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Abstract
Objectives: To evaluate performance of machine learning methods for assessment of landslide susceptibility at Himalayan 
area, India. Methods/Statistical analysis: Machine learning methods namely Kernel Logistic Regression (KLR) and 
Classification and Regression Trees (CART) were applied and compared in this study. Landslide affecting parameters and 
930 historical landslides were used for generating datasets. Receiver Operating Characteristic (ROC) curve and Statistical 
analysis methods were used for validation and comparison. Findings: Result analysis shows that both the KLR and CART 
models perform well for landslide susceptibility assessment but the KLR model (AUC = 0.894) outperforms the CART 
model (AUC = 0.842). Thus, both these methods can be considered as promising machine learning techniques for landslide 
susceptibility assessment; however, the KLR is better than the CART. Application/Improvements: Results of this study 
would be useful for susceptibility assessment and landslide hazard management in landslide prone areas.

1.  Introduction
Landslides were about 4.89% of the geo-environmen-
tal hazards all over the world during the period 1990 
to1. Landslide studies are receiving global attention not 
only because of increasing awareness of socio-economic 
harmful impacts but also from increasing pressure of 
urbanization on the mountain regions2. Nowadays, due 
to increase unplanned urbanization, increased regional 
precipitation as a result of climate change, and continued 
deforestation, landslide problems are enhancing, which 
seems to be more challenging in the future3,4. 

Landslide susceptibility mapping is an important task 
for proper land use planning and environmental man-
agement1,5. Based on mapped landslide high or very high 
susceptible areas, governmental agencies could make 
proper decisions to combat and prevent landslide occur-
rences which can help in reduction of losses caused by 
landslides6,7. Machine learning methods are used mostly 
in recent decades for landslide susceptibility mapping. 
Machine learning algorithms namely Support Vector 
Machines (SVM)8–10, Artificial Neural Networks (ANN)11–

13, Logistic Regression (LR)8,14–16 are at present most popu-
lar for assessment of landslide susceptibility. Additionally, 
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the KLR and CART can be applied for landslide spatial 
prediction17,18.

The KLR is known as a robust method for classifica-
tion in noisy, complex problems, and resulting good per-
formance in many studies19–21. Even so, the application of 
KLR is still limited for spatial prediction of landslides22 
stated that the KLR has better performance than artificial 
neural networks, and logistic model tree, it is also indicat-
ing as an encouraging method for landslide susceptibility 
assessment that could be applied also for other landslide 
affected areas. 

The CART was applied efficiently in other fields such 
as medical science23,24, agriculture25. However, for land-
slide prediction, the CART has been rarely applied17 
applied the CART for mapping landslide susceptibil-
ity, and stated that the CART has the highest accuracy 
compared with Maximum Entropy, Multiple Adaptive 
Regression Splines, and LR. In another study18 stated that 
the CART is a promising method for landslide suscepti-
bility mapping. 

In this study, the main objective is to evaluate and 
compare the performance of the KLR and CART meth-
ods for assessment of landslide susceptibility at part of 
Himalayan area, India. Statistical analysis methods and 
the ROC curve were used for validation and comparison. 
ArcGIS 10.2 and Weka 3.7.12 were used for data analysis 
and modeling. 

2. Machine Learning Methods

2.1 Kernel Logistic Regression (KLR)
The KLR is a common probabilistic non-linear form 
of logistic regression classification method26, which 
estimates the class-posterior probabilities through a log-
linear combination of kernel functions using the penalized 
maximum likelihood method to learn their parameters27.

Let ( ) ( ) ( ){ }1 1 2 2, , , ,..., ,n nt z t z t z to be set as a training 
dataset whereas nt∈� are landslide affecting parameters 
and { }1, 1z∈ − are output variables (non-landslide and 
landslide). Based on the posterior probability for any x to 
be assigned class y , the KLR-based classification function 
is expressed as:
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During classification process, the regularized optimiza-
tion problem is carried out by below expression: 
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Kernel functions can be used in KLR including linear, 
polynomial, and radial basis function21. In this study, the 
Radial Basis Function (RBF) was selected to train the 
KLR as it is considered as a common kernel function19, 
the RBF kernel is expressed as below:

( ) { }2 2
i i 2

2

K t,t = exp t-t / ,  

 is the squared bandwidth

σ

σ

−
� (3)

2.2  Classification and Regression Tree 
(CART)
The CART is a statistic approach based on tree-building 
algorithms to classify or predict problems28. This method 
was first proposed by29. It is different compared to con-
ventional tree-building methods (J48 or C45) in selection 
of important variables from a set of predicted variables as 
it is based on the performance of outcomes for classifica-
tion30. One noticeable advantage of CART is that it can 
handle small datasets and be scalable to large problems31 
as it is a non-parametric procedure for predicting output 
variables with input variables.

The CART analysis can be carried out in four main 
steps: (a) tree building, (b) tree building stop, (c) tree 
pruning, and (d) optimal tree selection30.

