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Abstract 

Time-cost trade-off analysis is one of the most important aspects of industrial project planning and control. There are 
trade-offs between time and cost to complete the activities of a project; in general, the less expensive the resources 
used, the longer it takes to complete an activity.  Existing methods for time-cost trade-off problems focus on using 
heuristics or mathematical programming. These methods, however, are not efficient enough to solve large scale CPM 
problems. This paper presents a Multi-Objective Genetic Algorithm (MOGA) approach to time-cost trade-off problems 
(TCTP). Finding optimal decisions is difficult and time-consuming considering the numbers of permutations involved. 
This type of problem is NP-hard, hence attainment of IP/LP solutions, or solutions via Total Enumeration (TE) is 
computationally prohibitive. The MOGA approach searches for locally Pareto-optimal or locally non-dominated frontier 
where simultaneously optimization of time-cost is desired. The application of the proposed algorithm is demonstrated 
through an example project a real life case. The results illustrate the promising performance of the proposed algorithm. 

 
Keywords: Time-cost trade-off, Genetic Algorithms, project management
Introduction 

Industrial projects management face the decisions of 
selecting appropriate resources, including crew sizes, 
equipment, methods, and technologies to perform the 
activities of a project. In general there is a trade-off 
between the time and the cost to complete a task; the 
less expensive the resources, the large duration they take 
to complete an activity (Feng et al., 1997). For example, 
using more productive equipment or hiring more workers 
may save time, but the cost could increase. Fig. 1 
presents a typical relationship between time and cost to 
complete an activity. This figure indicates that the activity 
can be completed by either option A, B, C, D or E. Each 
option represents a different method of constructing the 
activity in which some of the resources are changed or a 
different technology is used. Ultimately, resource 
assignment decisions made at the activity level control 
the overall duration and cost of a project. If a project is 
running late the schedule plan, planners can perform a so 
called time –cost trade-off problems (TCTP) analysis. One 

method is to compress some of the activities on the 
critical path to save time cost (Siemens, 1971). The 
results of this analysis are: (1) a time-cost trade – off 
curve; and (2) the selection of different methods that 
provide the optimal balance of project duration and cost. 

With real-life projects involving hundreds of activities, 
finding optimal time-cost trade-off decisions is difficult and 
time consuming considering the number of permutations 
involved (Liu et al., 1995).  
Existing time-cost trade–off techniques 

Since the late 1950s, critical path method (CPM) 
techniques have become widely recognized as valuable 
tools for the planning and scheduling of large projects. In 
a traditional CPM analysis, the major objective is to 
schedule a project assuming deterministic durations. 
However, project activities must be scheduled under 
available resources, such as crew sizes, equipment and 
materials. The activity duration can be looked upon as a 
function of resource availability. Moreover, different 
resource combinations have their own costs. Ultimately, 
the schedule needs to take account of the trade-off 
between project direct cost and project completion time. 
For example, using more productive equipment or hiring 
more workers may save time, but the project direct cost 
could increase. 

In CPM networks, activity duration is viewed either as 
a function of cost or as a function of resources committed 
to it. The well-known time–cost trade-off problem (TCTP) 
in CPM networks takes the former view. In the TCTP, the 
objective is to determine the duration of each activity in 
order to achieve the minimum total direct and indirect 
costs of the project. Studies on TCTP have been done 
using various kinds of cost functions such as linear 
(Fulkerson, 1961; Kelly, 1961), discrete 
(Demeulemeester et al., 1993), convex (Lamberson & 
Hocking, 1970; Berman et al., 2005), and concave Falk 

Fig 1. Typical relationship between time and cost of activity 
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and Horowitz, (1972). Recently, some researchers have 
adopted computational optimization techniques such as 
genetic algorithms to solve TCTP. Chau et al. (1997)  and 
Azaron et al. (2005)  proposed models using genetic 
algorithms and the Pareto front approach to solve 
construction time–cost trade-off problems The existing 
techniques for time-cost trade-off problems (TCTP) can 
be categorized into two areas: mathematical 
programming and heuristic methods. 
Mathematical programming models 

