

Indian Journal of Science and Technology Vol.2 No 4 (Mar. 2009) ISSN: 0974- 6846

Research article “Unmanned flight” He Bin & Justice
Indian Society for Education and Environment (iSee) http://www.indjst.org Indian J.Sci.Technol.

12

The design of an unmanned aerial vehicle based on the ArduPilot
He Bin and Amahah Justice

Beijing University of Chemical Technology, Beijing, China-100029.
justice.blackreverend@gmail.com

Abstract: This paper focuses on the design, modeling,
implementation and testing of an autonomous unmanned
aerial vehicle. The controller is based on an Ardupilot
board which is a custom PCB with an embedded
processor (ATMega168) combined with circuitry to switch
control between the RC control and the autopilot control.
It controls navigation (following GPS waypoints) and
altitude by controlling the rudder and throttle. It uses flight
stabilization system (co-pilot), a sensor pack, Global
Positioning System (GPS) and an RF transceiver to
monitor and report crucial parameters such as altitude,
speed, pitch, roll, and position. An embedded software
algorithm has been developed to enable the aerial vehicle
accomplish the required autonomy and maintain
satisfactory flight operation. The autopilot features an
advanced, highly autonomous flight control system with
an auto-launch and auto landing algorithms.
Keywords: Autopilot, GPS, MUX, UAV, FMA Copilot
Introduction
A growing area in aerospace engineering is the use and
development of unmanned aerial vehicles (UAV) for
military and civilian applications .There are difficulties in

the design of these vehicles due to the varied and non-
intuitive nature of the configurations and missions that
can be performed (Krus & Andersson, 2003). Currently
there has been a huge demand for UAVs and services for
real time and remote sensing. Unmanned aerial vehicles
can be deployed to solve a number of civilian
tasks. It can be used as an effective means
of search, detection and identifying of
objects or subjects of interest as well as their
precise coordinates (Paul G. Fahlstrom &
Thomas J. Gleason: Introduction to UAV
Systems). UAVs are also very useful in

disaster management. In the occurrence of a forest fire,
for instance, it is very difficult to have a precise data on
the development of the situation. But with the deployment
of a UAV which is capable of flying at low altitudes and
able to navigate with GPS waypoints and machine vision,
the situation can be controlled very efficiently.
UAV Autopilot Controller (Ardupilot)

ArduPilot is a full-featured autopilot based on the
open-source Arduino platform (DIY Drones:
http://www.diydrones.com). The Ardupilot is a custom
PCB with an embedded processor (ATMega 168)
combined with circuitry to switch between RC control and
the autopilot control (i.e., the multiplexer/failsafe;
otherwise known as a MUX). This controls navigation
(following GPS waypoints) and altitude by controlling the
rudder and throttle. These components are all open
source. This autopilot is fully programmable and can have
any number of GPS waypoints (including altitude) and
trigger camera or other sensors.
Features of the ArduPilot

It can be used for an autonomous aircraft. The built-in
hardware failsafe uses a separate circuit to transfer
control from the RC system to the autopilot and back
again. It includes the ability to reboot the main processor
in mid-flight. It makes provision for the use of multiple
waypoints. It also provides a 6-pin GPS connector for the
1hz EM406 GPS module.
Overview of the Autopilot system

The Autopilot system comprises of the Arduino
compatible Ardupilot board, 1Hz EM406 GPS module and
an Infrared Flight Stabilization System (FMA co-pilot).
The EM-406A GPS module from Global Sat is based on
the spectacular SiRF. This complete module is built upon
the same technology as ET-301, but includes on-board
RAM, and a built-in patch antenna. The Infrared Flight
Stabilization System is used to sense the difference in
infrared temperature between the Earth and the sky. The
sky is always at a relatively lower infrared temperature,
while the infrared signature of the earth is always
relatively warmer. Co-pilot uses two pairs of infrared
sensors: one pair points fore and aft and the other points
left and right. When one pair of sensors sees a change in
the aircraft’s orientation relative to the earth’s infrared
horizon, co-pilot issues signals to the control system to
bring the aircraft back into level flight.

