
Cloud Based Android App Data Transmission
(Leverage Connectivity)

Sumendra Yogarayan*, Afizan Azman, Tan Geok Huei, Kirbana Jai Raman, Siti Fatimah Abdul
Razak, Mohd Fikri Azli Abdullah, Siti Zainab Ibrahim, Anang Hudaya Muhamad Amin

and Kalaiarasi Sonai Muthu

Faculty of Information Science and Technology, Multimedia University, Malacca, Malaysia;
 mastersumen@gmail.com, afizan.azman@mmu.edu.my, yihui_tan92@hotmail.com, jpk_kirbz@hotmail.com,

fatimah.razak@mmu.edu.my, mfikriazli.abdullah@mmu.edu.my, fatimah.razak@mmu.edu.my,
anang.amin@mmu.edu.my, kalaiarasi@mmu.edu.my

Abstract

Objective: This paper intents to develop an Android Based Application integrating with backend cloud services instead of
local storage database. Methods: In this paper, wepropose a mechanism in the context of a mobile application with cloud ser-
vices integration to identify distance. The aim of the proposed work is to identify distance between each devices and triggers
an alert if there are any nearby devices approaching. The mechanism used for calculating the distance is based on distance
Between. Findings: Mobile application that are based on geo-fence has been in the market in recent years. Most of the current
geo-fence application are providing direction and estimation of distance to reach their desired location. However, the con-
straint is that, there is no framework or mechanism that is dedicated for identifying the distance between each devices and
triggers an alert. As of late, mobile application has been the leverage connectivity for vehicles. Application/Improvements:
The future enhancement for the application to be based on vehicle distance monitoring and traffic information.

*Author for correspondence

1.  Introduction
The advancement of mobile application has involved many
aspects to vehicle routine. Nowadays, users in the vehicle
are able to access the Internet while they are on the road.
Gadgets are fitted in vehicles that can be easily access the
travelling information, such as maps, traffic record and
many more. Commonly in vehicle, connectivity can be
divided into two, which are the embedded connectivity
where gadgets are built in the vehicles whereas leverage
connectivity is any gadgets that are brought into the vehi-
cles. There are many existing mobile apps that measure
distance based on user location (from the current place to

Indian Journal of Science and Technology, Vol 11(20), DOI: 10.17485/ijst/2018/v11i20/123346, May 2018

ISSN (Print) : 0974-6846
ISSN (Online) : 0974-5645

the destination), for example Google Map, it only offers
users to check on their current location and plan the route
from a place to another place based on the transportation
method they prefer to ride. However, there is no existing
application that can identify the nearby vehicles or devices
and their distances between one another. Even though in
Google Map, there is no such feature available in it.

Besides, the cloud services not really integrated with
such mobile apps. Most of the current mobile apps gen-
erally are using the embedded database instead of using
the cloud database. Embedded database such as SQLite
is used due to its lightweight, self-contained librar-

Keywords: Alert, Android App, Distance Estimation, Leverage Connectivity

Cloud Based Android App Data Transmission (Leverage Connectivity)

Indian Journal of Science and TechnologyVol 11 (20) | May 2018 | www.indjst.org2

ies with no server component and small code footprint
features and all the databases are locally on the device.
Furthermore, android app and cloud services are barely
visible to end users of how data is transmitted. Generally,
the data transmission and processing process are carry-
ing out in the backend. Hence, it is impossible for user
to directly monitor all the processes involving the data
transmission from the app itself to the backend database
especially through the cloud services.

The scope of this project is to design and develop an
android-based tracking app for measuring the distance
between the vehicles or user devices and to determine
and understand how the location values (data) can be
transmitted between android-based tracking app and
the backend cloud database. The tracking app will trig-
gers an alert to the users if any nearby vehicles or devices
approaching in the specific range of distance. The next
scope is to study the cloud infrastructure environment
and make use of this knowledge to identify the suitable
cloud services that can facilitate the transmission of the
(location values) data through the tracking app.

2.  Findings
The distance calculation method is a vital part in the
whole HiTracker app. There are several distance calcula-
tion methods available in the online resources, which will
be taken for the comparison in order to identify which
method is suitable to use in the HiTracker app. The three
available distance calculation methods are distanceTo
method, distanceBetween method, and the Haversine
formula.

