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Abstract 
 

The purpose of this paper is to study an important application of Singular Value Decomposition (SVD) to image 
processing. The idea is that by using the smaller number of vectors, one can reconstruct an image that is closer to the 
original. The clarity of the image depends on how many singular values are used to reconstruct it. In this paper, SVD 
was applied to the image and also using the Matlab software we developed the code. We also demonstrated how the 
SVD is used to minimize the size needed to store an image. 
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Introduction  
 
The singular value decomposition (SVD), one of the most 
useful tools of linear algebra, is a factorization and 
approximation technique which effectively reduces any 
matrix into a smaller invertible and square matrix. One 
special features of SVD is that it can be performed on any 
real  m n×  matrix. It factors A into three matrices U, S, V, 

such that TA USV= , (Ogden & Huff, 1997; Jody & Lynn 

1998) where, U and V are orthogonal matrices and S is a 
diagonal matrix. 
Singular value decomposition 
Given a m n×  matrix A, there exists decomposition 

(Ogden & Huff, 1997), such that TA USV= , where U and 
V are orthogonal matrices and S is a diagonal matrix with 
nonnegative diagonal entries in decreasing order. The 
diagonal entries of S are the positive square roots of the 

eigen values of 
TAA and are called the singular values of 

A. The decomposition TA USV= is called a singular 
value decomposition of A, and A can be written as, 

1 1 1 2 2 2 3 3 3 .............T T T T
n n nA s u v s u v s u v s u v= + + + + , 

where iu and iv are the thi  and 
thj  columns of the 

matrices U and V respectively, 

and 1 2 3 ......... ns s s s= = = =  (Jain & Gunawardena, 

2003). 
Each of the nonzero terms in this representation of A is a 
rank-1 matrix, and if A is approximated by the sum of the 
first k terms, then this sum is called a rank-k 
approximation of A. 
Theorem (SVD)                

Let A be a m n×  matrix, and 1 2 3, , ,......... ns s s s  be the 

singular values of A then TA USV= where, U and V are 

orthogonal matrices and S is a diagonal 

entries 1 2 3, , ,......... ns s s s . (Equivalently, 

1 1 1 2 2 2 3 3 3 .............T T T T
n n nA s u v s u v s u v s u v= + + + +  , 

where iu  and iv  are the thi  and 
thj  columns of the 

matrices U and V, resp., and 1 2 3 ........... ns s s s≥ ≥ ≥ ≥ , 

(Jain  & Gunawardena, 2003). 

Proof: Let 1 2 3, , ,......... nv v v v be an orthonormal set of 

eigenvectors of 
TAA corresponding to the eigenvectors 

2 2 2 2
1 2 3, , ,............... ns s s s  written in decreasing order, 

where, possibly 1 ....... 0r ns s+ = = = .  

Let
1

i i
i

u Av
s

= , for i =1, 2 ...r.  

Now

2 21 1 1 0T T T T T
i j i j i j j j i j

i j i j i j

u u v A Av v s v s v v
s s s s s s

= = = = , 

2
2 2

1 1 1T T T T T
i i i i i j i i i

i i

u u v A Av v s v v v
s s

= = = =  

Thus, 1, 2, 3, ,......... ru u u u form an orthonormal set of 

vectors. If r m≤ , we extend the set 1, 2, 3,{ ......... }ru u u u  

to orthonormal set 1, 2, 3,{ ......... ,..., }r mu u u u u of vectors so 

as to form a basis of mR . We will prove that AV US= , 
where S is the n n×  diagonal matrix whose diagonal 

entries are 1 2 3, , ,...... ,0......0rs s s s and U and V 

arem m×  and n n×   orthogonal matrices, resp., given 

by 1 2 3[ , , ,.... ]nV v v v v=  and 1 2 3[ , , ,... ,.... ]r mU u u u u u= . 
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1 2 3[ , , ,.... ]nAV A v v v v=  

1 2 3[ , , ,...., ]nAv Av Av Av=  

1 1 2 2 3 3[ , , ,...., ,0,...,0]r rs u s u s u s u=  

1

2

0

0
0

r

s
s

s
U

 
 
 
 
 
 =  
 
 
 
 
  

O

O

        US=  

Because, 1Tv v−= .  Thus we obtain 
TA USV=   , as desired. 

 
Experiments and results in Matlab 

Matlab provides us with the ability to 
perform (SVD) on larger matrices. So 
Matlab is very helpful to do work with 
any size of matrices and its gives the 
result as fast as possible. 

In this paper we give the example to 
show the effect of SVD (Jain, 2004), in 
Matlab using some basic operations. 

For an example, Let I be the colour 
image of large size of matrices, so first 
we convert into gray scale image of size 
497x498 matrix, and then we apply the 
singular value decomposition to the 
given image and try to reduce the size of 
the image i.e. to compress the size of 
given image. Hence we applied the 
Matlab software and developed the 
code. Fig. 1 shows the outcome of it. 

As we see the 10th Iteration the 
image contain the 100 entries, also form 
the 30th Iteration we get the image near 
to original image, and form the 70th 
Iteration i.e. A 70x70 matrix, with 4900 
entries is significantly reduced the 
original image of size 497x498 matrix, 
with 247506 entries. So, there is no 
need to go up to 100th Iteration. And 
image size is also compressed.  
 
Error approximation 

We also focus on Error in the output 
image; therefore we take the mean 
square error (Bakwad et al., 2009), 
between the original image and noisy 
image that is compressed image. 

2

1 1

1 ( , ) ( , )
M N

i j

Error z i j p i j
MN = =

 
= − 

 
∑∑

;  
Where, M x N is the size of the original image z(i, j) and 
noise image p(i, j). The performance of this technique is 
evaluated based on peak signal to noise ratio (PSNR) 
and mean absolute error is given by  

2

10 ,
^ 2
, ,

, 1

,
^ 2
, ,

, 1

10 log
1 ( )

1 ( )

M N

i j i j
i j

M N

i j i j
i j

RPSNR
f f

MN

MAE f f
MN

=

=

=
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= −

∑
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Fig. 2 

Where, ^
,i jf  and ,i jf  denote the pixel values of the restored 

image i.e. compressed image and original image 
respectively. 

The PSNR (Bakwad et al., 2009), computes the peak 
signal-to-noise ratio between two images. This ratio is 
often used as a quality measurement between the original 
and a compressed image. The higher the PSNR the 
better the quality of the compressed image. 

The Mean Square Error (MSE) and the Peak Signal to 
Noise Ratio (PSNR) are the two error metrics used to 
compare image compression quality. The MSE 
represents the cumulative squared error between the 
compressed and the original image, whereas PSNR 
represents a measure of the peak error. The lower the 
value of MSE, the lower the error.  
 
 

 
Conclusion 

When we applied the image 
processing, a matrix can be 
compressed to a significantly smaller 
size that can be very useful tool to 
save storage space. We were able to 
get an image that is indistinguishable 
from the original image. We can also 
estimate the error caused due to the 
image compression. The clarity of 
the resulting images corresponding 
to the original image after the 
iterations. From the Fig. 2 one can 
conclude that as the no. of iteration 
increases, the image closer to 
original was obtained: besides the 
size of image also decreased.  Fig. 3 
reveals that as the number of 
iteration increases, the error is also 
reduced. It helps  the image 
compression and face recognition. 
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