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Fig.1. General block diagram of communication system 
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Abstract: This paper presents a novel architecture design 
for forward error correction technique based on RS 
coding scheme for wireless applications. The design was 
created using System Generator for DSP tool from Xilinx 
and was simulated on Matlab/Simulink environment. The 
hardware description language source code for different 
blocks was generated and the design was subjected to 
severe functional and timing constraints using Xilinx 
Foundation series and ModelSim tools. Synplify Pro tool 
was finally used to synthesize the complete design. The 
overall architecture for RS Coder-Decoder was 
implemented on Xilinx Virtex-II XC2v250 device and 
consumed slices 1429 for the CODEC at a clock 
frequency of 90 MHz. The architecture design power 
consumption analysis was done using the Xilinx Xpower 
tool and it came out to be about 783 mW.   
Keywords: FPGA, Reed-Solomon coding.  
Introduction 

Reed-Solomon codes are block-based error 
correcting codes with a wide range of applications in 
digital communications and storage (Martin 1998]. 
Encoding data using an RS code is relatively 
straightforward, but decoding is time-consuming. Despite 
major efficiency improvements made by Berlekamp and 
others during the 1960's (Berlekamp 1968)  Reed-
Solomon codes are used to correct errors in many 
systems including Wireless or mobile communications 
(including cellular telephones, microwave links, etc), 
Satellite communications,  High-speed modems, Storage 
devices (including tape, Compact Disk, DVD, barcodes, 
etc). A typical system is shown here in Fig.1 
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The Reed-Solomon encoder takes a block of digital data 

and adds extra "redundant" bits. Errors occur during 
transmission or storage for a number of reasons (for 
example noise or interference, scratches on a CD, etc). 
The Reed-Solomon decoder processes each block and 
attempts to correct errors and recover the original data. 
The number and type of errors that can be corrected 
depends on the characteristics of the Reed-Solomon 
code. An RS code differs from a Hamming code in that it 
encodes groups of bits instead of one bit at a time. We 
will call these groups “digits” (or “symbols” or 
“coefficients”). A digit is error free if and only if all of its 
bits are error-free. For instance, if a digit is an 8-bit 
character, and three bits of the same single character are 
in error, we will count that as one corrupted digit. There 

are two corrupted digits (but more than two corrupted 
bits) in the following example.   
Original:  10110001   11011111   01001011   01011100  
Received: 10110101  11011111    01110001     01011100  
Corrupted:       yes       n o       yes           no  
If we want to send a k digit plaintext message, RS will 
send n = k + 2s digits, and guarantee that the correct 
message can be reconstructed at the other end if there 
are fewer than s corrupted digits. An example of 
commonly used parameters: k = 223, s = 16, n = k+2s = 
255, giving the ability to correct 16 corrupted digits out of 
every 255-digit transmission. In general, the number of 
bits in a digit and the parameters n and s are tuned to 
optimize for your application.  
Constructing the field  

We introduce here the basic algebraic definitions 
which will be used in this section.  
Groups  

A group is a tuple (G; *;  ε), where G is a set of 
elements, * is a binary operator on G, and  e ε G is a 
designated identity element G must have the following 
properties:  
1. * is closed.    For all   a; b ε G, a * b ε G.  
2. * is associative.    For all     a; b; c ε G,(a * b)* c 
= a * (b   * c).  
3.   a ε G, a *  ε =  ε * a = a.  
4.   For each a  ε G there is an element a-1 ε G such that  
a-1  * a a-1 = a-1 * a =  ε    
Fields 
 A field is a tuple (F, +, *, 0, 1), where F is the set of 
elements, + is the     addition operator, * is the 
multiplication operator, 0  ε F is the additive identity, and 
1 ε F is the multiplicative identity. F must have the 
following properties:  
1. (F; +; 0) forms a group.  
2. * is associative and distributes over +.  
3. (F \ {0}; *; 1) forms a group.  
Note: ``the field F '' means the field whose set is F, with 
the standard operators for that set. Fields that we 
commonly work with include the real, complex, and 
rational numbers. The set of integers is not a field. It 
satisfies the first two properties, but fails the third property 
because not all integers have multiplicative inverses. A 
set like the integers which satisfies the first two field 
properties is called a “ring”.  
Galois fields  

