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Fig.1. Scheme of the cross section
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Abstract 
Car elevators are responsible for lifting car to specific height. These sets are so necessary for firms which are related 
to manufacturing, servicing and mending of cars. In this article, two columns elevators under the pressure load were 
investigated and optimization process with respect to the forces and momentums to the column was performed based 
on Genetic Algorithms and the optimum parameters of the cross section have been obtained. After offering the 
optimum parameters, the effects of these parameters on the column maximum pressure tolerance has been 
investigated. In the optimization process, the cross section was assumed to be with lips. Results of numerical 
calculations for optimization are presented in tables and figures. 
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Introduction 

Car elevators play very important role in industry. 
Different kinds of these elevators have been planed and 
built and two-column elevators are the most widely used. 
In this case, after locating the car between two columns, 
jack arms locate on the floor of the car and by controlling 
the arms in vertical side, the car can be retain in a 
suitable height. The length of arms in these elevators is 
different. This length discrepancy is due to weight 
difference on the front and rear axle. The front axle 
weight of car that is usually heavier, places on the small 
arm and rear axle weight that is less, places on the big 
arm. In this situation, the side torque due to column 
length discrepancy, is very minimal and negligible. 
Important parts of the double column jacks are: columns, 
arms and power supply systems. In this kind of elevators, 
columns bear compression, bending or bending-
compression. For every kind of elevators, one of these 
forces might be used. Arm is responsible to place under 
the car and supply power for raising the car. Lift power 
used in two-column jacks can be hydraulic or cable type. 
Each kind of these systems, forces different loading on 
column. In two-column elevators, the weight of car forces 
on the arm. The arm is attached to the jugular that has 
sliding motion within the column. Because of this the 
cross section of column should be open. This open 
section is different in various elevators, but what is nearly 
common in all elevators is the open shape of the column.  

Vinot et al. (2008) presented a methodology for 
optimizing the shape of thin-walled structures. Magnucki 
(2002) studied optimization of an open cross-section of a 
thin-walled beam with flat web and circular flange 
analytically and numerically. Knowledge-based global 
optimization of cold-formed steel columns under pure 
axial compression was presented by Liu et al. (2009). In 
result of the study, five anti-symmetrical open cross-

sections were proposed. Theoretical and experimental 
study on the minimum weight of cold-formed channel 
thin-walled beams with and without lips were analyzed by 
Tian and Lu (2004). Optimum design of cold-formed steel 
channel beams under uniformly distributed load using 
micro Genetic Algorithm was presented by Lee et al. 
(2005). Global optimization of cold-formed steel thin-
walled beams with lipped channel sections were 
described by Tran and Li (2006). Optimal design of open 
cross sections of cold-formed thin-walled beams with 
respect to the dimensionless objective function as the 
quality measure was presented by Magnucki and 
Ostwald, (2005a), Magnucki et al. (2006a,b). Kasperska 
et al. (2007), Ostwald et al. (2007), Manevich and 
Raksha, (2007) described bicrite- rial optimal design of 
open cross-sections of cold-formed beams. Strength, glo- 
bal and local buckling and optimization problems of cold-
formed thin-walled beams with open cross-sections were 
collected and described by Magnucki and Ostwald, 
(2005b). 

In the present article, the optimization using genetic 
algorithms was carried out and the cross section’s 
parameters were obtained. Fig. 1 shows the cross section 
of the column which was considered in this paper. 
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Modeling for optimization of the column under 
compressive force 

There are many relationship to survey columns with 
ideal fulcrum condition in engineering sciences, but this 
condition never exist in practice, so the designing of 
column is done according to the relations that are fully 
accepted in laboratory results. 
Following equation was presented about buckling of 
columns by Euler in 1757 where P is critical load (Tian 
and Lu , 2004): 

2 2
L P

EI
π
=                                          (1) 

According to Fig.1, an open cross section of elevator 
column was considered. The weight of the section and 
normal stress were obtained as below: 

1 2 3( 2 2 )w ptL b b b= + +                         (2)  
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In order to yield didn’t occur in cross section, normal 

stress should be less than yielding stress ( yσ σ≤ ).The 

range of  for steel is relatively broad 

(100 350 )yMPa MPaσ≤ ≤ .here 280y Mpaσ =  is 

considered. For a long column with open section, flexural 
buckling force, Pe ,can be obtained along two directs x 
and y by Euler equation: 
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In these equations, K is effective length coefficient. For 
simple fulcrum K=1 and for tangly fulcrum K=0.7. Ix and Iy 
are the surface torque respectively. By calculating and 
putting Ix and Iy in above equations, normal stress 
constrain in Euler equation is obtained as follow: 
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Where rx and ry are radius of gyration around x and y 
axes. According to the Fig. 1, the distance between 
center of surface and central line was obtained as below: 
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The distance between shear center and central line is 
given as following equation: 

