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Abstract
Time-cost trade-off analysis is one of the most important aspects of industrial project planning and control. There are
trade-offs between time and cost to complete the activities of a project; in general, the less expensive the resources
used, the longer it takes to complete an activity. Existing methods for time-cost trade-off problems focus on using
heuristics or mathematical programming. These methods, however, are not efficient enough to solve large scale CPM
problems. This paper presents a Multi-Objective Genetic Algorithm (MOGA) approach to time-cost trade-off problems
(TCTP). Finding optimal decisions is difficult and time-consuming considering the numbers of permutations involved.
This type of problem is NP-hard, hence attainment of IP/LP solutions, or solutions via Total Enumeration (TE) is
computationally prohibitive. The MOGA approach searches for locally Pareto-optimal or locally non-dominated frontier
where simultaneously optimization of time-cost is desired. The application of the proposed algorithm is demonstrated
through an example project a real life case. The results illustrate the promising performance of the proposed algorithm.
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Introduction

Industrial projects management face the decisions of
selecting appropriate resources, including crew sizes,
equipment, methods, and technologies to perform the
activities of a project. In general there is a trade-off
between the time and the cost to complete a task; the
less expensive the resources, the large duration they take
to complete an activity (Feng et al., 1997). For example,
using more productive equipment or hiring more workers
may save time, but the cost could increase. Fig. 1
presents a typical relationship between time and cost to
complete an activity. This figure indicates that the activity
can be completed by either option A, B, C, D or E. Each
option represents a different method of constructing the
activity in which some of the resources are changed or a
different technology is used. Ultimately, resource
assignment decisions made at the activity level control
the overall duration and cost of a project. If a project is
running late the schedule plan, planners can perform a so
called time -cost trade-off problems (TCTP) analysis. One

Fig 1. Typical relationship between time and cost of activity
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method is to compress some of the activities on the
critical path to save time cost (Siemens, 1971). The
results of this analysis are: (1) a time-cost trade - off
curve; and (2) the selection of different methods that
provide the optimal balance of project duration and cost.

With real-life projects involving hundreds of activities,
finding optimal time-cost trade-off decisions is difficult and
time consuming considering the number of permutations
involved (Liu et al., 1995).
Existing time-cost trade-off techniques

Since the late 1950s, critical path method (CPM)
techniques have become widely recognized as valuable
tools for the planning and scheduling of large projects. In
a traditional CPM analysis, the major objective is to
schedule a project assuming deterministic durations.
However, project activities must be scheduled under
available resources, such as crew sizes, equipment and
materials. The activity duration can be looked upon as a
function of resource availability. Moreover, different
resource combinations have their own costs. Ultimately,
the schedule needs to take account of the trade-off
between project direct cost and project completion time.
For example, using more productive equipment or hiring
more workers may save time, but the project direct cost
could increase.

In CPM networks, activity duration is viewed either as
a function of cost or as a function of resources committed
to it. The well-known time-cost trade-off problem (TCTP)
in CPM networks takes the former view. In the TCTP, the
objective is to determine the duration of each activity in
order to achieve the minimum total direct and indirect
costs of the project. Studies on TCTP have been done
using various kinds of cost functions such as linear
(Fulkerson, 1961, Kelly, 1961), discrete
(Demeulemeester et al., 1993), convex (Lamberson &
Hocking, 1970; Berman et al., 2005), and concave Falk
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and Horowitz, (1972). Recently, some researchers have
adopted computational optimization techniques such as
genetic algorithms to solve TCTP. Chau et al. (1997) and
Azaron et al. (2005) proposed models using genetic
algorithms and the Pareto front approach to solve
construction time-cost trade-off problems The existing
techniques for time-cost trade-off problems (TCTP) can
be categorized into two areas: mathematical
programming and heuristic methods.