These methods convert the TCTP to mathematical 
models and utilize linear programming, integer 
programming, or dynamic programming to solve them. 
Kelly 1961 formulated TCTP as a linear time –cost 
relationship within activities. Other researches, such as 
Hendrickson and Au 1989 and Pagnoni 1990, they used 
linear programming as a tool to solve the TCTP. These 
approaches is suitable for problems with linear time-cost 
relationship, but fail to solve those with discrete time-cost 
relationships. Burnes et al. (1996) took a hybrid 
approach, which used linear programming to find a lower 
bound of the trade-off curve and integer programming to 
find the exact solution for any desired duration. 
Elmagraby (1993) used dynamic programming to solve 
TCTP for networks that can be decomposed to pure 
series or parallel sub networks. 

An alternative way to determine the total duration and 
find critical paths is by using LP technique (Hiller & 
Lieberman, 2001; Taha, 2003). The idea is based on the 
concept that a CPM problem can be thought of as the 
opposite of the shortest path problem, to determine a 
critical path in the project network it is sufficient to find the 
longest path from start to finish. Then the length of this 
longest path is the total duration time of the project 
network. The LP formulation assumes that a unit flow 
enters the project network at the start node and leaves at 
the finish node. Let ijx be the decision variable denoting 

the amount of flow in activity (i, j). Since only one unit of 
flow could be in any arc at any one time, the variable ijx
must assume binary values (0 or 1) only. 
Heuristic methods 

These methods provide good solutions, but do not 
guarantee optimality. Example of heuristic approaches 
include Fondahl`s method (Fondahl, 1961). Siemens’s 
effective cost slope model (Siemens, 1971) and 
Moselhi`s structural stiffness method (Moselhi, 1993). 
Most heuristic methods assume only linear time-cost 
relationships within activities. 

Both Heuristic methods and mathematical models 
show the strengths and weaknesses in solving TCTP. 
The heuristic approaches select the activities to be 
shortened or expanded based on certain selection 
criteria, which do not guarantee optimal solutions. On the 
other hand, mathematical models require great 

computational effort and some approaches do not provide 
the optimal solution. 
      Meta-heuristic and evolutionary algorithms have 
shown relatively higher efficiency in received more 
attention. In recent works, Feng et al. (1997), Li et al. 
(1999) and Hegazy handling these problems. Although 
they do not necessarily guarantee the global optimal 
solutions, their ability to search the solutions space 
intelligently, rather than completely, makes them capable 
of producing relatively good solutions to large-sized 
problems. Among them algorithms, the genetic algorithms 
(GAs) and ant colony algorithm (ACO) have (1999) 
adopted GAs for Time- cost optimization problem. There 
are trade-offs between time and cost to complete the 
activities of a project; in general, the less expensive the 
resources used, the longer it takes to complete an 
activity. Using critical path method (CPM), the overall 
project cost can be reduced by using less expensive 
resources for noncritical activities without impacting the 
project duration. Existing methods for time-cost trade-off 
analysis focus on using heuristics or mathematical 
programming. This paper presents: (1) an algorithm 
based on the principles of GAs for Industrial time-cost 
trade-off optimization; and (2) a computer program that 
can execute the algorithm efficiently. 
Notation 

 n ijD  Normal activity time for node i-j ;  f i jD   Crash 

activity time for i-j; nK  Total direct cost; i jd   Pant time for 

activity i-j; n Total project node; it  Plant time for activity i 
Multi-objective optimization 

A Multi-objective Optimization Problem (MOP) can be 
defined as determining a vector of design variables within 
a feasible region to minimize a vector of objective 
functions that usually conflict with each other. Such a 
problem takes the form: 

      
 
1 2 mMinimize f X ,f X ,....,f X (1)

S.T. g X 0,

 
Where X is vector of decision variable;  if X  is the ith 

objective function; and  g X  is constraint vector. A 

decision vector X is said to dominate a decision vector Y  
( X Y ) if: 

     i if X f Y for all i 1,2,....,m (2) 

 
and 

     i if X f Y forat leastone i 1,2,....,m (3)
All decision vectors that are not dominated by any other 
decision vector are called non-dominated or pareto-
optimal. These are solutions for which no objective can 
be improved without detracting from at least one other 
objective. 
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There are various solution approaches for solving the 
MOP. Among the most widely adopted techniques are: 
sequential optimization, e-constraint method, weighting 
method, goal programming, goal attainment, distance 
based method and direction based method. For a 
comprehensive study of these approaches, readers may 
refer to Szidarovsky et al. (1986). 