2 2
2 3 1 32
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(9)

Critical force of bending-torsion buckling for an open 
section column which is shown in Fig. 1 is given as follow: 
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is polar radius of gyration around shear center (x0 , y0) 
and Pt is shear buckling force that can be obtained by 
following equation: 
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In this equation, ( )( )3
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Venant constant and 
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 is shear modulus. 
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warping constant resulting from torque and Kt=1 is 
effective length for torsional  buckling. 
Design constrains for minimization of the weight of the 
column that is under bending-torsion buckling were 
expressed as follows: 

t ex
tf

t ex

σ σσ σ
σ σ

≤ =
+ (12)

In this equation,  is critical stress obtained from 

torsion buckling. 
Local buckling for an open cross section in three columns 
with same length L and different widths b1 , b2 and b3 
have been investigated. To prevent local buckling, normal 
stress should be less than the minimum stress: 

1 2 3min( , , )lb lb lbσ σ σ σ≤ (13)
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K is the surface buckling coefficient. The optimization 
problem for compression condition can be modeled as 
follow: 

1 2 3( 2 2 )w ptL b b b= + +  (14)
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In this optimization, b1 , b2 , b3 and  t are taken as 
decision variables and should be optimized. 
Genetic algorithms  

A genetic algorithm (GA) is a search technique used 
in computing to find exact or approximate solutions to 
optimization and search problems (Konak et al., 
2006).This method is a particular class of evolutionary 
algorithms (EA) that use techniques inspired by 
evolutionary biology such as inheritance, mutation, 
selection, and crossover (Deb, 2001). In nature, weak 
and unfit species within their environment are faced with 
extinction by natural selection. The strong ones have 
greater opportunity to pass their genes to future 
generations via reproduction. In the long run, species 
carrying the correct combination in their genes become 
dominant in their population. Sometimes, during the slow 
process of evolution, random changes may occur in 
genes. If these changes provide additional advantages in 
the challenge for survival, new species evolve from the 
old ones and unsuccessful changes are eliminated by 
natural selection (Konak et al., 2006). In GA terminology, 
a solution vector x X is called an individual or a 
chromosome and chromosomes are made of discrete 
units called genes. Each gene controls one or more 
features of the chromosome. In the original 
implementation of GA by Holland, genes are assumed to 
be binary digits (Deb, 2001). In later implementations, 
more varied gene types have been introduced. Normally, 
a chromosome corresponds to a unique solution x in the 
solution space. This requires a mapping mechanism 
between the solution space and the chromosomes. This 
mapping is called an encoding. In fact GA works on the 
encoding of a problem, not on the problem itself. GA 
operates with a collection of chromosomes, called a 
population. The population is normally randomly 
initialized. As the search evolves, the population includes 
fitter and fitter solutions, and eventually it converges, 
meaning that it is dominated by a single solution. Holland 
also presented a proof of convergence (the schema 
theorem) to the global optimum where chromosomes are 
binary vectors. GA uses two operators to generate new 
solutions from existing ones: crossover and mutation. The 
crossover operator is the most important operator of GA. 
In crossover, generally two chromosomes, called parents, 
are combined together to form new chromosomes, called 

offspring. The parents are selected among existing 
chromosomes in the population with preference towards 
fitness so that offspring is expected to inherit good genes 
which make the parents fitter. By iteratively applying the 
crossover operator, genes of good chromosomes are 
expected to appear more frequently in the population, 
eventually leading to convergence to an overall good 
solution. The mutation operator introduces random 
changes into characteristics of chromosomes. In typical 
GA implementations, the mutation rate (probability of 
changing the properties of a gene) is very small and 
depends on the length of the chromosome. Therefore, the 
new chromosome produced by mutation will not be very 
different from the original one. As discussed earlier, 
crossover leads the population to converge by making the 
chromosomes in the population alike. Mutation 
reintroduces genetic diversity back into the population 
and assists the search escape from local optima. 
Reproduction involves selection of chromosomes for the 
next generation. In the most general case, the fitness of 
an individual determines the probability of its survival for 
the next generation. Proportional selection, ranking, and 
tournament selection are the most popular selection 
procedures. The procedure of a generic GA is given as 
follows (Konak et al., 2006): 
Step 1: Set t = 1. Randomly generate N solutions to form 
the first population, P1. Evaluate fitness of solutions in P1. 
Step 2: Crossover: Generate an offspring population Qt 
as follows: 
       2.1. Choose two solutions x and y from Pt based on 
the fitness values. 
       2.2. Using a crossover operator, generate offspring 
and add them to Qt. 
Step 3: Mutation: Mutate each solution x Qt with a 
predefined mutation rate. 
Step 4: Fitness assignment: Evaluate and assign a fitness 
value to each solution x Qt based on its objective 
function value and infeasibility. 
Step 5: Selection: Select N solutions from Qt based on 
their fitness and copy them to Pt+1. 
Step 6: If the stopping criterion is satisfied, terminate the 
search and return to the current population, else, set t = 
t+1 go to Step 2. 
Optimization results and discussion 