Mathematical programming models

These methods convert the TCTP to mathematical
models and utilize linear programming, integer
programming, or dynamic programming to solve them.
Kelly 1961 formulated TCTP as a linear time -cost
relationship within activities. Other researches, such as
Hendrickson and Au 1989 and Pagnoni 1990, they used
linear programming as a tool to solve the TCTP. These
approaches is suitable for problems with linear time-cost
relationship, but fail to solve those with discrete time-cost
relationships. Burnes et al. (1996) took a hybrid
approach, which used linear programming to find a lower
bound of the trade-off curve and integer programming to
find the exact solution for any desired duration.
Elmagraby (1993) used dynamic programming to solve
TCTP for networks that can be decomposed to pure
series or parallel sub networks.

An alternative way to determine the total duration and
find critical paths is by using LP technique (Hiller &
Lieberman, 2001; Taha, 2003). The idea is based on the
concept that a CPM problem can be thought of as the
opposite of the shortest path problem, to determine a
critical path in the project network it is sufficient to find the
longest path from start to finish. Then the length of this
longest path is the total duration time of the project
network. The LP formulation assumes that a unit flow
enters the project network at the start node and leaves at

the finish node. Let X;be the decision variable denoting

the amount of flow in activity (i, j). Since only one unit of
flow could be in any arc at any one time, the variable X;;

must assume binary values (0 or 1) only.
Heuristic methods

These methods provide good solutions, but do not
guarantee optimality. Example of heuristic approaches
include Fondahl's method (Fondahl, 1961). Siemens’s
effective cost slope model (Siemens, 1971) and
Moselhi's structural stiffness method (Moselhi, 1993).
Most heuristic methods assume only linear time-cost
relationships within activities.

Both Heuristic methods and mathematical models
show the strengths and weaknesses in solving TCTP.
The heuristic approaches select the activities to be
shortened or expanded based on certain selection
criteria, which do not guarantee optimal solutions. On the
other hand, mathematical models require great
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computational effort and some approaches do not provide
the optimal solution.

Meta-heuristic and evolutionary algorithms have
shown relatively higher efficiency in received more
attention. In recent works, Feng et al. (1997), Li et al.
(1999) and Hegazy handling these problems. Although
they do not necessarily guarantee the global optimal
solutions, their ability to search the solutions space
intelligently, rather than completely, makes them capable
of producing relatively good solutions to large-sized
problems. Among them algorithms, the genetic algorithms
(GAs) and ant colony algorithm (ACO) have (1999)
adopted GAs for Time- cost optimization problem. There
are trade-offs between time and cost to complete the
activities of a project; in general, the less expensive the
resources used, the longer it takes to complete an
activity. Using critical path method (CPM), the overall
project cost can be reduced by using less expensive
resources for noncritical activities without impacting the
project duration. Existing methods for time-cost trade-off
analysis focus on using heuristics or mathematical
programming. This paper presents: (1) an algorithm
based on the principles of GAs for Industrial time-cost
trade-off optimization; and (2) a computer program that
can execute the algorithm efficiently.

Notation

Dy Normal activity time for node ij ; Dg;_; Crash
activity time for i-j; K, Total direct cost; d;_; Pant time for

activity i-j; n Total project node; t; Plant time for activity i
Multi-objective optimization

A Multi-objective Optimization Problem (MOP) can be
defined as determining a vector of design variables within
a feasible region to minimize a vector of objective
functions that usually conflict with each other. Such a
problem takes the form:
Minimize {f, (X),f,(X),..... T, (X)} @

ST g(X)<0,

Where X is vector of decision variable; f;(X) is the ith

objective function; and g(X) is constraint vector. A

decision vector X is said to dominate a decision vector Y
( X=Y)if:

fi(X)<fi(Y) forall ie{12,..,m} @
and
£(X)<E(Y) foratlestoe iefl2....m )

All decision vectors that are not dominated by any other
decision vector are called non-dominated or pareto-
optimal. These are solutions for which no objective can
be improved without detracting from at least one other
objective.
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There are various solution approaches for solving the
MOP. Among the most widely adopted techniques are:
sequential optimization, e-constraint method, weighting
method, goal programming, goal attainment, distance
based method and direction based method. For a
comprehensive study of these approaches, readers may
refer to Szidarovsky et al. (1986).