Indian Journal of Science and Technology Vol.2 No 4 (Mar. 2009) ISSN: 0974- 6846

Research article “Unmanned flight” He Bin & Justice
Indian Society for Education and Environment (iSee) http://www.indjst.org Indian J.Sci.Technol.

13

 Hardware (Airframe/Platform)
Plane
Deciding on the platform to use
is very paramount in the building
of a UAV. We
used the Hobbico Superstar EP
as my platform. The specification
of the platform chosen is provide
in Table 1.
Center of gravity: 2.5” (63.5mm) -2-7/8” (73mm) back
from the leading edge of the wing at the fuselage side
Control Throws :

Low Rate High Rate
Elevator, Up and Down: 6.35mm 11mm
Rudder, Right and Left: 9.5mm 15.9mm
Ailerons, Up and Down: 6.35mm 6.35mm

Fig. 3. Screen shot of the Arduino Environment

Software
Arduino Software: The open-source Arduino environment
makes it easy to write code and upload it to the I/O board.
It runs on Windows, Mac OS X, and Linux. The
environment is written in Java that serves as a code
editor and compiler, and based on Processing and other
open source software. The Arduino environment has the
following functions: Verify/Compile, Check for errors in
the code and uploads the already compiled code to the
board.
Advantages of the Arduino software
1) Cross-Platform-The Arduino software runs on
Windows, Macintosh OSX and Linux operating systems,
2) Simple, clear programming environment, 3) Open
source and extensible software, 4) The language can be

expanded through C++ libraries
,and AVR-C code can be added
directly into Arduino programs.
Ground station

The ground station/monitor
consists simply of a laptop
computer that is used to display
the video stream sent by the
UAV. The Aerial video system

(AVS) used is AVS-KX171 Camera. The AVS is a
complete wireless video kit with 900MHz frequency,
500mW RF output power, 12V camera.

Aerial video system block diagram

Simulation / ground control.
Fig. 5. Screen Shot of the Simulation in XPlane

Screen shot of
simulation in Google
Earth is provided in
Fig. 6. This method
of simulation was
developed by Jordi
(DIYDRONES).
Required hardware:
ArduPilot, FTDI cable
and computer.
Required software:
Modified ArduPilot
code, X-Plane
simulator, Google Earth and Ardu Simulator.

The simulation runs in X-plane simulator, while the
ArduPilot which is connected via the FTDI cable to the pc
receives simulated GPS data over serial and it returns
back proposed servo positions back over serial as part of
telemetry information. Variables that are recorded include
longitude, latitude, altitude, waypoints and distance.
Functions of the Ardu simulator
1) Connects to ArduPilot over serial for sending and
receiving data, 2) Connects to X-plane on localhost, 3)
Reads data from X-plane (lat/lon/alt/ course), sending
these to ArduPilot as GPS sentences, 4) Simulating FMA
copilot stabilization on ailerons/elevator, 5) Reads and
Displays telemetry and servo positions from ArduPIlot, 6)
Sends servo positions to X-plane to control throttle and

Table 1. the specifications of the Hobbico Superstar

 Wingspan 48.5 in
 Wing area 400 sq in
 Wing loading 16.1 oz/sq ft
 Length 36.1 in
 Weight 3.11bs
 Radio 4-channel with three servos
 Motor Battery 8.4volt 1700mAh-3000mAh

Indian Journal of Science and Technology Vol.2 No 4 (Mar. 2009) ISSN: 0974- 6846

Research article “Unmanned flight” He Bin & Justice
Indian Society for Education and Environment (iSee) http://www.indjst.org Indian J.Sci.Technol.

