
Fast and Effective Root cause Analysis of Streaming
Data using In-Memory Processing Techniques

S. Naveen Kumar1 and S. Vijayaragavan2

1Department of Computer Science (Category-B),
Bharathiar University, Coimbatore – 641046, Tamil Nadu, India; naveen.seerangan@gmail.com

2Department of Computer Science and Engineering,
Paavai Engineering College, Namakkal – 637018, Tamil Nadu, India; shanvijay@outlook.com

Abstract
Objectives: Increased data generation mandates a highly scalable and powerful processing framework for root cause anal-
ysis. The objective is to identify such a framework by analyzing the existing processing architectures. Methods/Analysis:
In-order to identify the best processing architecture for root-cause analysis, the existing architectures are divided in terms
of sequential processing using python, CPU based parallelization, Hadoop MapReduce and Spark based parallel in-memory
processing. Pre-processing the input text was identified to be the most process intensive component of any text based
processing framework. Hence this module of the proposed root-cause analysis framework is implemented and is used for
analysis. Findings: Performance is measured in terms of scalability, processing time, applicability, usability considering
the streaming nature of data. Pre-processing module of the proposed framework is implemented in all of the considered
processing architectures. Throttle points for each of the techniques is documented. It was identified that the scalability lev-
els provided by sequential systems were not sufficient to handle the voluminous data. Considering the parallel approaches
namely, CPU parallel, Hadoop MapReduce and Spark, it was identified that the CPU parallel approach exhibits effective
performance until a certain level, after which the architecture fails. Hadoop and Spark based techniques exhibits high scal-
ability levels, due to the underlying HDFS structure. However, their pros and cons in terms of other metrics indicate that the
in-memory technique used by Sparkworks best both in terms of scalability and time complexity levels. Due to the dynamic
nature of data under consideration, Spark architecture was identified to be the best for a root-cause analysis architecture.
Novelty/ Improvement: A novel root-cause analysis framework incorporating pre-processing modules, aspect extraction
and fuzzy based sentiment identification of aspects, rather than the conventional polarity analysis is proposed.

*Author for correspondence

1.  Introduction
Increase in automation and reduction in communication
costs has led to a huge increase in the data being gener-
ated. The advantage of such data is that it is information
rich and hence can be mined to obtain very valuable

Indian Journal of Science and Technology, Vol 10(38), DOI: 10.17485/ijst/2017/v10i38/114003, October 2017

ISSN (Print) : 0974-6846
ISSN (Online) : 0974-5645

knowledge. Problem arises during the process of mining
such data. Increase in the amount of data generated was
not proportional to the technological development. Data
generation has shown huge growth, while technological
enhancement has shown its growth with respect to Moore’s
Law.1 This acts as a huge downside when considering the

Keywords: Aspect Extraction, In-Memory Processing, Parallelization, Root Cause Analysis, Sentiment Analysis

Fast and Effective Root cause Analysis of Streaming Data using In-Memory Processing Techniques

Indian Journal of Science and TechnologyVol 10 (38) | October 2017 | www.indjst.org2

process of analyzing data. This gap in the technological
development has been compensated for by introducing
the concept of parallelization. The introduction of paral-
lelism was also due to the inability to incorporate units
of higher processing capabilities into a single chip due
to power constraints.2,3 Hence multiple processing units
were integrated into a single chip and they were made to
operate in parallel by sharing a single workload. Though
this process has considerably reduced the response time,
speed of the memory devices has become the next throttle
point. Expected speedups are achieved if the data involved
fits into the main memory. When the data size exceeds
this limit, thrashing is performed by switching data from
hard disk to main memory and vice versa. Since the access
speed of secondary storage units are very low compared
to main memory, the processing times are automatically
increased.

This paper presents an in-memory solution for pro-
cessing huge streaming data such that it exhibits low data
access times hence exhibiting better speedup.

The architecture proposed in this paper comprises of
several independent components. These components and
their corresponding contributions available in literature
are discussed in this section.

