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Abstract 
The absence of mechanical moving parts, simplicity and robustness of loop heat pipes (LHPs) has prompted many 
satellite manufacturers to employ LHPs as primary thermal control systems. The acknowledgement of temperature 
dynamics of LHP plays a vital role in conception, optimization and control of the same. The overall thermal 
conductance varies not only with the power input, sink temperature and ambient conditions, but also with the previous 
history of its operation. In this connection, the present work is focused on a different approach for modeling LHPs. 
Experimental data for a vertical loop heat pipe made of copper, with two different working fluids, viz., water and ethanol 
for a range of heat inputs and fill ratios is collected from the literature. An artificial neural network (ANN) is trained with 
the collected test data and validated. Fully connected feed forward multilayer configuration (MLFFN) with momentum 
back propagation algorithm is adopted for the ANN. The MLFFN architecture consists of two input nodes representing 
the parameters heat input and fill ratio, and a single output node representing the thermal resistance of the LHP. The 
MLFFN predictions were validated within the domain of total available experimental data. This study also emphasizes 
that the understanding of the physical phenomena of LHP to be modeled by ANN is a prerequisite for getting 
acceptable results. As there is a serious limitation of conventional techniques for understanding the LHP physical 
phenomena and thermal behaviour, ANN approach appears to be very promising, if sufficient experimental data is 
available covering the entire range of system operation. 
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Introduction 
LHPs are being developed for thermal control of micro 
electronic equipment.  It can be readily integrated with 
different systems to maintain uniform temperature. There 
exist no reliable tools to design a LHP for a given micro 
electronic cooling requirement. ANN could offer an 
alternative approach for modeling LHPs. ANNs have 
been extensively studied during the past two decades 
and successfully applied in different areas especially 
where non-linear effects are predominant (Sen & Yang, 
2000). Applying ANN to thermal systems is still not very 
popular, and definitely needs more research. This 
approach has not been applied for modeling LHPs so far. 
This paper intends to analyze thermal behaviour of LHPs 
by applying ANN.  
 
Artificial neural networks 
 An ANN is a processing device, an algorithm or actual 
hardware, the design of which is motivated by the design 
and functioning of the human brain (biological neural cells 
& neurons) and components thereof. This design 
motivation is what distinguishes ANNs from other 
mathematical techniques. It is a kind of mathematical 
tool, similar to regression analysis. The key feature of 
ANNs over conventional regression analysis is that they 
employ non-linear mathematics and there fore can be 
used to model highly complex and non-linear systems 
such as LHPs. A fully connected feed forward multi-layer 

configuration using back propagation momentum learning 
algorithm has been employed in this study. This type of 
ANN has a strong ability to express complex non-linear 
mapping and has already found wide ranging applications 
(Sen & Yang, 2000).   
 The architecture of this type of ANN usually consists 
of an input layer, some hidden layers and an output layer. 
Each layer has some nodes representing artificial 
neurons. Each node is interconnected to the nodes of its 
preceding layer through adaptable weights and no lateral, 
self or back connection is allowed. Individual neurons 
have limited ability of calculation and expression but 
when they connect with each other, the whole network 
achieves ability to model complex functions. A network 
accepts an input vector and generates a response in the 
form of an output vector as shown in Fig.1. 
 Training of the network involves the iterative 
refinement of the associated ‘weights’ such that the pre-
specified error condition is minimized. Training patterns 
are composed of a group of matching input and output 
vectors. The learning algorithm uses these sets of input 
and output vectors to train a network. It measures the 
difference between the desired output vector to the 
current actual output vector and the resulting error back 
propagates to alter the connecting weights in the direction 
of reducing the error. This process runs many times until 
the error is within the required level. Then the network 
holds the weights constant and becomes a valid model 



 
 
Indian Journal of Science and Technology                                                        Vol. 3   No. 4   (Apr.  2010)                  ISSN: 0974- 6846 
 

Research article                                                                        “Loop heat pipes”                                                                                   Latha et al. 
©Indian Society for Education and Environment (iSee)                                         http://www.indjst.org                                                                                              Indian J.Sci.Technol. 