2.1  distanceTo Method
distanceTo is one of the methods which is under Location
class defined in Android Platform. distanceTo method
returns the approximate distance in meters between this
(current) the location and the given location. Distance is
defined using the WGS84 ellipsoid, which is the reference
system for the Global Positioning System (GPS). Figure
1, illustrates the sample code snippet of the distanceTo

method. The float data type will return the approximate
distance in meters1.

2.2  distanceBetween Method
distanceBetween is another method which is also under
the category of Location class in Android Platform. dis-
tanceBetween computes the approximate distance in
meters between two locations, and optionally the initial
and final bearings of the shortest path between them.

Figure 1.  Sample Code Snippet for distanceTo method.

Figure 2.  distanceBetween syntax.

Figure 3.  Parameters listings for distanceBetween syntax.

Sumendra Yogarayan, Afizan Azman, Tan Geok Huei, Kirbana Jai Raman, Siti Fatimah Abdul Razak, Mohd Fikri Azli Abdullah,
Siti Zainab Ibrahim, Anang Hudaya Muhamad Amin and Kalaiarasi Sonai Muthu

Indian Journal of Science and Technology 3Vol 11 (20) | May 2018 | www.indjst.org

Distance is defined using the WGS84 ellipsoid. In Figure
2, illustrates the syntax of the distanceBetween method.
The computed distance is stored in results. If results has
length 2 or greater, the initial bearing is stored in results.
If results has length 3 or greater, the final bearing is stored
in results. In Figure 3, lists the parameters for the dis-
tanceBetween syntax.

2.3  Haversine Method
Haversine formula is an equation important in naviga-
tion, providing great-circle distances between two points
on a sphere from their longitudes and latitudes2. The law
of haversines, which is relating the sides and angles of
spherical triangles, is a special case of a more general for-
mula in spherical trigonometry3. Given a unit sphere, a
“triangle” on the surface of the sphere is defined by the
great circles connecting with three pointsu, v, and won
the sphere3. If the lengths of these three sides are a (from
u to v), b (from u to w), and c (from v to w), and the
angle of the corner opposite c is C. In Figure 4, shows the
illustration of the spherical triangle solved by the law of
haversines and the formula for Haversine law. Figure 5,
shows the code snippet for the distance calculation based
on the Haversine formula.

(i)

(ii)

Figure 4.  (i) The spherical Triangle solved by Law of
Haversines and (ii) Haversine Law.

Figure 5.  Code Snippet for Distance Calculation based on Haversine Formula.

Cloud Based Android App Data Transmission (Leverage Connectivity)

Indian Journal of Science and TechnologyVol 11 (20) | May 2018 | www.indjst.org4

2.4 � Comparison between Distance
Calculation Method

The comparison has been made to summarize the fea-
tures of the three distance calculation methods. Table 1.
shows the features comparison between three distance
calculation methods.

Based on the Table 1, all the three methods are appli-
cable for Android-based application. distanceTo and
distanceBetween methods both are fall under the Google
Location Services API whereas the Haversine formula
does not belong to any of the API services. From the
overall view of this comparison, distanceTo and distance-
Between methods seem much suitable to use compare to
the Haversine formula since no limitation has been dis-
covered in these two methods currently.

3.  Proposed Work

3.1  General Designs
The HiTracker app is designed to provide users a method
to identify the distance between the vehicles or devices.
This could benefit the users in case they forgotten where
are devices lost. They can track it back by using another
device with this HiTracker app installed in it. On the
other hand, users can also use HiTracker app to track the
nearby vehicles by using devices. This can help the drivers
to figure out the distance of the nearby vehicles and
minimizes the risk of accident on the road. The setup of
the whole HiTracker app is divided into two main areas,
which are the backend cloud database and the real time
medium.

Feature
Method

distanceTo distanceBetween Haversine Formula

API Google Location Services API Google Location API Not belongs to any API

Applicable for
Android? Yes Yes Yes

Function
Returns the distance between
the current location and the

given location.

Returns the distance
between two locations.
Optionally computes

the final bearings of the
shortest path between the

two locations.

