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Abstract
In this paper, we solve the nonlinear Volterra-Fredholm integral equations system by using the Chebyshev
polynomials. First we introduce the Chebyshev polynomials and approximate functions via their application. Then, we
use Chebyshev polynomials as a collocation basis to change the nonlinear Volterra-Fredholm integral equations
system to a system of nonlinear algebraic equations. Finally, the convergence analysis is considered, and numerical

examples given to illustrate the efficiency of this method.

Keywords: Volterra-Fredholm; System of integral equations; Chebyshev polynomials; Operational matrix.

Introduction
System of nonlinear Volterra-Fredholm
equations are defined as follows:

£,9) = 0,(5) - ([ ky (.00, 01" d) - (X[ ks (5,01, 01" )

integral

i=01,2,..,n, se[-11], 1)
where, for i, j =0,1,2,...,n the functions f; (S),kij (s,t)

and ki'j(s,t) are known and @;(S) is the unknown

functions to be determined, also p;,; =1 are positive

integers. Equation (1) introduces a system of n-+1

equations and N+1 unknowns.

Up to now several methods have been proposed for
solving Volterra-Fredholm equations and it's systems.
Yalsinbas (2002) used Taylor polynomials to approximate
Volterra-Fredholm integral equations. Also Maleknejad
and Mahmodi (2003) applied Taylor polynomials for
solving high-order Volterra-Fredholm integro-differential
equations. Rabbani et al.,, (2007) solved Volterra-
Fredholm integral equations system using an expansion
method. Jumarhan and Mckee (1996) presented a
numerical solution method based on integration to solve
the nonlinear Volterra-Fredholm integral equations
system. Solving the system of Volterra-Fredholm integral
equations by Adomian decomposition method is
considered in (Maleknejad & Fadaei Yami, 2006).
Chuong and Tuan (1996) used Spline-collocation method
for solving nonlinear Volterra-Fredholm equations
system. Brunner (1990) solved the nonlinear Volterra-
Fredholm integral equations by using collocation method.
Maleknejad et al. (2007) solved nonlinear Volterra
integral equations using Chebyshev polynomials. Also
Cerdik-Yaslan & Akyuz-Dascioglu (2006) applied
Chebyshev polynomials for solving Volterra-Fredholm
integro-differential equations. Very recently, we used
Chebyshev polynomials for solving nonlinear Volterra-
Fredholm integral equations (Ezzati & Najafalizadeh,
2011).
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Chebyshev polynomials of the first kind of degree n are
defined as follows (Chihara, 1978):

T,(s) =cos(n@), 6 =arccos(s), n>0.

Also we'll have the following recursive formula for these
polynomials (Chihara, 1978):

TO(S) :11
Tl(s) = S!
T,.,(8)=2sT, (s)-T,,(s), n=1,23,... (2

Inner product in the interval [-1,1] for Chebyshev
polynomials is defined by (Chihara, 1978):

<T(5).T,(8)>= [ T(OT (Do(s)ds @

where
1

w(s) = (1-s?)2.
With respect to the inner product which is defined in (3)
Chebyshev polynomials are orthogonal (Chihara, 1978):

T, 1=,
(M6 T(N=32_. . . @
5 % 1# ]
where
1, 1=,
5ij= L
0, i#].

In this paper, we approximate functions by using
Chebyshev polynomials and we present operational
matrices for integration of vectors. Then Chebyshev
polynomials defined in (2) are used as a collocation basis
to solve system (1) and reduce it to a system of algebraic
equations. The generated algebraic system, which
according to the type of system (1) would be either linear
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or nonlinear. Newton's iterative method can be used for
solving nonlinear algebraic system. Finally, we introduce
two theorems and proofs for convergence analysis.
Approximation the function by using a series of
Chebyshev polynomials

If f(s) be a function in [a,b] and {v,}, be
orthogonal on this interval, then f(S) can be shown as
follows:

f(s)= Zlozivi (s), 5)
i=0

where «; are Fourier coefficients that are as [11,12]:

a; = (f(8),vi(s)), (6)

As we mentioned above, we also can write the above
series for the Chebyshev orthogonal basis, if f(S) is
defined in the interval [-1,1], by using Chebyshev
polynomials of the first kind, relation (5) can be written as
follows:

f(s)=DcT(s), ©)
i=0

if the infinite series in (7) is truncated, then we'll have:
N

f(s)=>cTi(s)=CTT(s), (8)
i=0

where C and T are (N +1)x1 definite vectors as
follows:

C =[c,,C,,CpreenCy 1", 9)
T(8) = [To(8), T,(8), To(8)ers Ty ()] (10)

Coefficients C; are given as (6) where inner product with

the weight function o(s) = (1-s?)™? is:

1 [oEfEds, i=0,
a1

¢ =(f&)TN=1,
=[ ()T (s)f (s)ds, i>0.
P!