464

for prediction. As stated earlier, each neuron or node 
performs a very simple calculation. It sums all its inputs 
multiplied by their respective weights, then a squashing 
function is applied to this value. In this study, an identity 
function is used for output activation. For all other nodes, 
a sigmoid function is used as activation function. This 
function can perform non-linear input-output 
transformation actions and is normally used in most 
applications. 
 

Characteristics of LHP 
 A given LHP has two operational extremities with 
respect to filling ratio (liquid volume/total LHP volume), 
i.e., 0% filled or an empty device and 100% filled 
equivalent to a single-phase thermosyphon (Khandekar 
et al., 2003). It is obvious that at 0% fill ratio, an LHP 
structure with only bare turbes and no working fluid, is a 
pure conduction mode heat transfer device and obviously 
has a very high undesirable thermal resistance. A100% 
fully filled LHP is identical in operation to a single-phase 
thermosyphon. Since there exist no bubbles in the tube, 
pulsating effects are obviously non-existent but 
substantial heat transfer can take place due to liquid 
circulation in the tubes by thermally induced buoyancy.  In 
between these two limits the device functions in a 
pulsating mode. In this pulsating operational mode, there 
exist three distinct regions: 
 
Near 100% fill ratio: In this mode there are only very few 
bubbles present, the rest being all liquid phase. These 
bubbles are not sufficient to generate the required 
perturbations and the overall degree of freedom is very 
small. The buoyancy induced liquid circulation, which was 
present in a 100% filled LHP, gets hindered due to 
additional surface-tension-generated friction of the 
bubbles. Thus the performance of the device is seriously 
hampered and the thermal resistance much higher than 
for the 100% filled LHP.  
 
Near 0% fill ratio: In this mode there is very little liquid to 
form enough distinct slugs and there is a tendency 

towards dry-out of the evaporator. The operational 
characteristics are unstable and undesirable. 

 

Fig. 2. Experimental data for water

Fig.1. Basic ANN architecture 

LHP true working range: Between 10% to 90% fill ratio, 
the LHP operates as a true pulsating device. The exact 
range will differ for different working fluids, operating 
parameters and construction. It can be clearly stated that 
the underlying physics guiding the mechanism of heat 
transfer in a LHP is entirely different in different modes of 
operation as explained above. In the absence of ‘apriori’ 
knowledge of this fact, ANN modeling may prove to be 
quite misleading.  
 The Experimental results shown in Fig. 2 and Fig. 3 of 
copper bent tube LHP with water and ethanol as working 
fluids are taken from (Khandekar et al., 2003) to train and 
validate the ANN. 
 

Fig. 3. Experimental data for ethanol

 Modelling of LHP using ANN 
Model for water as working fluid 
 A total of 58 sets of data, for fill ratios ranging from 
15% to 80% is taken from Fig. 2 to train the ANN and 29 
sets of data, for fill ratios 0%, 7%, 90% & 100% are used 
for validation of the network. Two major parameters that 
affect the thermal resistance are the heat load and the fill 
ratio, hence both were considered as inputs to the 
network. The overall thermal resistance, based on heater 
temperature and the cooling air temperature, is the 
network output.  
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Fig. 4. Trained MLFFN output for water
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Fig. 5. Validation for water at 0% fill ratio
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Fig. 6. Validation for water at 7% fill ratio
Fig. 7. Validation for water at 90% fill ratio
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Fig. 8. Validation for water at 100% fill ratio
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Fig. 9. Trained MLFFN output for ethanolp
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Fig.10. Validation for ethanol at 0% fill ratio
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Fig.11. Validation for ethanol at 10% fill ratio
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Fig.12. Validation for ethanol at 95% fill ratio
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Fig.13. Validation for ethanol at 100% fill ratio
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Fig.14. Prediction for water at 50% fill ratio
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Fig.15. Prediction for ethanol at 50% fill ratio

50 100 150 200 250 300 350 400 450
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Th
er

m
al

 R
es

is
ta

nc
e 

(K
/W

)

Heat input (K)



 
 
Indian Journal of Science and Technology                                                        Vol. 3   No. 4   (Apr.  2010)                  ISSN: 0974- 6846 
 

Research article                                                                        “Loop heat pipes”                                                                                   Latha et al. 
©Indian Society for Education and Environment (iSee)                                         http://www.indjst.org                                                                                              Indian J.Sci.Technol. 

