonlinear Volterra-Fredholm integral equations system:  
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The exact solution of above system is 1=)(1 ssg  and 

sssg 2
2 =)( . Table 3 shows the numerical results for 

N=10 and N=12. 
 
 

Conclusion 
In this paper, we solved a system of Volterra-

Fredholm integral equations by using Chebyshev 
collocation method. The properties of Chebyshev 
polynomials are used to reduce the system of Volterra-
Fredholm integral equations to a system of nonlinear 
algebraic equations. Computations are excuted using 
Mathematica 5.2 software. Three numerical examples 
demonstrate the validity and efficiency of proposed 
method.  
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Table 2. The Numerical results of Example 5.2. 

     Exact  solution  Approximation solution 
with N=10 

Approximation 
solution with N=12 

 ix
 

)(1 sg   )(2 sg    )(1 sg    )(2 sg    )(1 sg    )(2 sg   
 -1   -0.5   0   -0.48378  -0.03068 -0.49910 -0.00045 
-0.75   -0.375   .25   -0.36599  0.22503  -0.37468 0.24956 
-0.5   -0.25   .5   -0.24563  0.48074  -0.24999 0.49957 
-0.25   -0.125   .75   -0.12360  0.73645  -0.12505 0.74959 
0   0   1   0  0.99216   0  0.9996  
0.25   0.125   1.25  0.12516  1.24788   0.12505  1.24961 
0.5   0.25   1.5   0.25188  1.50359   0.24999  1.49963 
0.75   0.375   1.75  0.380278  1.75930   0.37468  1.74964 
1   0.5   2   0.51122  2.01501   0.49910  1.99965 

Table 3.  The Numerical results of Example 5.3. 

   Exact  solution 
  

Approximation solution  
with N=10 

Approximation solution 
with  N=12 

 ix
  )(1 sg    )(2 sg    )(1 sg    )(2 sg    )(1 sg    )(2 sg   

 -1   -2   2   -2.01013  1.98970   -2.00010 2.00057  
-0.75   -1.75  1.3125   -1.75755  1.30476   -1.75007 1.31291  
-0.5   -1.5   0.75   -1.50501  0.74482   -1.50005 0.75025  
-0.25   -1.25  0.3125   -1.25249  0.30989   -1.25002 0.31261  
0   -1   0   -1  -0.00002  -1  -0.00001 
0.25   -0.75  0.1875  -0.74754  -0.18493  -0.74998 -0.18762 
0.5   -0.5   -0.25   -0.49511  -0.24483  -0.49996 -0.25022 
0.75   -0.25  -0.1875  -0.24270  -0.17972  -0.24994 -0.18780 
1   0   0   0.00967  0.01040   0.00008  -0.00039 