Optimization by means of genetic algorithms was 
performed in this section. The alloy used in column 
assumed to be steel with 207E Gpa= , 0.3υ = and 

60y Mpaσ = .The objective functions and constrains are 

modeled in equations 14-20 and decision variables are 
taken as b1 , b2 , b3 and  t .In this work, axial force F is 
taken as 26000N. The results of optimization based on 
genetic algorithms for cross section with lips are 
summarized in Table 1. 
Stages of genetic algorithm to find optimal parameters 
are given in the Fig.2-Fig.5. 
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Fig 2. Optimized parameter b1  Fig 3.  Optimized parameter b2

Fig 4. Optimized parameter b3 
Fig 5. Optimized parameter t

Fig 6. Optimized area of cross section
Fig  7. Critical axial force for variation 

in the cross section parameters 
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Next, the influence of the cross section parameters 

on the critical compressive force in column was 
investigated. Increase in the cross section parameters 
causes an increase in the critical axial force. Also the 
change in the thickness has the most influence of all the 
other parameters and lip length has a little effect on the 
column bearing pressure. Fig. 7 shows the axial bearing 
force for variation in cross section parameters.  
Conclusion 

Optimization has been successfully performed for a 
cross section of a column in a two-column elevator using 
genetic algorithms principles and the optimized 
parameters of the cross section have been obtained. 
Change in the thickness has the most influence of all the 

other parameters and lip length has a little effect on the 
column bearing pressure. 
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Table.1 optimized parameters in each iteration
Iteration b1 b2 b3 t A
1 29.4647 18.0825 3.737 0.9241 67.55513
3 23.3383 26.4255 6.6895 2.0482 183.4538

6 23.3104 27.9752 0.9306 1.2179 98.79848
9 23.8371 21.6914 3.997 0.9318 70.08431

12 24.925 22.6066 0.1664 0.9318 65.66488
15 24.925 22.5725 0.0896 1.0527 73.95133

18 25.37 22.4499 0.4041 0.8259 58.70332
21 24.9101 22.5766 6.9209 0.812 68.13094

24 27.1632 21.456 2.4083 0.7437 55.69703
27 26.542 21.3315 0.9578 0.7325 52.09584

30 25.3477 35.8005 0.1003 0.726 70.53039
33 25.1161 29.5229 5.2543 0.7324 69.33667

36 22.3911 20.3641 0.1268 0.7395 46.86426
39 21.215 20.5299 0.2648 0.7355 46.19264

42 22.3563 19.9063 0.0786 0.7397 46.10262
45 22.3911 20.3641 0.1268 0.6564 41.59797

48 21.5078 20.8108 0.3716 0.6452 41.2106
51 21.9819 21.895 0.0126 3 197.3913

54 21.9819 21.895 0.0126 0.01 0.657971
57 21.9819 21.895 0.0126 0.6452 42.45229

60 21.9819 21.895 0.0126 0.6452 42.45229
63 21.9819 21.895 0.0126 3 197.3913

66 21.9819 21.895 0.00001 0.6452 42.43604
69 21.9819 21.895 0.0126 0.01 0.657971

72 21.9819 4.5 0.0126 0.6452 20.00578
75 21.9819 40 0.0126 0.6452 65.81498

78 21.9819 21.895 0.0126 0.6452 42.45229
81 8 21.895 0.0126 0.6452 33.43117

84 21.9819 21.895 0.0126 3 197.3913
87 21.9819 21.895 0.0126 0.6452 42.45229

90 21.9819 21.895 0.0126 0.6452 42.45229
93 21.9819 21.895 0.0126 0.6452 42.45229

96 21.9819 21.895 0.0126 0.6452 42.45229
99 21.9819 21.895 0.0126 0.6452 42.45229

100 21.9819 21.895 0.0126 0.6452 42.45229