Calculate the great circle
distances between two points

on a sphere from their latitudes
and longitudes.

Limitation No No

Formula does not take into
account the non-spheroidal

(ellipsoidal) shape of the
Earth4.

It tends to overestimate
trans-polar distances and

underestimate trans-equatorial
distances4.

Table 1.  Comparison between Features of Distance Calculation Methods.

Sumendra Yogarayan, Afizan Azman, Tan Geok Huei, Kirbana Jai Raman, Siti Fatimah Abdul Razak, Mohd Fikri Azli Abdullah,
Siti Zainab Ibrahim, Anang Hudaya Muhamad Amin and Kalaiarasi Sonai Muthu

Indian Journal of Science and Technology 5Vol 11 (20) | May 2018 | www.indjst.org

The main area is where the users will use it (HiTracker
app) for identifying the nearby devices on the map by
retrieving the current longitude and latitude values. The
distance between the nearby devices will be shown in the
map and each user will be able to know their respective
distance to each other. An alert or the notification will be
triggered to warn or remind to that particular, when the
nearby devices (another user’s device) within a specific
range of distance is detected. The most important thing is
that users are required to register themselves in order to
gain access to the HiTracker app. The account password
is able to reset after the registration is done. The second
part of the whole HiTracker app is backend cloud data-
base. This is the place where the retrieved location will be
stored and updated with the new ones. All the data will
be transmitted to the cloud and the synchronization will
be taken place where all users (using this app) can tracks
their respective location and nearby devices or vehicles at
the same time. Figure 6, illustrates the general concept of
the whole HiTracker app.

3.2  Geofence
Geo-fencing combine’s awareness of the user’s current
location with awareness of the user’s proximity to loca-
tions that may be of interest. To mark a location of interest,
latitude and longitude are required to be specified. Add a

radius on it to adjust the proximity for the location. The
latitude, longitude, and radius define a geo-fence, creating
a circular area, or fence, around the location of interest5.

For each geo-fence, Location Services can be
requested to send the entrance and exit events, or dura-
tion can be specified within the geo-fence area to wait, or
dwell, before triggering an event. It is possible to limit the
duration of any geo-fence by specifying expiration dura-

Figure 6.  General Concept of HiTracker App.

Figure 7.  Basic Concept of Geo-Fencing.

Cloud Based Android App Data Transmission (Leverage Connectivity)

Indian Journal of Science and TechnologyVol 11 (20) | May 2018 | www.indjst.org6

tion in milliseconds. After the geo-fence expires, Location
Services automatically removes it6. Figure 7, shows the
basic concept of geo-fencing.

3.3  Distance Calculation Method
Based on the comparison that has been made in find-
ings, distanceTo will be taken as a method to be used
in measuring the distance in the HiTracker app. This is
due to its flawless feature (no limitation been found cur-
rently) of returning the distance from one point to the
other point and its ease of use feature. Another reason
why distanceTo has been chosen to be apply instead of
using distanceBetween is, although distanceBetween has
optionally providesthe computation of the final bearings
of the shortest path between the two locations, but in
order to make the distance calculation works in a simple
way, this additional feature of distanceBetween can be
ignored (not required in this project).

4.  Testing and Results
In HiTracker app, users are required to register an account
and login to the user account before they allow to access

to the internal content of this app. Also, in case users
want to renew their password, they can go to the Settings
page of this app. Once they have successfully renew the
password, they are required to re-login to the app due to
the rules defined in the Firebase Cloud. Other app activi-
ties will be further explain in the next few sub-sections.
Figure 8, shows the interface of Main Menu page where
it will be immediately loaded once the access is permitted
and deemed as successful.