Evolutionary Algorithms (EAs) seem particularly
desirable to solve multi-objective optimization problems
because they deal simultaneously with a set of possible
solutions (the so-called population) which allows to find
an entire set of Pareto-optimal solutions in a single run of
the algorithm, instead of having to perform a series of
separate runs as in the case of the traditional
mathematical programming techniques. Additionally, EAs
are less susceptible to the shape or continuity of the
Pareto-optimal frontier, whereas these two issues are a
real concern for mathematical programming techniques.
However, EAs usually contain several parameters that
need to be tuned for each particular application, which is
in many cases highly time consuming. In addition, since
the EAs are stochastic optimizers, different runs tend to
produce different results. Therefore, multiple runs of the
same algorithm on a given problem are needed to
statistically describe their performance on that problem.
These are the most challenging issues with using EAs for
solving MOPs. The detailed discussion on application of
EAs in multi-objective optimization has already been
reported (Deb, 2001; Coello et al., 2002).

The multi-objective TCTP
Objective functions

The following variables are defined for the muli-

objective TCTP:

M in ZzH(tn_t1)+zZcij(Dn(ij)_dij)+Kn
T

ST

ti-t2d; i,j=12,..n (4)
D) < dij < Doy ®)
t; >0 (6)

In constraint (4) actual activity time cannot be greater
than differences between starting and ending of each
activity time. In constraint (5) actual activity time is grater
or equal than crash time and less than or equal normal
time of each activity. In constraint (6) event activities time
are always greater than or equal zero.
Pareto Front-Non-dominated Set

Solutions to a multi-objective optimization problem can
be mathematically expressed in terms of non-dominated
or superior points. If solution S1 is better than S2 in terms
of all objective values, we say that the solution SI
dominates S2 or the solution S2 is inferior to SI. Any
member of the feasible region that is not dominated by
any other member is said to be non-dominated or non-
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inferior. This non-dominated set is the so-called Pareto
front. The members of the Pareto front are not dominated
by any other members in the solution space; therefore,
these solutions have the least objective conflicts of any
other solutions, which provide the best alternatives for
decision making.

Basically, we can treat TCTP as a multi-objective
optimization process, which tries to minimize both project
duration and cost. Each member in the population has its
own total project duration and cost; therefore, a non-
dominated set (a trade-off curve) can be determined such
that there are no other members in the population that
have better objective values in both time and cost than
the members in the non-dominated set.

Genetic algorithms

Genetic search process

Initialization: The schedule generated is represented by
chromosome c. The genetic search process starts with a
randomly generated set of chromosomes called the initial
population. The size of the population (pop_size)
depends on the solution space.

Population evaluation: The fitness parameter (fit (c))
considered is VPC.

Selection of new population: The process of selecting the
chromosomes to represent the next generation has the
following steps (Ponnambalam et al., 2003):

Step 1 Conversion of the fitness parameter value to a
fitness value (new_fit (c)), a Parameter suitable for
minimization objective.

New_fit (c) = 1- (fit (c)/F)

Where fit (c) =VPC corresponding to chromosome and F
is the sum of the fitness values of all chromosomes, given

by
pop _size

F= > fit(c)

Step 2 Conversion of the new fithess parameter to an
expected frequency of selection (p(C)), given by
pop _size
p(c) =new _ fit(c)/ > new_ fit(c)
c=1
Step 3 Calculation of the cumulative probability of survival

)
B©)= 3. p()

A random number between 0 and 1, r is obtained and a
chromosome c is selected which satisfies the following
condition:

cp(c—-1) <r <cp(c)

This selection process is repeated as many times as the
size of the population.