Evolutionary Algorithms (EAs) seem particularly 
desirable to solve multi-objective optimization problems 
because they deal simultaneously with a set of possible 
solutions (the so-called population) which allows to find 
an entire set of Pareto-optimal solutions in a single run of 
the algorithm, instead of having to perform a series of 
separate runs as in the case of the traditional 
mathematical programming techniques. Additionally, EAs 
are less susceptible to the shape or continuity of the 
Pareto-optimal frontier, whereas these two issues are a 
real concern for mathematical programming techniques. 
However, EAs usually contain several parameters that 
need to be tuned for each particular application, which is 
in many cases highly time consuming. In addition, since 
the EAs are stochastic optimizers, different runs tend to 
produce different results. Therefore, multiple runs of the 
same algorithm on a given problem are needed to 
statistically describe their performance on that problem. 
These are the most challenging issues with using EAs for 
solving MOPs. The detailed discussion on application of 
EAs in multi-objective optimization has already been 
reported (Deb, 2001; Coello et al., 2002). 
The multi-objective TCTP 
Objective functions 

The following variables are defined for the muli-
objective TCTP: 

    

   

n 1 ij i j nn i j
i j

j i ij

ijf ij n ij

i

M in Z H t t C D d K

S T
t t d i, j 1, 2 , ... , n (4 )

D d D (5 )

t 0 (6 )

    

  

 



 

 
In constraint (4) actual activity time cannot be greater 
than differences between starting and ending of each 
activity time. In constraint (5) actual activity time is grater 
or equal than crash time and less than or equal normal 
time of each activity. In constraint (6) event activities time 
are always greater than or equal zero. 
Pareto Front-Non-dominated Set 

Solutions to a multi-objective optimization problem can 
be mathematically expressed in terms of non-dominated 
or superior points. If solution S1 is better than S2 in terms 
of all objective values, we say that the solution SI 
dominates S2 or the solution S2 is inferior to SI. Any 
member of the feasible region that is not dominated by 
any other member is said to be non-dominated or non-

inferior. This non-dominated set is the so-called Pareto 
front. The members of the Pareto front are not dominated 
by any other members in the solution space; therefore, 
these solutions have the least objective conflicts of any 
other solutions, which provide the best alternatives for 
decision making. 

Basically, we can treat TCTP as a multi-objective 
optimization process, which tries to minimize both project 
duration and cost. Each member in the population has its 
own total project duration and cost; therefore, a non-
dominated set (a trade-off curve) can be determined such 
that there are no other members in the population that 
have better objective values in both time and cost than 
the members in the non-dominated set. 
Genetic algorithms 
Genetic search process 
Initialization: The schedule generated is represented by 
chromosome c. The genetic search process starts with a 
randomly generated set of chromosomes called the initial 
population. The size of the population (pop_size) 
depends on the solution space. 
Population evaluation: The fitness parameter (fit (c)) 
considered is VPC. 
Selection of new population: The process of selecting the 
chromosomes to represent the next generation has the 
following steps (Ponnambalam et al., 2003): 
Step 1 Conversion of the fitness parameter value to a 
fitness value (new_fit (c)), a Parameter suitable for 
minimization objective. 
New_fit (c) = 1- (fit (c)/F) 
Where fit (c) =VPC corresponding to chromosome and F 
is the sum of the fitness values of all chromosomes, given 
by 





sizepop

c
cfitF

_

1
)(  

Step 2 Conversion of the new fitness parameter to an 
expected frequency of selection ))(( cp , given by 





sizepop

c
cfitnewcfitnewcp

_

1
)(_/)(_)(  

Step 3 Calculation of the cumulative probability of survival 
))(( ccp  





sizepop

c
cpccp

_

1
)()(  

A random number between 0 and 1, r is obtained and a 
chromosome c is selected which satisfies the following 
condition: 