Aspect/ Opinion mining, being a mature domain,
contains several contributions to its credit. A review
on mining components from unstructured reviews
is presented in the article.4 This review analyzes
computational techniques, models and algorithms
available for identifying aspects from unstructured
reviews. A method to enrich the knowledge bases
using context based approaches is presented.5 This
method focuses mainly on large semantic knowledge
bases. This method identifies ambiguous semantic
terms and enriches them by incorporating them with
domain specific information. Since several informa-
tion retrieval techniques rely on knowledge from
real time customer generated data, enriching the
knowledge bases is of huge priority. Surveys on the
impact of social media data on the sentiment analysis
schemes is proposed.6,7 The importance of sentiment
contextualization in the area of opinion mining is
emphasized.8 Existing context-aware approaches uses
language models 9, vector space modeling, linguistic
patterns, rule based approaches or apply sentence-
and discourse-based context shifters.10-13 POS based

contextual polarity analysis is presented in the arti-
cle.14 This method uses Principle Component Analysis
(PCA) to select components from the source domain.
Context knowledge based semantic lexicon enrich-
ment is another huge area of research.15 A subtopic
based mining using aspects obtained from query is
presented in the presented article.16 This method
mines aspects directly or indirectly from the query
and hence obtains subtopics related to the current
query. A sampling based sentiment mining approach
for e-commerce applications was presented.17 This
technique relies upon vector models to create and
effectively process Twitter streams. Emoticons are
also considered as intrinsic parts of sentiment analy-
sis due to the emergence of social media data. This as
a major part of the analytics framework is discussed.18
Another technique incorporating microblogs for sen-
timent analysis was proposed19 Several applications
of aspect mining include customer preference about
tourism products, customer opinion mining on tour-
ism, analyzing movie reviews, customer relationship
management, analyzing online reviews etc.20-24

2.  Proposed Architecture
Root Cause Analysis (RCA) from text is chosen as the
field of operation, as it requires faster processing of huge
amount of data. Root Cause Analysis is the process of
identifying the root cause of the problem, whose removal
would prevent an undesirable event from occurring.
RCA from text specific to a domain can reveal several
aspects of the domain and their polarity as perceived
by the users/ customers. Sentiment mining plays a vital
role in this process in segregating the text based on their
polarity.

A fast and effective RCA technique that can be used
on huge streaming data is presented in Figure 1. The ini-
tial data preprocessing includes tokenization, stemming
and normalization. This is followed by aspect extrac-
tion, which extracts single aspects, followed by multiple
aspects. Aspect sentiments are identified and polarity
based segregation divides the data into positive and
negative classes. Root causes are then identified using
Significant Term Aggregation (STA). The root causes
identified are then ranked and displayed to the user
based on the threshold.

S. Naveen Kumar and S. Vijayaragavan

Indian Journal of Science and Technology 3Vol 10 (38) | October 2017 | www.indjst.org

Figure 1.  Fast and Effective Root Cause Analysis of Huge
Streaming Data using In-Memory Processing Techniques.

2.1  Data Preprocessing
Data Preprocessing involves using several techniques to
identify the major components of the text.25 The data pre-
processing framework in our architecture involves three
major components; tokenization, stemming and normaliza-
tion. Tokenization deals with identifying the independent
components of the text. Stemming eliminates affixes (prefix
and suffix) from a word to obtain the seed word. Current
approach utilizes the Porter Stemmer 2, a popular version
of the algorithm proposed.26 Normalization converts the
text to canonical format so that uniformity can be achieved
in the corpus. The process involves a large data corpus, as
tokenizer is directly applied on the raw data. Hence a huge
amount of processing is required.

2.2  Aspect Extraction
Aspect extraction is the process of identifying objects
of importance in a text. A text may contain one or sev-
eral aspects of importance. These aspects determine the
polarity and the context of the text. Aspect extraction
is carried out by initially identifying the entities con-
tained in the text. An entity is a noun around which the
text is built upon. Aspects are sub-categories of entities.
Domain ontology is one of the major requirements for
aspect extraction. The ontology serves as the rule base in
identifying the aspects. Usually aspects are identified in
the form of 1-gram words. Since the aspects combined
with several other phrases has the probability of invers-
ing the polarity of the text, this approach uses both
1-gram and n-gram extraction of aspects. The n-gram
retrieval is not constant. Instead, the neighbors are ana-
lyzed and are selected heuristically based on several
criterion. An n-gram aspect is always preferred over a
(n-1)-gram aspect. An added advantage is that n-gram
based aspect extraction automatically eliminates several
commonly occurring structures in the text automati-
cally.