We now turn to the question of constructing the field 
F from which the coefficients of m(x) are drawn. A basic 
result from number theory is that if p is prime, then the set 
of integers modulo p (denoted Zp) is a field. So if there are 
a prime number p of possible digits, we can use Zp as our 
field (Azaleah 2003). However, that is true if and only if p 
is prime. Unfortunately, in computer applications we are 
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likely to want digits that we can encode with r > 1 bits; for 
instance, 8-bit characters. This means we have a 
non-prime number  2r of possible digits. Fortunately, it 
can be proven that for any prime p and any natural 
number r there exists a finite field with pr numbers. (In fact 
the reverse is also true---every finite field has pr numbers, 
where p is prime). There is a way to generate such a 
field. It is called a Galois field, and it can be shown that 
any finite field of size pr is isomorphic to a Galois field. 
Galois fields are constructed with the help of Zp [x], the 
set of polynomials with coefficients in Zp .We're used to 
dealing with polynomials with real coefficients 
(polynomials in R[x]), so the arithmetic of polynomials in  
Zp[x] may seem counterintuitive. Take F = Z2, for 
instance.  
A refresher on how arithmetic modulo 2 works:  
 0 + 0 = 0  
 0 + 1 = 1  
 1 + 0 = 1  
 1 + 1 = 0  
Now for example, let a; b  ε Z2  [x],  
a(x) = x2 + x, b(x) = x. 
Then we can do the addition  
a(x) = x2 + 1x  
b(x) = 0x2+ 1x  
a(x) + b(x) = 1 x2 + 0x= x2  
which is of course a different result than we would have 
gotten if a(x); b(x)  ε   R[x];  in that case we would have 
had (x2 + x) + (x) = x2 +  2x. Now to define modulo 
arithmetic for polynomials: a(x) modulo g(x) is another 
polynomial r(x) with degree strictly less than g(x), and 
satisfying a(x) = g(x) q(x)+r(x) for some polynomial q(x). 
Exercise: Prove that the polynomial r(x) with those 
properties exists, is unique, and is the same as the 
remainder of polynomial long division when dividing a(x) 
by g(x). Consider the set Zp [x] of polynomials over the 
field  Zp and an irreducible polynomial g(x) of degree r. An 
irreducible polynomial is one that cannot be factored into 
a product of lower-degree polynomials over  Zp. Now let F 
be the set of all polynomials in  Zp[x] with degree at most r 
- 1, with the operations of polynomial additional and 
polynomial multiplication modulo g(x). Obviously there 
are pr such polynomials (each of r coefficients can take 
one of possible values). We will denote the field GF (pr) 
(recall that r is the degree of polynomial g(x)). Thus we 
now have a method of constructing finite fields with pr 
elements. Note that we don't need g(x) to enumerate the 
elements of GF (pr). The elements are all the polynomials 
with degree at most r - 1. However, we need g(x) to 
define operations in this field (i.e., the multiplication of the 
fields' elements will be taken modulo g(x)) 1. 
Unfortunately, there is no simple method of obtaining an 
irreducible polynomial (there are complicated probabilistic 
algorithms that can do that,but we won't describe them 
here). However, irreducible polynomials for most common 
finite fields have been found and published (Christian 
1989). Also, it can be proven that an irreducible 