Crossover. Select a pair of chromosomes for crossover
operation, if the random number generated is less than
the probability of crossover.
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Mutation. For the mutation, generate a uniform random
number ( r), if the uniform random number satisfies the
following equation:

r<p,

Where p,, is the probability of mutation.

Termination: The above process will be repeated for the
fixed number of generations. The crossover operator
used in this algorithm is “order crossover (OX)” and the
mutation operator is “inversion mutation (IV)”
(Michalewicz, 1992).
Genetic operators
In this work Order Crossover (OX) and inversion (INV)
operators (Michalewicz, 1992) are used. Order crossover
is explained in Fig. 2. The intermediate string is obtained
by reversing the second parent string at the second cut
point. The respective positions of 1, 2, 3 and 4 are identi-
Fig.2. Order crossover (OX)

Parent 1: (l 2 2‘2 13 3‘ 3 3)

parent 2: {13 312322 3)
Intermediate string: (2 31331232 )

Offspring: (3 2 3‘2 13 3‘ 2 1)

fied in intermediate string from the selected portion in first
parent, and these are deleted from intermediate string.
The elements remaining in intermediate string are copied
into offspring first after the second cut point and next
before the first cut point. The middle string is copied as it
is from parent 1. By interchanging the first parent and
second parent we can get the other offspring. The
probability of crossover used in this paper is 0.8. INV is a
unary operator. The INV operator first chooses two
random cut points in a parent. The elements between the
cut points are then reversed. An example of the inversion

operation is presented in Fig.3. The substring that is cut
Fig 3. INV operator and reversed is enclosed in
the thick lined box and P and
P :(1 2 2‘ 2133 ‘2 2) O denote parent and
offspring, respectively. After
conducting the analysis the
o (1 2 2‘ ‘ 3 3) number of generations is
fixed as 1500, the probability
of crossover as 0.8 and the probability of mutation as 0.2.
Algorithm
The following genetic operations are employed to
generate and handle a population in our Multi-objective
genetic algorithm:
Step O0: (Initialization) randomly generate a parent
population containing N, strings where N, is the
number of strings in each population.
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Step 1: (Reproduction) A second generation, O, the
offspring population is created from P by selecting strings
probabilistically relative to their f values with replacement.
Step 2: (Crossover) For each selected pair, apply a
crossover operation to generate an offspring with the

crossover probabilityPC. Npopstrings should be

generated from a pair of parent strings in the crossover
operation.

Step 3: (Mutation) For each string generated by the
crossover operation, apply a mutation operation with a
pre-specified mutation probability P, .

Step 4: (Elitist strategy) Randomly remove Ne"estring

t

from the N,

operations, and add the same number of strings from a
tentative set of Pareto optimal solution to the current
population.
Step 5: (Termination test) If a pre-specified stopping
condition is not satisfied, return to step1-4.
Step 6: (User selection) The multi-objective GA the final
set of Pareto optimal solutions to the decision maker.
Test problem

Many test caused were generated to verify the
accuracy of the algorithm. As an example, the verification
of a 10 -activity CPM network is described in the following
sections. Fig.4 shows the precedence relationships of the
network and Table 1 shows the associated time cost for

strings generated by the above

Fig. 4. Network of test problem

the options of each activity. Table 2 shows the result of
test problem. Last column of the Table 2 indicates the
priority of the methods used.

An initial generation of 300 strings is randomly
selected and the initial generations is distributed over the
solution space and does not gather in one region. The
final generation occurred in the 60" iterations and the
trade-off curve obtained from the final generation (see Fig
5).