2.3 � Fuzzy Sentiment Identification and
Polarity based Segregation

The extracted aspects are passed to the sentiment identi-
fication phase. Sentiment identification is the process of
identifying the polarity of the aspect under analysis. Since
the current approach extracts several aspects from the
text, every aspect is passed through this phase to obtain
its corresponding sentiment. An aspect may not neces-
sarily be positive or negative. A single aspect may contain
a level of both positive and negative polarities associated
with it. Hence the proposed approach operates on fuzzy
semantic levels rather than defined polarities. In case of a
1-gram aspect, both the positive and the negative magni-
tudes of the aspect are considered, while in case of n-gram
aspects, a single polarity is chosen based on the surround-
ing text and its magnitude corresponding to the given
aspect is chosen. This phase is followed by the segregation
of aspects based on their polarity. In case of aspects with
both polarity levels, the aspect is duplicated and is copied
to both the sections. The end of this phase builds a polar-
ity based repository containing list of aspects exhibiting
features corresponding to that category. The unstructured

Fast and Effective Root cause Analysis of Streaming Data using In-Memory Processing Techniques

Indian Journal of Science and TechnologyVol 10 (38) | October 2017 | www.indjst.org4

data analyzed until this phase is then converted to struc-
tured data of the form

{ }entity,aspect,context,sentiment,opinion holder, time
(1)

Where entity is the object under consideration, con-
text is used to identify the context in which the review
is given (weightage could be provided based on con-
text), sentiment can be Positive, Negative or Neutral,
opinion holder is the one who expressed the opinion
(could be a combination of fields), better if the gender,
location, age, occupation etc. could be identified and
added to this component and time represents the time-
stamp when the opinion is expressed. This structured
data maps the customer with the aspects and their
corresponding sentiments and is called the customer
aspect mapping table.

2.4  Root Cause Identification using STA
Identification of root causes is performed by identifying
aspects with high impacts. This is performed by perform-
ing Significant Term Aggregation (STA). Identifying the
significant terms requires identification of their Term
Frequency (TF) and Inverted Document Frequency
(IDF). Term Frequency/ Inverted Document Frequency
(TF-IDF) is a statistic that determines the importance of
a word in a huge collection of documents. This is a com-
parative system, which identifies the importance of a
word in the domain based repository and the importance
of the word in the global repository. This helps identify
the significance of the word with respect to the current
operating domain.

	 () () (), , , ,tfidf t d D tf t d idf t D= × � (2)

Term Frequency (TF) and the Inverted Document
Frequency (IDF) are calculated using the below formu-
lae.27, 28

	

() ()
()
,

,
,

f t d
tf t d

count w d
=

�

(3)

where f(t,d) refers to the number of times the word t
is present in the document d and count(w,d) refers to the
number of words in the document d.

() { }
, log log Nidf t D

d D t d
=

∈ ∈∶ �
(4)

where, N is the total number of documents in the
corpus, and is the number of documents that contains
word t. If the term is not in the corpus, then it will
lead to a divide-by-zero error, hence it is also com-
mon to adjust the denominator toTerms with high
significance corresponds to terms with high TF-IDF
values. This process is carried out individually on
repositories containing positive and negative aspects.
The results are ranked in decreasing order accord-
ing to the TF-IDF scores. A threshold is maintained
and values falling below the threshold are pruned to
obtain the final set of root causes independently in
each polarity domain.

The identified root causes are mapped with the cus-
tomer aspect mapping table to obtain the customer/
customers concerned about the particular aspect and the
polarity of their review. The rank of concerned customer/
customers is analyzed and the final product based recom-
mendations are obtained.

2.5  Dataset Analysis
The datasets that are considered for the current study
includes Twitter API 29, Google API and the New York
Times API.29-31 Major properties of such API is that they
do not provide the datasets as a whole. Instead, the user
is required to query the database to obtain a set of results
according to the query. The number of results returned
via the APIs are constrained (even for registered users).
Hence the users are either required to wait for the
required amount of data and then begin the processing,
or the users need to perform their processing on-the-go
with the data block available in hand. One major draw-
back is that this data cannot be used as-such. It is noisy
and contains several components other than the actual
data.

A snapshot of the data returned from New York Times
API is presented in Figure 2. The data is in JSON format
representing several components including the actual
data required by the application. Elimination of unde-
sired components become mandatory. This process is
then followed by in-memory processing of data to obtain
the root causes.

S. Naveen Kumar and S. Vijayaragavan

Indian Journal of Science and Technology 5Vol 10 (38) | October 2017 | www.indjst.org

Figure 2.  A Sample Snapshot of API Data.