( (11)

For the positive integer powers of a function f(s), we
have:

[F©I° =[CTTEIP =C; T(s),
where C and T are defined vectors in (9), (10), and C;

is a column vector and it's elements are nonlinear
combinations of the elements of vector C. Cp is called

(12)

operational vector of P th power. Maleknejad et al.
(2006) compute the second and third product operational

vector by using Chebyshev polynomials as follows:
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2c; +c¢2+c5+ck
1 4c,c, +2¢,C, + 2C,C,
C,= 5 ¢l +4c,C, +CCy |,
2¢,C, +4c,C,
also

4¢3 +6c,C7 +3c”c, +6C,C5 +6C,C,C, +6C,C]
12c2¢, +3¢] +12c,¢,c, +6C,C +367C, +12¢,C,C, +3¢5C, +6C,C3
6c,Cl +12c.c, +6¢7c, +3C; +12c,¢,C, +6C,C,C, +6C,C]
¢’ +12c,cc, +3c,C; +12c7c, +6¢7c, +6c5c, +3C5

«_1
C3:Z

Similarly, regarding a function k(s,t), with two variables,
which is defined on [-1,1], we'll have:

(5.0 = Y ST (KT, O,

i=0 j=0

(13)
where

Ky = (Ti(8), (k(s,1),T; (1)) (14)

By choosing T(s) as (10) and K as a
(N +1)x (N +1) matrix with elements of k;, , equation
(13) can be written as follows:

k(s,t)=T" (S)KT(t). (15)

The operational matrices for integration
In this section we present the operational matrix as

P for computing the integral of vector (10), (Rao, 1983)

We have the following relation about Chebyshev
polynomial:

s 1 1 ()N
[Tadt= TS D TN_Z(S)+71_(N Iy To(s), N23.
(16)
also for T,(S) and T,(S) we have:

[T dt =Ty() +T,(s),
[Tt = L1 9+1i1,0). (17)

- 4 4
Equations (16) and (17) allow us to write:
flT (t)ydt = PT (s), (18)
[Tmd=pT() (19)

where P is the (N +1)x (N +1) operational matrix as
follows:
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1 1 0 0

1 o L o

4 4
1 1 1
- -Z 0 = 0 0
3 2 6 (20)
1 o -1o 0 0
8
P= '

7.N—1 ' ' ' ' ' )
Lz 0 0 0 . . . 0 i
1-(N-1) 2N

_1\N

(1)2 0 0 0 . R

1-N 2(N -1)

For Chebyshev polynomials we have:
T(S)T'(s)C=C'T(s), (21)

where C is a vector in (9) and Cisa (N +1)x (N +1)
square matrix as follows:

2co G o G o Cna Cy
2c,  2c,+¢, . Ciy+Ciy . Cy,+Cy Cyu
C= 1 26, CutCiy 25 +Cy; Cnoin Oy
2
20y, Cy,+Cy Cyoi 2c, c
ZCN Cna o Cnoi o G 2Co

. N
here | =[—].
where i =[]

Description of the method
In this section, we solve the nonlinear Volterra-
Fredholm integral equations system by using the
Chebyshev polynomials of the first kind.
With respect to the method of Section 2 for

i,j=0,1,2,..,n we have:

g;(s) =T" ()G,
[9;(S)]" =T (5)Gj, for m=py,qy,
ki (s,) =TT (KT (1),

ki (s,1) = T’ (S)K;T (1),

where Gjp_ and qu_ are operational vectors defined in
j j

(23)

Section 2 and G; isa (N +1)x1 vector

G, :[giO’giligiZ"'ngN]T' (24)
Now, with substituting equation (23) in system (1) we'll
have:
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f.(5)=TT(s)G, — (Zn: [TT KT ()G}, dv

QLT EKTOT MG, ),

=T7(5)G, - (Z":TT (9)K; flT (O (t)e;pj dt) - (Z":TT (9)K; flT oL (t)e]qj dt),

=TT (516, - (3T 0K, G, [T -1 (9K, 63, [T ),
(25)

fi(s)=T"(5)G; - (Zn:TT (S)Kijéfpj PT(s))
70 (26)

(T OK; Gy, PT(D), 1=012,..n

Hence Equation (26) represent a system with (n+1)
equations and (n+1)x (N +1) unknowns, so we rewrite
each equation of the system at the collocation points of
{S\ }i=o in the interval [-1,1]. Then we'll have a system
with (N+1)x (N +1) equations and (n+1)x(N +1)
unknowns:

fi(s)=T"(s,)G - (ZTT (Sk)Kijé;pj PT (s)) - (ZTT (Sk)Kile;qj PT (1)),

for i=0,1,2,..,n and k=0,1,2,...,N. (27)

Relation (27) leads to a linear or nonlinear system of
equations such that the unknown coefficients can be
found.
Convergence analysis

We can show the nonlinear terms in equation (1) by

F(g)=[g;0]" and F'(g))=[g;O]" . Let
C [—l,l],H.H) be the Banach space of all continuous

functions on [-1,1] with norm
||f||w = maXVSe[fl,l]| f (S)| Suppose the nonlinear terms

interval

F(u) and F (u) are satisfied in Lipschitz condition

|[F(U)-FW) <L [u-v]

and

[F-FVI<L Ju-v].