polynomial of degree r over Zp exists for every positive 
integer r. Let us consider an example of the Galois field 
GF( ε 3 ). As stated above we can construct such a field 
by enumerating the possible polynomial residues modulo 
some irreducible polynomial of degree 3 over Z  ε . It can 
be shown that 1 + x + x 3 is irreducible over Z  ε . 
Therefore the field we seek is {0,1, x, 1+ x, x2 ; 1 + x2; x+ 
x2 ; 1 +x+ x2 g. That is a simple example. The most 
commonly used Galois field is GF(28), since we are 
usually interested in bytes as information units. Finite 
fields (recall that any finite field of size pr is isomorphic to 
a Galois field) have some nice properties ( Arshad et. Al 
2004). One of them is that the multiplicative group of a 
finite field F is cyclic. It means that a group contains an 
element α such that every a  ε G equals αi for some 
integer i. α is called a generator(or a primitive element) of 
the group. The finite order of α is the smallest integer k > 
0 such that αk = 1 (where 1 is the identity of the group). It 
is easy to show that the finite order of generator of GF(pr) 
is pr-1.  
Reed-Solomon Encoder   

Reed Solomon encoding is a block-encoding 
scheme.  The system implemented in this study was a 
(219,201) system, in which (n, k) denotes an output 
codeword length of n and an input word of length k, as 
shown in Fig. 2.1. It has a symbol size, s, and equal to 8. 
The decoder has a correcting capability of t symbol errors 
in the code word, with n – k = 2t, in this case, t=9.  
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Fig.2.1. Typical RS codeword 

 
The encoder forms a code word xn-km(x) + r(x) by means 
of the following equation: 
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(From here on, the term “polynomial” shall pertain to 
polynomials with GF element coefficients.) The divisor, 
g(x) is known as the generator polynomial.  It is a 
polynomial of degree (n-k) and which is a factor of (xn+1).  
To maximize the minimum distance between codes, the 
roots of this polynomial should all be consecutive.  This is 
a direct consequence of the BCH bound, which states 
that the minimum distance is always larger than the 
number of consecutive factors of g(x).  The system Used 
adapted a generator polynomial with roots from α1 to 
α32.Eq. 1  also implies that the generator polynomial g(x) 
is a factor of all possible code words. In digital hardware, 
the encoder is an LFSR with internal feedback 
connections corresponding to g(x) , as seen in Figure 
2.2.  The operations involved are GF addition and 
multiplication, as previously defined in this text. 



 
 

Indian Journal of Science and Technology                                                  Vol.2 No 4 (Mar. 2009)                               ISSN: 0974- 6846 
 

Research article                                                                   “Reed-Solomon coding”                                                                    Pasricha & Sharma 
Indian Society for Education and Environment (iSee)                                    http://www.indjst.org                                                                                                   Indian J.Sci.Technol.  

50

The computation of the remainder is implemented on 
digital hardware using a linear feedback shift register 
configuration as shown in Fig. 2.2.  Note that this setup 
resembles the iterative method of polynomial division.  
The final contents of the shift registers will contain the 
remainder. 

 
 
 
 
 
 
 
 
 