Check Devices Activity

Before Check Devices Activity starts, HiTracker app
will at first ensure each user has using this app in the
presence of internet connectivity. By doing do, the
ConnectivityManager class is called in order to answers
the queries about the network connectivity state. Besides,
it also notifies the app when there are any changes in the
network connectivity. To do so, an instance of this class can
be obtain or get by just calling getSystemService (Context.
ACTIVITY_SERVICE). The core responsibilities of this
class are for monitoring the network connections (such
as Wi-Fi, GPRS, UMTS and so on), sending broadcast

Figure 8.  Successful login to the Main Menu page. (i)

Sumendra Yogarayan, Afizan Azman, Tan Geok Huei, Kirbana Jai Raman, Siti Fatimah Abdul Razak, Mohd Fikri Azli Abdullah,
Siti Zainab Ibrahim, Anang Hudaya Muhamad Amin and Kalaiarasi Sonai Muthu

Indian Journal of Science and Technology 7Vol 11 (20) | May 2018 | www.indjst.org

(i)

Figure 9.  (i). Distance updating process between the user
devices. (ii). The alert received by the user device (with
vibration).

intents when there are any changes in network connec-
tivity, attempting to “fail over” to another network when
connectivity to a network is lost, providing an API that
allows applications to query the coarse-grained or fine-
grained state of the available networks and also providing
an API that allows applications to request and select
networks for their data traffic7. Figure 9, shows the code
snippet for checking the internet connectivity while
opening the app.

Once the user (user device A) clicks the “Check
Devices” button, it will redirect user to the map interface
where it shows his or her current location with the blue
marker stated “My Position”. If there is any new user (user
device B) comes in within the area of 2 KM from the user
device A. The red marker indicates the user device B will
show on the map together with the amount of distance
(between user device A and user device B). The distance
between the two user devices will keep updating for every
60 seconds. User device A will immediately receive an
alert (with vibration) when user device B is nearby. Figure
10 (i), shows the map updating the distance between the
two user devices (dark red indicates updating process is

Figure 10.  Updating process of the location values for each user devices in Firebase Realtime Database.

Cloud Based Android App Data Transmission (Leverage Connectivity)

Indian Journal of Science and TechnologyVol 11 (20) | May 2018 | www.indjst.org8

running currently) whereas Figure 9 (ii) shows the alert
received by the user device (with userId and distance).

Every updated location values (longitude and latitude)
collect from the app will then pass to the Firebase realtime
database for storage. At the same time, the location values
stored in realtime database will be retrieved back by the
app from distance notification and measurement. Figure
10, shows the updating process of the location values for
each user devices in Firebase Realtime Database.	

The last known location of the user device, in other
words, user’s current location can be requested from the
app by using the Google Play services location APIs.
An instance of the Google Play services API client
(GoogleApiClient.Builder class) need to be created in
order to connect to the Location Services API. In order to
allows the app to request location or receive permission
updates, the device needs to enable the appropriate set-
tings (for example: GPS or Wi-Fi scanning).

Thus, LocationRequest data object is needed to spec-
ify the required level of accuracy or power consumption
and desired update interval, and the device automatically
makes the appropriate changes to the system settings.
(Note: setInterval() method sets the rate in milliseconds
at which the app prefers to receive location updates.

setFastestInterval() method sets the fastest rates in mil-
liseconds at which the app can handle location updates.
PRIORITY_HIGH_ACCURACY setting is used to
request the most precise location possible and the loca-
tion services are more likely to use GPS to determine the
location). Figure 11, shows the code snippet for connect-
ing to the Google Play services API client and setting up
a LocationRequest.

In Figure 11. Code snippet for connecting to
the Google Play services API client and setting up a
LocationRequest.

Use .getLatitude() and .getLongitude() method in
the onLocationChanged to update the location once the
changes of the location values is detected. If both method
had detected the changes, use updateGeoQuery (in
GeoFire) to update the location and store it to the Firebase
by using the DatabaseReference. Figure 12, shows the
code snippet of updating the changed location values.

To update the marker details (distance) for each user,
userLocation is defined to get the lastLocation by using
distanceTo() method. Once the distance detail is obtained,
it will convert into the required format (in this case, is 2
decimal points and the unit is in KM) and shown it on the

Figure 11.  Code snippet of connecting to the Google API.

Sumendra Yogarayan, Afizan Azman, Tan Geok Huei, Kirbana Jai Raman, Siti Fatimah Abdul Razak, Mohd Fikri Azli Abdullah,
Siti Zainab Ibrahim, Anang Hudaya Muhamad Amin and Kalaiarasi Sonai Muthu

Indian Journal of Science and Technology 9Vol 11 (20) | May 2018 | www.indjst.org

top of the marker. Figure 13, shows the code snippet for
updating the marker details for each user.