Tree building: This step is stated with a root node, and 
then the CART checks all possible splitting variables to 
find the best possible variable for splitting root node into 
two child nodes. 

Tree building Stop: Node splitting is repeated for each 
child node until one of three following conditions occurs 
(i) each of the child nodes has only one observation and 
(ii) observations inside each child node have same distri-
bution of input variables30. 

Tree Pruning: The “cost-complexity” method is used to 
simple trees by the cutting of important nodes30. When 
complexity parameter is increased, simpler and simpler 
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trees are created due to more and more nodes are pruned 
away30. 

Optimal Tree Selection: The purpose of this step is to 
find the maximal tree that fits the learning dataset with 
highest accuracy compared to other trees. It is based 
on finding the correct complexity parameter which the 
information in training dataset is suitable but not over-
fitting30. 

3.  Study Area
The study area is located at tri junction of Rudrapryag, 
Tehri Garhwal and Pauri Garhwal districts, 
Uttarakhand, Himalaya, India between Longitudes: 
78o37’40’E to 79o00’50’’E and Latitudes: 30o23’15’’N 
to 30o03’58’’N, covering an area of about 1325.47 km2 

(Figure 1). Temperature ranges from sub-zero to 45oC. 
Relative humidity varies from 25% to 85%. Heavy rain-
fall usually happens during monsoon season (June to 
September), and annual average rainfall varies from 
200 mm to 1000 mm. 

Figure 1.  Location of the study area.

Topography of the area is hilly, elevation ranges from 450 
m to 2738 m with mean elevation of about 1373 m. Slopes 
of the hills are relatively steep, up to 70o. Geologically, 
the area is occupied by Jaunsar Group of Rocks mainly 
phyllite and quartzite. Tectonically, the area is highly dis-
turbed with folding and faulting32. Loamy soil occupies 
major part of the area. Sand, silt and gravel are present 
in the valleys. The area is covered by scrub land, non-for-
est (cultivated land and built up area), forest (dense and 
open), and deforested area.

4.  Spatial Database
Landslide inventory map was first built with 930 histori-
cal landslides identified from Google Earth images with 
the help of Google Earth pro 7.0. These landslides were 
validated by comparing with field reports (Figure 2). Out 
of these, 730 landslide locations are classified as transla-
tional type, 130 landslide locations are classified as debris 
flows, and 70 landslide locations are rotational type. 

Figure 2.  Landslide locations and elevation map.

In addition, a total of fifteen landslide affecting param-
eters (distance to roads, slope angle, road density, 
curvature, elevation, distance to lineaments, slope aspect, 
lineament density, profile curvature, river density, soil 
type, plan curvature, distance to rivers, land cover, and 
rainfall) were selected for landslide susceptibility map-
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ping in the present study. Maps of these parameters were 
extracted from Aster Global DEM, Landsat images, avail-
able thematic maps, meteorological maps using ArcGIS 
software. These maps were constructed with different 
classes of landslide influencing parameters (Figures 
3, 4 and 5)32. Frequency analysis of different classes of 
affecting parameters was done for the development of 
susceptibility model (Figure 3). 

5.  Results and Discussion

5.1  Model Construction and Landslide 
Susceptibility Mapping
Models namely KLR and CART were constructed for 
assessment of landslide susceptibility at the study area 
using training dataset which was generated from 651 
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landslides and 651 non-landslides in conjunction with 
landslide affecting parameters. Thereafter, landslide sus-
ceptibility maps were constructed using the results from 
training the KLR and CART models (Figures 6 and 7). 
Classes namely very high, moderate, low, and very low 

on the landslide susceptibility maps were classified using 
geometrical intervals method32,33. 

Landslide Density (LD) was also calculated to validate 
the reliability of landslide susceptibility maps (Table 1). It 
can be seen that landslide susceptibility maps have good 

Figure 3.  Frequency analysis of landslides on thematic maps: (a) slope angle, (b) curvature, (c) distance to rivers, (d) 
elevation, (e) slope aspect, (f) distance to lineaments, (g) plan curvature, (h) land cover, (i) profile curvature, (j) soil, (k) 
lineament density, (l) road density, (m) distance to roads, (n) river density, and (o) rainfall.
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Figure 4.  Slope angle map.

Figure 5.  Soil map.

Figure 6.  Landslide Susceptibility Map (LSM) using KLR 
method.

Figure 7.  Landslide Susceptibility Map (LSM) using 
CART method.

Table 1.  Landslide density on the susceptibility maps using the KLR and CART models

No Classes
KLR CART

% class pixels %Landslides pixels LD % class pixels %Landslides pixels LD
17 1 0.03 35.20 4.84 0.14

2 Low 25 2.58 0.1 2.71 0.43 0.16
3 moderate 24 6.99 0.29 39.13 11.51 0.29
4 High 17 9.46 0.55 3.23 1.08 0.33
5 Very high 16 80.43 4.97 19.74 82.15 4.16
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performance as the LD values are highest in high and very 
high class. 