We also assume for all i, j =0,1,2,....n, [k;(s,t)|<M
and |ki‘j (s,t)KM . We show exact solutions of the
nonlinear Volterra-Fredholm integral equations system by
g;(s) and approximate solutions of the nonlinear

Volterra-Fredholm integral equations system for N by
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T, (S) . Moreover, we define o = ML (s+1)+2M L, .
So, we are ready for presenting two theorems about
convergence analysis.

Theorem 5.1 For N=0 the solution of the nonlinear
Volterra-Fredholm integral equation by using Chebyshev

polynomials is convergent if 0 <o <1.

Proof.
”go_g_ON ”0O ma_X 1 90(S)—Gon (S) ]
= max | (3] ko (SO(F(@0) (@ )d)

~ [ KD (0) - F (G )

< MLl(S +:I-)Hgo - g_ON Hoo +2M IL2 Hgo - g_ON Hw
= a9y~ Tou |,
:>Hgo —0on Hw < aHgo —Jon Hw

By selection 0 < a <1 we'll have:

N =0, [go—Gon ], >0,

so the proof is completed.

Theorem 5.2 For N>1 the solution of the nonlinear

Volterra-Fredholm integral equations system by using
Chebyshev polynomials is convergent if

(28)

O<a<i.

Proof. Let us consider the following norm for the ith
equation of system (1.1):

”gi — O ”0O = max |9;(s)—gw (s)]
Vse[-11]

= max |(2 [k (s D(F(g,) - F(g,))dt)

Vse[-1,1

~QL K OF @) F @]
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=0, -], < Za”gj T, (29)
If we rewrite relatlon (29) for i =0,1,2,...,n and then
add up the obtained unequal extremes, we'll have:
n
=2 9 =G |, < Z(n +Dafg; -, ], @0
i=0
o)
n
= (1-(1+n)a)|g; T |, <O, (31)
i=0

1
according to relation (31) by selecting 0 <o <——

1+n
we'll have:
N — oo, Hgi —0Oi Hw -0,
so the proof is completed.
Examples

In this section, the efficiency of the presented method
is shown in following three examples. In examples 1 and
2, we use Newton's iterative method for solving the
generated nonlinear system. Mathematica 5.2 software is
applied in computing examples.

Example 1. As a first example we have the following
system with 2 equations and 2 unknowns:

f,(5) = 9,(5) - [ st?a, (et - [ (st-1)g, (B)et,

f,(5) = 0,(5)— [ (s—Dg, Mt - [ 2tg,()dt,  (32)

where f,(s)=2s+1 and f,(s) = —%SS +1. The exact

solutions of the above system are Q,(S)=2s-1 and

g,(s) = s+1. Table 1 illustrates the numerical results for

N=9and N =11.
Example 2. Consider the following nonlinear integral
equations system:

f,(5) = 0,(5) - [ 16st[g, (O]t - [ s*t°g, (1),

Table 1. The Numerical results of Example 6.1.

Exact solution Approximation Approximation
< vmaX (ZI [k (8 )11 (F(9;)+F (T ) [dt solution with N=9 solution with N=11
se[-1,1] i=0
X | 6() | 5,0) | 0,0 | 9,05 | 6,05 | 9,05
—Zjl| ki (s, )11 (F (9;,)—F (@) 1dt) -1 -3 0 -2.99998 | -0.00977 | -3 0.00011
=07 -0.75 | -25 .25 -2.49998 | 0.24262 | -2.5 0.25005
" s _ noLop _ -0.5 -2 5 -1.99998 | 0.49506 | -2 0.50002
SJZMHLHQJ ot 2M L[ o, - g at 025 | -15 75 | -1.49998 | 0.74751 | -15 | 0.75
0 -1 1 -0.99998 | 1 -1 1
= (ML (s+1)+2M L )ng T ‘ 025 | -05 1.25 | -0.49998 | 1.25 -0.5 1.25
< 0.5 0 1.5 0.00002 | 1.50506 | 0O 1.49999
0.75 5 1.75 0.50002 | 1.75763 | 0.5 1.74997
1 1 2 1.00002 [ 2.01023 | 1 1.99999
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£,(5) = 0,(5) - [ (35° - 20[g, Ot - [ (2t - 4)g, (O,
(33)
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Conclusion

In this paper, we solved a system of Volterra-
Fredholm integral equations by using Chebyshev
collocation method. The properties of Chebyshev

where fl(s) =g° _252 _E . polynomials are used to reduce the system of Volterra-
5 2 Fredholm integral equations to a system of nonlinear

c 5, 5 ¢ 1 algebraic equations. Computations are excuted using
fZ(S)Z—S _ES —ES +S+€ , and the exact Mathematica 5.2 software. Three numerical examples

solutions gl(s)=§ and ¢,(s)=s+1 . Table 2

illustrates the numerical results.
Table 2. The Numerical results of Example 5.2.

demonstrate the validity and efficiency of proposed
method.
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