3.  Solutions under Consideration
The following solutions were considered for performing
root cause analysis on huge streaming data.

3.1 � Map Reduce Paradigm (Sequential)
Processing Techniques

Map Reduce is a parallel problem solving method that
divides the process into two basic phases; Mapper
phase and the Reducer phase. The mapper phase usu-
ally performs the processing and the reducer phase
aggregates the data presented by the mapper phase to
provide the final results. Though this is a parallel prob-
lem solving architecture, it can operate effectively even
in a sequential working scenario. Scalability of this
system is constrained by the main memory, hence the
scaling level of this architecture is the level of the main
memory involved in the processing system. Though
the property of utilizing the main memory storage is a
constraint in terms of scaling, it provides an advantage
to this approach by speeding up the process to provide
faster results. Hence the applicability of this approach
is constrained in the areas involving less data and more
processing. Our approach implements the Map Reduce
paradigm implemented in sequential context in Python
and efficiency obtained in this approach is discussed in
section 4.

3.2  Parallel Processing Techniques
Parallel processing is one of the areas on the raise due
to the increase in the parallel processing architectures
and improved parallel processing capabilities. This sec-
tion describes two of the most basic parallel processing
architectures available and their advantages over other
architectures.

3.2.1  CPU based Parallelization
CPUs form the basic component of any computing sys-
tem. Due to the increase in the processing capabilities
of individual CPUs and the introduction of multi-core
CPUs has paved way for effective parallelization using
them. Major advantage of this approach is that it is
closely coupled with the operating system, hence pro-
vides high efficiencies. The major downside of this
approach is its inability to process huge amounts of data.
This also constraints the scalability of the architecture to
a large extent.

3.2.2  Hadoop
In order to effectively utilize huge data and bring about
effective parallel processing, HDFS was introduced.
Hadoop architecture works on this file system, thereby
utilizing a large memory and performing parallel pro-
cessing in it. Data stored in HDFS is treated as a group of
bytes, rather than its structured form. This makes HDFS
suitable for Big Data, where Volume, Velocity and Variety
of data play a major role. Hence this architecture is highly
scalable and can accommodate data of any size. The trad-
eoff comes from the fact that the accommodation of large
data requires appropriate indexing techniques, so any
processing requires a constant data retrieval time. Hence
this makes the approach suitable only for very large
amounts of data, while operations on small data indicates
unnecessary data retrieval latencies.

3.2.3  Spark
Efficiency provided by Hadoop architectures are not suffi-
cient in recent working environments due to the huge time
requirements. HDFS operates on the basis of secondary
memory. Even though operations are performed in par-
allel, they are not suitable for real time faster processing
environments. Spark utilizes in-memory based operation,
thereby utilizing the main memory of the systems to the
maximum extent in-order to reduce the processing time.

Fast and Effective Root cause Analysis of Streaming Data using In-Memory Processing Techniques

Indian Journal of Science and TechnologyVol 10 (38) | October 2017 | www.indjst.org6

4.  Results and Discussion
The preprocessing phase was implemented and experi-
ments were conducted to observe the efficiencies exhibited
by the techniques discussed in Section 4. Implementations
were carried using C#.NET for analyzing CPU based par-
allelization, Python based MapReduce implementation
for analyzing the Map Reduce Paradigm implemented in
sequential context using Python, Python based Hadoop
implementation for Hadoop and PySpark for analyzing
its efficiency on in-memory processing. Experiments
were conducted on the book dataset obtained from the
presented article.32 Figures 3-9 are constructed by apply-
ing a single dataset on all the approaches and identifying
their processing capabilities.

Figure 3.  MapReduce Vs. CPU Parallel.

Figure 4.  CPU Parallel Vs. Hadoop MR.

A comparison between C# Parallel implementation
and all the other methods under discussion are presented
in Figure 3-5. It could be observed that irrespective of the
technique, CPU parallel implementations exhibit faster
processing rates. This occurs due to the flexibility avail-
able for the CPU parallel implementations to directly
utilize the main memory.

Figure 5.  CPU Parallel Vs. Spark.

Figure 6.  MapReduce Vs. Hadoop MapReduce.

Figure 7.  MapReduce Vs. Spark.

Figure 8.  Spark Vs. Hadoop MapReduce.

S. Naveen Kumar and S. Vijayaragavan

Indian Journal of Science and Technology 7Vol 10 (38) | October 2017 | www.indjst.org

Figure 9.  Time Comparison for Preprocessing.