                  Fig. 2.2. Encoder LFSR 
Since the input and output data for the encoder are serial 
streams, appropriate serial-parallel converters were 
implemented for both the encoder and decoder.  A 
systematic encoding  algorithm for an (n, k) cyclic code is 
(Parhi 1998)  
Step 1.  Multiply the message polynomial m(x) by xn – k.  
Step 2. Divide the result of Step 1 by the generator 
polynomial g(x). Let d(x) is the remainder.  
Step 3.  Set c(x) = xn – km(x) – d(x).  
Summarizing above, the following encoding procedure for 
RS codes is established.    
The RS encoding procedure 
To construct a t-error correcting q-ary RS code of length n 
(n = q – 1):  
1.  Find a primitive nth root of unity  α in GF(q)  
2.  Select 2t consecutive powers of  α, starting with αb (If 
b = 1, the code is    narrow-sense RS). Obtain the 
generator polynomial g(x) as in (1.1)  
3. Follow the 3 steps shown above for systematic 
encoding  of a message given by m(x) RS codes are 
spectrally efficient in the sense that they introduce less 
amount of redundancy, i.e., r = n – k, than usual BCH 
codes.  The redundancy introduced by RS is determined 
by the degree  of  g(x),  i.e.,  r  =  2t.    BCH  codes,  
however,  usually  have  cyclotomic  cosets  with 
cardinality larger than one.  To provide the same t-error 
correcting capability, 2t consecutive powers  of  α  and  all  
their  conjugates  are  selected  and  result  in  a  
generator  polynomial  of degree at least 2t.  A lower rate 
BCH code might have a higher minimum distance and 
thus provide  higher error-correcting  capability (Sharma 
et. al 2003).    
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Unfortunately  it  is  beyond  the  predictability  of 
‘design distance’ and we are unable to take advantage of 
it.  RS codes are classified as maximum-distance  
separable  (MDS) codes, as an  (n, k) RS code always 
has minimum distance exactly equal to (n – k + 1).   
Reed Solomon decoder  
r(x)                                Received 
codeword 
Si                                   Syndromes 
L(x)                               Error locator 
polynomial 
Xi                                  Error 
locations 
Yi                                  Error 
magnitudes 
c(x)                               Recovered 
code word 
v                                    Number of 
errors 
The received codeword r(x) is the original (transmitted) 
codeword c(x) plus errors:    r(x) = c(x) + e(x) 
A Reed-Solomon decoder attempts to identify the position 
and magnitude of up to t errors (or 2t erasures) and to 
correct the errors or erasures [Sklar 2001; Amina 2003]. 
The purpose of the decoder is to process the received 
code word to compute an estimate of the original 
message symbols. There are three main blocks to the 
decoder: the Syndrome Generator, Euclid's Algorithm, 
and the Chien/Forney block. The output of the 
Chien/Forney block is an estimate of the error vector. 
This error vector is then added to the received codeword 
to form the final codeword estimate. A top-level block 
diagram of the decoder is shown in Figure 3.1. Note that 
the error value vector Y comes out of the Chien/Forney 
block in reverse order, and it must pass through a last-in, 
first-out (LIFO) block before it is added to the received 
codeword R(x). 
Syndrome generator 

The first step in the decoder is to compute the 
syndrome. The syndrome  consists of n - k symbols and 
the values are computed from the received code word. 
The syndrome depends only on the error vector, and is 
independent of the transmitted code word. That is, each 
error vector has a unique syndrome vector. However, 
many different received code words will have the same 
syndrome if their error pattern is the same. The purpose 
of computing the syndrome first is that it narrows the 
search for the actual error vector. Originally, a total of 2n 
possible error vectors would have to be searched. 
However, by finding the syndrome first, this search is 
narrowed down to looking at just 2n-k possibilities. The 
syndrome can be computed mathematically by dividing 
the received code word by the generator polynomial using 
GF algebra. The remainder of this division is called the 
syndrome polynomial s(x). The actual syndrome vector 
S(x) is computed by evaluating s(x) at a through αn-k. 
However, this method is not efficient from a hardware 

Fig.3.1. Decoder architecture 
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Fig.4.1.Simulation results 

standpoint. The alternative method typically used in 
hardware is to directly evaluate the received code word 
R(x) at a through αn-k. The Syndrome Generator module 
computes the syndrome S by evaluating the received 
code word R(x) at through αn-k. That is, R(α) through R(αn-

k). In the RS code n - k = 2t, and thus there are 2t 
syndrome values to compute: [S1 S2 S3…S (2t)]. These 
values are computed in parallel as shown in Figure 4. The 
first syndrome generator evaluates the received code  

word at to form S1; the next generator evaluates the 

Table 1. FPGA Resource Utilization 
received code word at a2 to form S2, and so on. The 
Syndrome Generator module will also contain hardware 
that checks for an all-zero syndrome. If all of the 
syndrome values are zero, then there are no errors and 
the Euclid's algorithm block and the Chien/Forney block 
are disabled. The received code word then becomes the 
codeword estimate. 
Euclid’s algorithm 

Euclid's algorithm [Christian 1989; Ahmed 2001] 
processes the syndrome S(x) to generate the error 
locator polynomial Λ(x) and the error magnitude 
polynomial Ω(x)[6]. That is, it solves the following 
equation that is referred to as the Key Equation: 
Λ(x) [1 + S(x)] = Ω(x) mod x2t+1 
The algorithm used in RS decoding is based on Euclid's 

algorithm for finding the greatest common devisor (GCD) 
of two polynomials.  