)()1( ccprccp   
This selection process is repeated as many times as the 
size of the population. 
Crossover. Select a pair of chromosomes for crossover 
operation, if the random number   generated is less than 
the probability of crossover. 
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Fig 3. INV operator 

Mutation. For the mutation, generate a uniform random 
number ( r), if the uniform random number satisfies the 
following equation: 

mpr   

Where mp is the probability of mutation. 

Termination: The above process will be repeated for the 
fixed number of generations. The crossover operator 
used in this algorithm is “order crossover (OX)” and the 
mutation operator is “inversion mutation (IV)” 
(Michalewicz, 1992). 
Genetic operators 

In this work Order Crossover (OX) and inversion (INV) 
operators (Michalewicz, 1992) are used. Order crossover 
is explained in Fig. 2. The intermediate string is obtained 
by reversing the second parent string at the second cut 
point. The respective positions of 1, 2, 3 and 4 are identi- 

Fig.2. Order crossover (OX) 

Parent 1:  333312221   

Parent 2:  322321331  

Intermediate string:  232133132  

Offspring:  123312323  

fied in intermediate string from the selected portion in first 
parent, and these are deleted from intermediate string. 
The elements remaining in intermediate string are copied 
into offspring first after the second cut point and next 
before the first cut point. The middle string is copied as it 
is from parent 1. By interchanging the first parent and 
second parent we can get the other offspring. The 
probability of crossover used in this paper is 0.8. INV is a 
unary operator. The INV operator first chooses two 
random cut points in a parent. The elements between the 
cut points are then reversed. An example of the inversion 
operation is presented in Fig.3. The substring that is cut 

and reversed is enclosed in 
the thick lined box and P and 
O denote parent and 
offspring, respectively. After 
conducting the analysis the 
number of generations is 
fixed as 1500, the probability 

of crossover as 0.8 and the probability of mutation as 0.2. 
Algorithm 

The following genetic operations are employed to 
generate and handle a population in our Multi-objective 
genetic algorithm: 
Step 0: (Initialization) randomly generate a parent 
population containing popN  strings where popN  is the 

number of strings in each population. 

Step 1: (Reproduction) A second generation, O, the 
offspring population is created from P by selecting strings 
probabilistically relative to their f values with replacement. 
Step 2: (Crossover) For each selected pair, apply a 
crossover operation to generate an offspring with the 
crossover probability cP . popN strings should be 

generated from a pair of parent strings in the crossover 
operation. 
Step 3: (Mutation) For each string generated by the 
crossover operation, apply a mutation operation with a 
pre-specified mutation probability mP .  

Step 4: (Elitist strategy) Randomly remove elite
N string 

from the popN  strings generated by the above 

operations, and add the same number of strings from a 
tentative set of Pareto optimal solution to the current 
population. 
Step 5: (Termination test) If a pre-specified stopping 
condition is not satisfied, return to step1-4. 
Step 6: (User selection) The multi-objective GA the final 
set of Pareto optimal solutions to the decision maker. 
Test problem 

Many test caused were generated to verify the 
accuracy of the algorithm. As an example, the verification 
of a 10 –activity CPM network is described in the following 
sections. Fig.4 shows the precedence relationships of the 
network and Table 1 shows the associated time cost for   

 
the options of each activity. Table 2 shows the result of 
test problem. Last column of the Table 2 indicates the 
priority of the methods used.  

 An initial generation of 300 strings is randomly 
selected and the initial generations is distributed over the 
solution space and does not gather in one region. The 
final generation occurred in the 60th iterations and the 
trade-off curve obtained from the final generation (see Fig 
5).  

After finding the trade-off curve, planners can 
determine the total cost and the direct cost from the total 
cost and the direct cost from the trade-off curve. Indirect 
cost is usually assumed to be proportional to the project 
duration. 