A comparison between the Map Reduce paradigm in
sequential context and Spark based implementation is
presented in Figure 7. It can be observed that the Spark
based implementation exhibits higher time requirements
when compared with the implementation of Map Reduce
paradigm in sequential context.

A comparison between Hadoop Map Reduce and
Spark based implementation of the pre-processing phase
is shown in Figure 8. It could be observed that the tokeni-
zation and the stemming phases show similar processing
times, while the normalization phase shows that Hadoop
based implementations exhibit faster processing when
compared to Spark based implementations. The quanti-
fied results for time comparison is presented in Table 1.

Table 1.  Time Comparison on Various Platforms

Tokenization Stemming Normalization
MapReduce 45 690 890596
CPU Parallel 470 14 122016
Hadoop
MapReduce 12000 13000 787000
Spark 12000 12000 1824000

The aggregated time taken for the preprocessing is
shown in Figure 9. It could be observed that the time
taken for the entire preprocessing phase is the least in
CPU based parallelization techniques and increases in the
order of Hadoop based Map-Reduce, Map Reduce para-
digm in sequential context and finally Spark.

In order to identify the threshold points to identify the
performance increase in in-memory techniques, the data
set size was varied gradually until the throttle point of 400
books, where the CPU based implementations exhibited
very huge time requirements. This observation correlated
with the fact that CPU based parallel implementation

depend largely on the main memory. On exceeding this
level, CPU based implementations fail to operate.

Time comparison between parallel variants of the
preprocessing algorithm is presented in Figure 10. It
could be observed that CPU based parallel implementa-
tions exhibited linear increase with respect to the data
size varying from 1 to 100. At the throttle point of 400,
the algorithm achieved its maximum limit and hence
exhibited and exponential time increase. The Hadoop
Map Reduce algorithm also showed similar increase, but
it remained scalable due to the huge memory support
provided by HDFS. The Spark based algorithm, though
exhibited high time requirements, and was more robust
to increase in data, in terms of processing time. Even with
huge increase in the size of data, the time requirements
did not raise much, hence providing a stable platform
for processing. The aggregated time for preprocessing is
shown in Table 2.

Figure 10.  Time Comparison of Parallel Algorithms (Data
Size).

Table 2.  Aggregated Time Taken for Pre-Processing
Technique Time (ms)
Python 1057975
MapReduce 891331
CPU Parallel 122500
Hadoop MapReduce 812000
Spark 1848000

Time variance exhibited by the parallel variants of
the pre-processing algorithm is presented in Figure 11.
It could be observed that Hadoop based implementation
exhibits very high variance, followed by CPU based paral-
lel implementation. Though it has moderate variance, the
throttle point for the CPU based implementation remains
low due to memory constraints. The Spark based imple-
mentation exhibits very low variance. Even this method

Fast and Effective Root cause Analysis of Streaming Data using In-Memory Processing Techniques

Indian Journal of Science and TechnologyVol 10 (38) | October 2017 | www.indjst.org8

exhibited high processing times with smaller data, it was
observed that the increase in time is very low with respect
to the increase in the data size. Since the data for Spark
can be obtained from HDFS, it is also more robust to
increase in data. This scalability factor makes in-memory
based processing techniques best candidates for process-
ing huge streaming data.

Figure 11.  Variance Ratios of Parallel Algorithms.

5.  Conclusion
This paper presents analysis of techniques that can be used
on huge streaming data to obtain a fast and scalable sys-
tem. Root cause analysis using aspect mining techniques
on huge data is considered as the domain of operation.
CPU based parallelization, Map Reduce Paradigm in
sequential context, Hadoop and in-memory process-
ing using Spark were used for analysis. It was observed
from the results that Map Reduce paradigm in sequen-
tial context and CPU based techniques are constrained
by data size, while Hadoop based techniques exhibit lin-
ear increase in processing times. Spark based techniques
exhibiter higher processing times when compared with
other techniques in the initial stages. As the data size is
increased, it was observed that the variance exhibited by
in-memory based Spark is much lower when compared
to the other techniques and after a throttle point, it was
observed that Spark based technique exhibited more
efficient processing speeds when compared to other
techniques.

6.  References
1.	 Moore GE. Cramming more components onto integrated

circuits. IEEE solid-state circuits society newsletter. 2006;
20(3):33–5.