Berlekamp's algorithm: Finds the error locator 
polynomialL(x), and the number of errors. This involves 
solving s simultaneous equations with s unknowns.  
Chien search: Given L(x) and v, finds the roots xi of L(x).  
Forney's algorithm: Given the syndromes and the roots of 
L(x), finds the symbol error values yi. Again, this involves 
solving s simultaneous equations with s unknowns. 
Error corrector: Combines all of the pieces calculated 
above and reconstructs the original me 
Simulation Results  

All the wavwforms are simulated on the “Xilinx 
foundation series”, “. Synplify Pro”, “Model Sim”[20]. The 
waveforms explanation shown above in the simulation 
results are as follows 
Input source: The input signal given to the encoder can 
be any input signal like sin wave, random wave or any 
signal from workspace. In our application we have 
applied the sin wave which will be applied to the encoder 
after some delay. 
din1, din2: After encoding the input data will be 
interleaved, convolutionally encoded and punctured. After 
puncturing input data is divided into two streams din1, 
din2 which represents the encoded MSB and encoded 
LSB respectively. Encoded data after modulation 
(through AWGN Channel)is applied to the Viterbi 
decoder. 
Viterbi output: At the receiving end Encoded signal is 
applied to de-puncture block so as to insert arbitrary 
symbol into your input data at the location specified by 
the de-puncture code and creates a new value. After that 
data is applied to Viterbi decoder. The output is shown 
above 
De-interleaved output: The output from the Viterbi 
decoder is then applied to the de-Interleaver so as to 
remove the erasures 
R-S decoder output: after de-Interleaving output is then 
applied to the R-S decoder so as to get the final output. 
As shown in the simulation results in figure 4.1  the output 
of the R-S decoder is same as that we have applied at the 
input. 
Conclusions 

In this paper, a novel architecture design for Forward 
Error Correction technique based on RS coding scheme 
for wireless applications is proposed. The RS code 
(126,112) has been selected,   and the system has been 
simulated on Matlab/Simulink environment.   The design 
was created using System Generator for DSP tool from 
Xilinx and was simulated on Matlab/Simulink 
environment. The hardware description language source 
code for different blocks was generated and the design 
was subjected to severe functional and timing constraints 
using Xilinx Foundation series and ModelSim tools. 
Synplify Pro tool was finally used to synthesize the 
complete design. The overall architecture for RS Coder-
Decoder was implemented on Xilinx Virtex-II XC2v250 
device and consumed slices 1429 out of 1536 for the 
CODEC at a clock frequency of 90 MHz. The architecture 

S. No Name of 
Communication 
Block 

Slices  Percentage 
utilization 

1. RS Encoder 112 7.3 
2. Convolutional 

Interleaver 
210 13.7 

3. Convolutional 
Encoder 

 76 5.0 

4. Puncturing  28 1.8 
5. RS Decoder 676 44.0 
6. Convolutional 

De-Interleaver 
210 13.7 

7. Viterbi Decoder: 86 5.6 
8. De-puncturing 31 2.1 
 Total  1429 93.2 
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design power consumption analysis was done using the 
Xilinx Xpower tool and it came out to be about 783 mW.   
We have demonstrated a simplified and efficient 
implementation of a Reed Solomon COEDC with lower 
power consumption. The efficient implementation comes 
from tool “SYSTEM GENERATOR FOR DSP” and 
compact hardware management. The RS CODEC takes 
any inputs & generates Coding & Decoding signals. By 
manipulating input signal we can see the output for 
different signals. Also, by taking advantage of internal RS 
coder & decoder function, we can implement different 
code rate used for different applications 
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