467

Due to the scarcity of the available theory on selection of 
the network architecture, it is common practice to train 
various network architectures and then to choose the one 
which gives most accurate predictions for a given CPU 
time. In this work, Kolmogorov equation and Elm equation 
are tried in the network architecture and the Elm equation 
is found to be more suitable for this problem. After fixing 
the network architecture, 4 different configurations are 
studies as follows:(Input node- Hidden nodes- Output 
node)  2-1-1, 2-2-1, 2-3-1,2-5-1. 
 The best one with least errors between the ANN 
trained output data and the experimental data for the 
same number of epochs is 2-5-1. This configuration has 
two input nodes, corresponding to heat load and fill ratio, 
one hidden layer with 5 nodes, and the output layer 
consists of a single node, representing the thermal 
resistance.  
 The ANN was trained with the data representing the 
typical pulsating working range and the trained output is 
shown in Fig. 4. When compared to Experimental data 
the trained data scatters by an average of 3.5%.  The next 
step is to validate the model and this is done by testing 
the network with new sets of data, which is not used 
during the training process. If the predicted data from the 
ANN model are close to the test data, then the network 
model is successful. Validation is done by 29 sets of data, 
which are kept aside for this purpose. A comparison 
between the ANN predicted data and the experimental 
data at 0%, 7%, 90% &100% fill ratios respectively is 
shown in Fig. 5-8 and the maximum possible error was 
found to be 6.7%. 
 
Model for ethanol as working fluid: 
 A total of 50 sets of data, for fill ratios ranging from 
20% to 85% is taken from Fig. 3 to train the ANN and 24 
sets of data, for fill ratios 0%, 10%, 95% & 100% are used 
for validation of the network. The ANN with same 
architecture and configuration is trained with the data 
representing the typical pulsating working range and the 
trained output scatters by an average of 2.54%, 
compared to experimental data as shown in Fig. 9. The 
model is validated by 24 sets of new data, Fig. 10-13 
gives the comparison between the ANN predicted data 
and the experimental data at 0%,10%,95% & 100% fill 
ratios respectively, and the maximum possible error was 
found to be 4.76% . 
 
Prediction for water and ethanol at 50% fill ratio for a 
different range of heat input  
 The trained ANN model was applied to predict the 
thermal resistance of the same LHP at 50% fill ratio and  
heat input ranging between 50-450W, with water as 
working fluid. The predicted Thermal resistance values 
are shown in Fig.14 and15 describes the thermal 
resistance values predicted from the trained ANN at 50% 
fill ratio and heat input ranging between 50-450W, with 
ethanol as working fluid.  

Conclusions 
 An MLFFN with momentum back propagation 
algorithm is successfully trained, validated and used for 
prediction at a different heat input range for an LHP with 
two different working fluids viz., water and ethanol. Since 
the conventional modeling of thermo-hydraulic behaviour 
of LHP is rather difficult, ANN based method appears to 
be a good tool, though there exists certain limitations. 
During the modeling, several uncertain choices such as 
the number of hidden layers, intern the number of nodes 
in each layer, the minimum number of training data sets, 
the initial values, the choice of test data etc., are critical in 
achieving successful ANN models. 
 In this study, only two parameters, ie, the heat input 
and the fill ratio were used as the input parameters. In 
practice, there exist various other parameters which 
affect the operation of LHP like, dimensions of the tube, 
inclination angle, physical properties of the working fluid 
etc., to consider all these parameters, abundant 
experimental data is required. While, ANN can effectively 
model highly complex and non-linear systems, it is 
equally difficult to obtain accurate and ample 
experimental data for such complex systems. Analysis of 
experimental data, to understand the physical 
phenomena helps in the network design, training and 
selection of learning algorithms to obtain a good quality 
ANN. 
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