 

Fig. 4. Network of test problem 
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Table 1. Options of test problem 

ID Description 
Priority Possible 

Method First Method Second Method Third Method Fourth Method Fifth 
Method 

P S M $1 D1 $2 D2 $3 D3 $4 D4 $5 D5 

1 A 1 2 5 5500 12 2200 15 1900 18 2000 21 200 23 

2 B 2 4 5 2500 10 2400 18 1800 20 1500 23 1000 22 

3 C 1 6 3 8700 15 4000 22 3200 33         

4 D 4 5 3 45000 12 45000 16 30000 20         

5 E 2 3 4 30000 15 17500 24 15000 28 10000 45     

6 F 3 5 3 45000 16 32000 18 18000 24         

7 G 6 7 3 23000 8 24000 15 23000 18         

8 H 4 7 5 200 14 215 15 200 16 300 21 120 24 

9 I 5 8 5 300 15 240 18 180 20 150 23 100 30 

10 J 7 8 3 450 15 450 21 320 33         

Table 2. Test problem result (printout) 

Individual Duration Cost Tardiness Resource Fitness Method Priority 

1 149 100790 1 178235 6.33E+01 5533433322 3863193987 

2 124 116208 1 115088 6.33E+01 4352213542 3465897865 

3 113 136020 1 152249 6.33E+01 1254324532 1326549781 

4 144 113930 1 101226 6.33E+01 4423325421 9856231455 

5 159 99940 1 173264 6.33E+01 1125543212 2319786523 

6 162 99740 1 165338 6.33E+01 5532452132 1325649785 

7 124 107360 1 167893 6.33E+01 4552325412 9856437853 

8 133 108558 1 108934 6.33E+01 5423254123 1326594787 

9 120 116808 1 129676 6.33E+01 3254232541 2365897854 

10 114 119658 1 170653 6.33E+01 3325425354 9856123546 

11 118 116908 1 167129 6.33E+01 4452325412 9995874412 

12 107 149820 1 373881 6.33E+01 5523554125 3863193998 

13 113 121408 1 466565 6.33E+01 2135423521 3467853264 

14 102 159820 1 455782 6.33E+01 1125432541 2356998454 

15 118 120158 1 165452 6.33E+01 5523254123 2569837461 

16 115 118908 1 169147 6.33E+01 2235423542 2561113546 

17 118 114010 1 182294 6.33E+01 4253254125 1119986542 

18 101 163808 1 179902 6.33E+01 3252354215 1452368975 

19 146 100920 1 194815 6.33E+01 3325423254 2563589654 

20 107 140670 1 658510 6.33E+01 1452325542 3569874152 

21 131 116208 1 101010 6.33E+01 5523254123 4125558754 

22 125 116208 1 113159 6.33E+01 5425325412 4445255632 

23 123 115290 1 130670 6.33E+01 1232545232 3336589655 

24 164 100790 1 138633 6.33E+01 2354232145 2546354455 

25 155 102090 1 123578 6.33E+01 2532541235 2223655475 

26 127 106460 1 182590 6.33E+01 4521325421 7854632587 

27 154 100440 1 218436 6.33E+01 5533433322 6665522477 

28 155 100790 1 142819 6.33E+01 5523542514 2221456985 

29 141 101490 1 284586 6.33E+01 4521354254 1112544856 

30 140 101590 1 230715 6.33E+01 4251325412 2365899785 
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Optimal choice to perform the project would be the 

lowest total cost. Using trade-off curve as the objective 
function allows for much more efficient evaluation of 
various indirect cost rates without performing another GA 
run. This is an improvement over treating the total cost as 
the objective in the GA. 
Conclusions 

Industrial time-cost trade-off problems (TCTP) are 
large scale optimization problems. The existing 
techniques using heuristic and mathematical 
programming are not efficient or accurate enough to solve 
TCTP of real-life Industrial projects. The present study 
develops a GA Pareto front approach to solve the CPM 
time-cost trade-off problem in most industrial decisions. 
The proposed algorithm is easy to implement and 
capable to treating any type of TCTP.                
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Fig.5. Optimal trade-off curve of test problem 