After finding the trade-off curve, planners can
determine the total cost and the direct cost from the total
cost and the direct cost from the trade-off curve. Indirect
cost is usually assumed to be proportional to the project
duration.
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ID | Description Priority I\P/Ic:ﬁl:(lje First Method Second Method Third Method Fourth Method letfrt:g)d
P |S M $1 D1 $2 D2 $3 D3 $4 D4 $5 | D5
1 A 1 2 5 5500 12 2200 15 1900 18 2000 21 200 | 23
2 B 2 4 5 2500 10 2400 18 1800 20 1500 23 1000 | 22
3 C 1 6 3 8700 15 4000 22 3200 33
4 D 4 5 3 45000 12 45000 16 30000 20
5 E 2 3 4 30000 15 17500 24 15000 28 10000 45
6 F 3 5 3 45000 16 32000 18 18000 24
7 G 6 7 3 23000 8 24000 15 23000 18
8 H 4 7 5 200 14 215 15 200 16 300 21 120 | 24
9 | 5 8 5 300 15 240 18 180 20 150 23 100 | 30
10 J 7 8 3 450 15 450 21 320 33
Table 2. Test problem result (printout)

Individual Duration Cost Tardiness Resource Fitness Method Priority

1 149 100790 1 178235 6.33E+01 5533433322 3863193987

2 124 116208 1 115088 6.33E+01 4352213542 3465897865

3 113 136020 1 152249 6.33E+01 1254324532 1326549781

4 144 113930 1 101226 6.33E+01 4423325421 9856231455

5 159 99940 1 173264 6.33E+01 1125543212 2319786523

6 162 99740 1 165338 6.33E+01 5532452132 1325649785

7 124 107360 1 167893 6.33E+01 4552325412 9856437853

8 133 108558 1 108934 6.33E+01 5423254123 1326594787

9 120 116808 1 129676 6.33E+01 3254232541 2365897854

10 114 119658 1 170653 6.33E+01 3325425354 9856123546

11 118 116908 1 167129 6.33E+01 4452325412 9995874412

12 107 149820 1 373881 6.33E+01 5523554125 3863193998

13 113 121408 1 466565 6.33E+01 2135423521 3467853264

14 102 159820 1 455782 6.33E+01 1125432541 2356998454

15 118 120158 1 165452 6.33E+01 5523254123 2569837461

16 115 118908 1 169147 6.33E+01 2235423542 2561113546

17 118 114010 1 182294 6.33E+01 4253254125 1119986542

18 101 163808 1 179902 6.33E+01 3252354215 1452368975

19 146 100920 1 194815 6.33E+01 3325423254 2563589654

20 107 140670 1 658510 6.33E+01 1452325542 3569874152

21 131 116208 1 101010 6.33E+01 5523254123 4125558754

22 125 116208 1 113159 6.33E+01 5425325412 4445255632

23 123 115290 1 130670 6.33E+01 1232545232 3336589655

24 164 100790 1 138633 6.33E+01 2354232145 2546354455

25 155 102090 1 123578 6.33E+01 2532541235 2223655475

26 127 106460 1 182590 6.33E+01 4521325421 7854632587

27 154 100440 1 218436 6.33E+01 5533433322 6665522477

28 155 100790 1 142819 6.33E+01 5523542514 2221456985

29 141 101490 1 284586 6.33E+01 4521354254 1112544856

30 140 101590 1 230715 6.33E+01 4251325412 2365899785
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Fig.5. Optimal trade-off curve of test problem

time-cost trade-off curve
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Optimal choice to perform the project would be the
lowest total cost. Using trade-off curve as the objective
function allows for much more efficient evaluation of
various indirect cost rates without performing another GA
run. This is an improvement over treating the total cost as
the objective in the GA.

Conclusions

Industrial time-cost trade-off problems (TCTP) are
large scale optimization problems. The existing
technigues  using  heuristic and  mathematical

programming are not efficient or accurate enough to solve

TCTP of real-life Industrial projects. The present study

develops a GA Pareto front approach to solve the CPM

time-cost trade-off problem in most industrial decisions.

The proposed algorithm is easy to implement and

capable to treating any type of TCTP.

References

1. Azaron A Perkgoz C and Sakawa M (2005) A
genetic algorithm approach for the time-cost trade-off
in PERT networks, Appl. Maths Comput. 168, 1317-
1339.