For generating the notification or an alert, the
Notification.Builder() class is used together with some
other methods like .setVibrate() (generate vibration),

.setContentText() (provides the contents in notification).
Later, the NotificationManager class is used to notify the
user of events that happen through the retrieval of get-
SystemService (Class). (Note: getSystemService is used
to return the handle to a system-level service by class).

Figure 12.  Code snippet of updating the changed location values.

Figure 13.  Code snippet for updating the marker details for each user.

Cloud Based Android App Data Transmission (Leverage Connectivity)

Indian Journal of Science and TechnologyVol 11 (20) | May 2018 | www.indjst.org10

Figure 14.  Code snippet for creating and displaying the notification.

Figure 14, shows the code snippet for creating and dis-
playing the notification.

List Devices Activity

Figure 15, illustrates the interface of List Devices in
the HiTracker app. Any nearby devices detected within 2

KM from the current shown on the map will be listed in
this page. The list will showing the other nearby devices
userId and the distance between the current user device.
Besides that, the sorting function is provided for the ease
of view purpose. The list will be sorted according to the
sorting method the app user had chosen.

5.  Discussion
There are some limitations can be found in the HiTracker
app. HiTracker app does not permit any user to register
twice with the same userId during registration. HiTracker
app does not provide any checking for identical userId
registered an account at the same time. Thus, it might
cause the confusion (displaying the app userId on map)
when running the “Check Devices” between the user
devices. Nevertheless, there are a few advantages where
HiTracker app can be applied in daily life. For example,
parents can use HiTracker app to identify their children
current location in case they want to find out the where-
abouts of their children. Another advantage would be, in
case any users lost their devices such as mobile phone,
they could use HiTracker app in another device to figure

Figure 15.  List Devices interface and the sorting methods.

Sumendra Yogarayan, Afizan Azman, Tan Geok Huei, Kirbana Jai Raman, Siti Fatimah Abdul Razak, Mohd Fikri Azli Abdullah,
Siti Zainab Ibrahim, Anang Hudaya Muhamad Amin and Kalaiarasi Sonai Muthu

Indian Journal of Science and Technology 11Vol 11 (20) | May 2018 | www.indjst.org

out the place they lost their phone. Hitracker app provides
the background service, which allows the app to run at the
background even though the current app is closed at the
moment. Last but not least, the Hitracker app also pro-
vides the live distance monitoring feature which enables
each app users to identify and aware of any devices or
emergency vehicles approaching to their direction.

6. � Results
In the nutshell, the project has been conducted with
the aim to identify distance between the nearby devices
or vehicles and the suitable cloud services to transmit
and retrieve the data, gather all the requirements for
HiTracker app, design and develop and assess HiTracker
app prototype that can leverage the connectivity (passing
location data) in terms of data transmission between the
HiTracker app and the backend cloud database and vice
versa.

7. Acknowledgement
This project is externally supported by Multimedia
University (MMU), Melaka, Malaysia and carried out

research and development under the Connected Car
Services team.

8.  References
1.	 Location. Available from: https://developer.android.com/

reference/android/location/Location.html. Date accessed:
12/12/2016.

2.	 World Geodetic System 1984. Available from: http://www.
unoosa.org/pdf/icg/2012/template/WGS_84.pdf. Date
accessed:	

3.	 The Info List - Haversine Formula. Available from:
ht tp : / / w w w. t h e i n fo l i s t . c om / php / Su m m ar y G e t .
php?FindGo=haversine_formula. Date accessed:
12/12/2016.

4.	 Finding distances based on Latitude and Longitude.
Available from: http://andrew.hedges.name/experiments/
haversine/. Date accessed: 12/12/2016.	

5.	 Receiving Location Updates. Available from: https://
developer.android.com/training/location/receive-location-
updates.html. Date accessed: 12/12/2016.	

6. Creating and Monitoring Geofences. Available from: https://
developer.android.com/training/location/geofencing.html.
Date accessed: 12/12/2016.	

7. ConnectivityManager. Available from: https://developer.
android.com/reference/android/net/ConnectivityManager.
html. Date accessed: 12/12/2016.	