14

rudder and 7) Records fly path and sends it to Google
Earth to display.
Modified Ardu Pilot Code (samples)
//Defining ranges of the servos (and ESC), must be +-90
degrees.
#define max16_throttle 2100 //ESC max position, given in
useconds, in my ungly servos 2100 is fine, you can try
2000..
#define min16_throttle 1000 //ESC position
#define max16_yaw 2100 //Servo max position
#define min16_yaw 1000 //Servo min position
#define reverse_yaw 1 // normal = 0 and reverse = 1
//PID max and mins
#define heading_max 15
#define heading_min -15
#define altitude_max 40
#define altitude_min -45
//Number of waypoints defined
#define waypoints 6
#define distance_limit 4000 //The max distance allowed
to travel from home.
/**
 * RTL, if it set as true by the user, the autopilot will always
 **/
#define RTL 1 //0 = waypoint mode, 1 = Return home
mode
//PID gains
//At the beginning try to use only proportional.
//The original configuration works fine in my simulator.
#define Kp_heading 10
#define Ki_heading .01
#define Kd_heading 0.001
#define Kp_altitude 4
#define Ki_altitude 0.001
#define Kd_altitude 2
/*******************************/
//Defining waypoints variables
float wp_lat[waypoints+1];
float wp_lon[waypoints+1];
int wp_alt[waypoints+1];
byte current_wp=1; //This variables stores the actual
waypoint we are trying to reach..
byte jumplock_wp=0; //When switching waypoints this
lock will allow only one transition..
byte wp_home_lock=0; //
int wp_bearing=0; //Stores the bearing from the current
waypoint
unsigned int wp_distance=0; //Stores the distances from
the current waypoint
/*******************************/
//PID loop variables
unsigned int heading_PID_timer; //Timer to calculate the
dt of the PID
int heading_previous_error;
float heading_I; //Stores the result of the integrator
float heading_D; //Stores the result of the derivator
int heading_output; //Stores the result of the PID loop

unsigned int altitude_PID_timer;//Timer to calculate the dt
of the PID
int altitude_previous_error;
float altitude_I; //Stores the result of the integrator
float altitude_D; //Stores the result of the derivator
int altitude_output; //Stores the result of the PID loop
//PID K constants, defined at the begining of the code
float kp[]={Kp_heading,Kp_altitude};
float ki[]={Ki_heading,Ki_altitude};
float kd[]={Kd_heading,Kd_altitude};
/*******************************/
char buffer[90]; //Serial buffer to catch GPS data
char head_rmc[]="GPRMC"; //GPS NMEA header to look for
char head_gga[]="GPGGA"; //GPS NMEA header to look for
byte unlock=1; //some kind of event flag
byte checksum=0; //the checksum generated
byte checksum_received=0; //Checksum received
byte counter=0; //general counter
/*GPS Pointers*/
char *token;
char *search = ",";
char *brkb, *pEnd;
//Temporary variables for some tasks, specially used in
the GPS parsing part (Look at the NMEA_Parser tab)
unsigned long temp=0;
unsigned long temp2=0;
unsigned long temp3=0;
//GPS obtained information
byte fix_position=0;//Valid gps position
float lat=0; //Current Latitude
float lon=0; //Current Longitude
byte ground_speed=0; //Ground speed? yes Ground
Speed.
int course=0; // Course over ground...
int alt=0; //Altitude,
//ACME variables
byte gps_new_data_flag=0; // A simple flag to know when
we've got new gps data.
unsigned int launch_altitude =0; //launch altitude, altitude
in waypoints is relative to starting altitude.
int middle_thr=90; //The central position
int middle_yaw=90; //The cnetral position of yaw
byte middle_measurement_lock=0; //Another lock to void
resetting the middle measurement..
/*******************************/
int test=0;
Simulation Results

The results of the simulation weren’t exactly ideal
because of certain problems such as the cumbersome
nature of specifying individual waypoints manually.
Another problem that arose was the altitude control by
throttle with the use of the FMA copilot stabilization
system which didn't work properly. Apart from this the
simulation was successful. The plane flew smoothly and
according to predetermined waypoints.

Indian Journal of Science and Technology Vol.2 No 4 (Mar. 2009) ISSN: 0974- 6846

Research article “Unmanned flight” He Bin & Justice
Indian Society for Education and Environment (iSee) http://www.indjst.org Indian J.Sci.Technol.