5.2  Evaluation and Comparison of 
Machine Learning Landslide Models
Machine learning landslide models of KLR and CART 
were evaluated and compared using the testing data-
set which was generated from 270 landslides and 270 
non-landslides in conjunction with landslide affecting 
parameters. Statistical analyzing methods and ROC curve 
were applied to validate the models8. 

In the present study, statistical indexes namely 
Root Mean Squared Error (RMSE), kappa, sensitivity, 
accuracy, and specificity were used to validate the KLR 
and CART models. Detail description of these indexes 
is shown in34,8. Results are shown in Tables 2 and 3. 
Result analysis show that both the KLR and CART 
models have good performance in the present study as 
the values of sensitivity, specificity, accuracy are very 
high (81.31% - 83.80%) for both training and testing 
datasets, the value of kappa is relatively high (0.6364 - 
0.6676), and the value of RMSE is relatively low (0.3409 
- 0.3803).However, the KLR model outperforms the 
CART model for landslide spatial prediction as the 
values of sensitivity, specificity, accuracy, kappa of the 
KLR model is higher than those of the CART model, 
and the value of RMSE of the KLR model is lower than 
those of the CART model (Tables 2 and 3). 

Table 2.  Performance of the KLR and CART using 
training dataset
No Parameter KLR CART
1 RMSE 0.3409 0.3775
2 kappa 0.6676 0.6484
3 Sensitivity (%) 82.97 81.85
4 Specificity (%) 83.80 83.01
5 Accuracy (%) 83.38 82.42

Table 3.  Performance of the KLR and CART using 
testing dataset
No Parameter KLR CART
1 RMSE 0.3597 0.3803
2 kappa 0.6395 0.6364
3 Sensitivity (%) 82.68 81.79
4 Specificity (%) 81.31 81.85
5 Accuracy (%) 81.98 81.82

Moreover, performance of the KLR and CART models was 
also validated using the ROC curve analysis6. The AUC (area 
under the ROC Curve) is then utilized to validate the mod-
els35. The AUC value of 1 indicates perfection of the models. 
Higher AUC values show better models36. Results are shown 
in Figure 8 and Figure 9. Result analysis shows that both the 
KLR and CART models perform well for landslide spatial 
prediction as the values of AUC range from 0.842 to 0.919 for 
both training and testing datasets. However, the KLR model 
has better performance than the CART model as the AUC 
value of the KLR model is higher 7.4% for training dataset, 
and 5.2% for testing dataset than those of the CART model.

0 10 20 30 40 50 60 70 80 90 100

100

90

80

70

60

50

40

30

20

10

0

100-Specificity

Se
ns

itiv
ity

KLR (AUC = 0.919)
CART (AUC = 0.845)

Figure 8.  The ROC curves ofthe KLR and CART models 
using training dataset.
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Figure 9.  The ROC curves of the KLR and CART models 
using testing dataset.
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Result analysis of both evaluation methods shows 
that both the KLR and CART models have good per-
formance for landslide spatial prediction in the present 
study but the KLR model outperforms the CART model. 
Reason of these results is because the KLR method has 
many advantages which can improve its performance 
compared to the CART method such as (i) the KLR can 
offer a natural estimation of the probability37, (ii) It has 
simplicity as well as ability to explore the contribution of 
neighbors to the classification functions38, and (iii) the 
KLR has the advantages of both the logistic regression 
and kernel algorithms which are known very efficient 
for landslide prediction22.

For the CART model, it is inherently non-paramet-
ric technique which helps in handling highly skewed or 
multi-modal numerical data29. It is also able to search all 
possible variables to identify “splitting” variables which 
helps in dealing with missing variables31. Additionally, 
there is no assumption about distribution of predictor 
variable’s value to be set during training process which can 
eliminate processing time for determining whether vari-
ables are normally distributed or unclassified30. However, 
CART still has a disadvantage of independent assumption 
of parameters which is not really true for landslide sus-
ceptibility assessment9,39. 

6.  Conclusions
Machine learning methods are more effective com-
pared with conventional methods for assessment of 
landslide susceptibility. In the present study, well 
known KLR and CART methods, which were widely 
applied to solve classification problems in other fields, 
were applied for assessment of landslide susceptibility 
and predictive capability of these methods was evalu-
ated. The ROC curve and statistical analysis methods 
were selected to validate and compare performance of 
the models. 

The result analysis shows that both the KLR and 
CART models have good predictive capability for assess-
ment of landslide susceptibility but the KLR (AUC = 
0.894) outperforms the CART (AUC = 0.842). Thus, the 
KLR and CART indicate as promising methods assess-
ment of for landslide susceptibility but the KLR is better 
than the CART. Therefore, both these models can be used 
for landslide hazard assessment and management also in 
other landslide prone areas.
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