2. Burns S Liu L and Feng C (1996) The LP/IP hybrid
method for construction time-cost trade-off analysis.
Constr. Mgmt. Econ. 14, 265-276.

3. Coello CAC Van Veldhuizen DA and Lamont GB
(2002) Evolutionary algorithms for solving multi-
objective Problems. Kluwer academic publishers,
NY.

4. Chau DKH, Chan W and Govindan K (1997) A time-
cost trade-off model with resource consideration
using genetic algorithm. Civil Engg. Sys. 14, 291-
311.

5. Deb K (2001) Multi-Objective Optimization using
Evolutionary Algorithms. John Wiley, Chichester,
UK. Demeulemeester E Herroelen W, Elmaghraby S
(1993) Optimal procedures for the discrete time-
costtrade-off problem in project networks, Research
Report, Department of Applied Economics,
Katholieke Universiteit Leuven, Leuven, Belgium.

Research article
©Indian Society for Education and Environment (iSee)

10.

11.

12.

13.

14.

15

16.

17.

18.

19.

20.

21.

22.

23.

“Genetic algorithm in project management”
http://www.indjst.org

1278

Vol.4 No.10 (Oct 2011) ISSN: 0974- 6846

Elmograby SE (1993) Resource allocation via
dynamic programming in activity networks. Euro. J.
Operational Res. 64, 199-215.

Feng CW Liu LY and Burns SA (1997) Using genetic
Algorithms to Solve Construction Time-cost trade-off
Problems. J. Compt. Civil Engg. 11, 184-189.
Fulkerson D (1961) A network flow computation for
project cost curves, Mangt. Sci. 7, 167-178.

Fondall JW (1961) A non-computer approach to the
critical path method for the construction Industry.
The Rep. No. 9, the Constr. Inst. Dept. of Civil Engg;
Stanford Univ., Stanford California.

Falk J and Horowitz J (1972) Critical path problem
with concave cost curves. Mangt. Sci. 19, 446-455.
Hendrickson C and Au T (1989) Project
management for construction. Fundamental concept
for owners, engineers, architect, and builders.
Englewood Cliffs (NJ) prentice-Hall Inc.

Hegazy T (1999) Optimization of time-cost trade-off
analysis: using genetic algorithms. Can. J. Civil
Engg. 26, 685-697.

Hillier FS and Lieberman GJ (2001) Introduction to
Operations  Research. 7" ed, McGraw-Hill,
Singapore.

Kelly J (1961) Critical path planning and scheduling:
mathematical basis. Operations Res. 9, 296-320.

. Liu LY Burns SA and Feng CW (1995) Construction

time-cost trade-off analysis using LP/IP hybrid
method. J. Constr. Engg. 12, 446-54.

Lamberson L and Hocking R (1970) Optimum time
compression in project scheduling. Mangt. Sci. 16,
597-606.

Li H, Cao JN and Love PE (1999) Using machine
learning and GA to solve time-cost trade-off
problems.J. of Construct. Engg. and Mangt. 125,
347-353.

Michalewicz Z (1992) Genetic algorithms + data
structure = evolution programs. Berlin: springer.
Moselhi O (1993) Schedule compression using the
direct stiffness method. Can. J. Civil Engg. 20, 65-
72.

Pagnoni A (1990) Project engineering: Computer
oriented planning and operational decision making,
Spring-Verlag. KG. Berlin.

Ponnambalam SG Aravindan P and Subba Rao M
(2003) Genetic algorithms for sequencing problem in
mixed model assembly lines. Computers & industrial
Engg. 45, 669-690.

Siemens N (1971) A simple CPM time-cost trade-off
Algorithms. Mangt. Sci. 17B, 354-363.

Szidarovsky F Gershon ME and Dukstein L (1986)
Techniques for multi objective decision making in
systems Management. Elsevier, NY.
Taha HA &2003) Operations
introduction. 7" ed., Prentice-Hall, NJ.

research: an

G.Mohammadi
Indian J.Sci.Technol.