15

Navigation
The Ardupilot operates in two modes, first of all it can

be programmed with desired waypoints (any number of
waypoints), and also can be programmed to RTL (return-
to-launch).
Methods

Programming the Ardupilot board for desired
waypoints involving first obtaining the GPS Longitude and
Latitude coordinates of the waypoints and then entering
the GPS Longitude and Latitude coordinates into the
code in the Arduino environment and uploading it to the
board. The coordinates can be obtained from Google
Maps, under satellite view. The waypoints (“wp-lat” and
“wp-lon”) declaration obtained would be pasted on the
Mission Setup tab of the Arduino.

The altitude is relative to the initial launch position
and not above sea level. For an example if the airfield is
500 meters above sea level, then “500” would be entered
as the waypoint altitude. Hence the plane will fly at 1,000
meters above sea level but it would be just 500 meters
above .
Code Sample:
void setup_waypoints(void)
{
 /*Declaring waypoints*/
 wp_lat[1]= 34.982613;
 wp_lon[1]= -118.443357;
 wp_alt[1]=50; //meters
 wp_lat[2]= 34.025136;
 wp_lon[2]=-118.445254;
 wp_alt[2]=100; //meters
 wp_lat[3]=34.018287;
 wp_lon[3]=-118.456048;
 wp_alt[3]=100; //meters
 wp_lat[4]= 34.009332;
 wp_lon[4]=-118.467672;
 wp_alt[4]=50; //meters
 wp_lat[5]= 34.006476;
 wp_lon[5]=-118.465413;
 wp_alt[5]=50; //meters
 wp_lat[6]= 34.009927;
 wp_lon[6]= -118.458320;
 wp_alt[6]= 20; //meters
 RTL (Return-To-Launch)

For the UAV to return-to-launch, then the code still
has to be modified. The code “#define RTL 0”,this is the
RTL flag and it should be set to 1 or just set to zero if the
UAV is to follow the waypoints in the Mission Setup tab.
Autonomous Flight

For the first test flight of the UAV, we setup the
system as described above i.e., connecting all the
components to the board, modifying the code and
uploading it to the board. Components include the EM-
406A GPS, FMA Copilot Stabilization unit, Servos, Tower
hobbies 72 MHz 8 channel RX and Tower Hobbies 6 XM
TX and the AVS.

The UAV was launched manually and when it was
about 150 feet it was switched into autopilot by flipping
the control switch which corresponds to our channel 5.
The UAV successfully started navigating to the
predetermined first waypoint that we uploaded into the
board. We then uploaded the RTL code (return –to-
launch), the throttle behaved as expected and maintained
steady altitude. It returned to launch point.
Results and conclusion

In this paper, we have discussed the design and
implementation and simulation of an Ardupilot based UAV
autopilot system.

The simple UAV has the ability to implement
autonomous flight (automatic take and landing). The
developed UAV has been tested successfully in both
manual and automatic flight operations. Useful data has
also been obtained by the use of computer vision, i.e. the
AVS and valuable data has also been obtained by the
use of telemetry.
Future work

Presently waypoints can only be entered pre-flight
and manually, this limit the autonomous properties of the
UAV .It would be very useful to develop a method to
reprogram the waypoints on the controller board mid-
flight. Power consumption is another issue worthy of
considering, presently the power rating of the UAV will
last only for several minutes without recharging, it would
be great if the power rating of the UAV could be
reasonably increased. Two methods worthy of
consideration is 1) the use of solar panels for recharging
mid-flight, 2) the use of automatic recharging, i.e. having
the UAV taxiing into predetermined destination and
recharging on its own then taking off. This would require
the addition of extra electronic components which could
drastically affect the weight of the aircraft and could also
give rise to magnetic interference.

Reference
Krus P and Andersson J (2003) Optimizing optimization
for design optimization. In: Proceedings of ASME Design
Automation Conference, Chicago, USA, September 2-6.

Fig. 6. Screen shot of simulation in Google Earth