2.	 McMenamin A. The end of Dennard scaling; 2013 April 15.

3.	 Bohr M. A 30 year retrospective on Dennard’s MOSFET
scaling paper. IEEE Solid-State Circuits Society Newsletter.
2007; 12(1):11-3. Crossref

4.	 Khan K, Baharudin B, Khan A, Ullah A. Mining opinion
components from unstructured reviews: A review. Journal
of King Saud University-Computer and Information
Sciences. 2013; 26(3):258–75. Crossref

5.	 Weichselbraun A, Gindl S, Scharl A. Enriching seman-
tic knowledge bases for opinion mining in big data
applications.Knowledge-based systems. 2014; 69:78–85.
Crossref PMid:25431524 PMCid:PMC4235782

6.	 Ghaleb OAM, Vijendran AS. Survey and Analysis of Recent
Sentiment Analysis Schemes Relating to Social Media.
Indian Journal of Science and Technology. 2016 Nov 10;
9(41):1–16.

7.	 Ragini JR, Anand PR. Sentiment Analysis: A Comprehensive
Overview and the State of Art Research Challenges. Indian
Journal of Science and Technology. 2016 Dec 29; 8(1):1–7.

8.	 Gangemi A, Presutti V, Recupero DR. Frame-based detec-
tion of opinion holders and topics: a model and a tool.
Computational Intelligence Magazine. IEEE. 2014; 9(1):20–
30. Crossref

9.	 Lau RYK, Lai CL, Li Y. Leveraging the web context for
context-sensitive opinion mining. In Computer Science
and Information Technology. 2nd IEEE International
Conference; 2009. p. 467–71. Crossref

10.	 Das A, Gambäck B. Sentimantics: conceptual spaces for
lexical sentiment polarity representation with contextual-
ity. In Proceedings of the 3rd Workshop in Computational
Approaches to Subjectivity and Sentiment Analysis.
Association for Computational Linguistics; 2012 July. p. 38–46.
PMid:22690049 PMCid:PMC3361776

11.	 Wu Y, Wen M. Disambiguating dynamic sentiment ambig-
uous adjectives. In Proceedings of the 23rd International
Conference on Computational Linguistics. Association
for Computational Linguistics; 2010 Aug. p. 1191–9.
PMCid:PMC2872725

12.	 Ding X, Liu B, Yu PS. A holistic lexicon-based approach to opin-
ion mining. In Proceedings of the International Conference
on Web Search and Data Mining. ACM; 2008 Feb. p. 231–40.
Crossref

13.	 Wilson T, Wiebe J, Hoffmann P. Recognizing contextual
polarity: An exploration of features for phrase-level sentiment
analysis. Computational linguistics. 2009; 35(3):399–433.
Crossref

14.	 Xia R,Zong C, Hu X, Cambria E. Feature ensemble plus
sample selection: domain adaptation for sentiment clas-
sification. Intelligent Systems. IEEE. 2013; 28(3):10–8.
Crossref

15.	 Lu Y, Castellanos M, Dayal U, Zhai C. Automatic
construction of a context-aware sentiment lexicon: an opti-
mization approach. In Proceedings of the 20th international

https://doi.org/10.1109/N-SSC.2007.4785534
https://doi.org/10.1016/j.jksuci.2014.03.009
https://doi.org/10.1016/j.knosys.2014.04.039
https://doi.org/10.1109/MCI.2013.2291688
https://doi.org/10.1109/ICCSIT.2009.5234821
https://doi.org/10.1145/1341531.1341561
https://doi.org/10.1162/coli.08-012-R1-06-90
https://doi.org/10.1109/MIS.2013.27

S. Naveen Kumar and S. Vijayaragavan

Indian Journal of Science and Technology 9Vol 10 (38) | October 2017 | www.indjst.org

conference on World wide web. ACM; 2011 Mar. p. 347–56.
Crossref

16.	 Wang CJ, Lin YW, Tsai MF, Chen HH. Mining subtop-
ics from different aspects for diversifying search results.
Information retrieval. 2013; 16(4):452-483. Crossref

17.	 Vinodhini G, Chandrasekaran RM. A sampling based
sentiment mining approach for e-commerce applications.
Information Processing & Management. 2017; 53(1):223–
36. Crossref

18.	 Nirmal VJ, Amalarethinam DG. Emoticon based Sentiment
Analysis using Parallel Analytics on Hadoop. Indian
Journal of Science and Technology. 2016 Sep 17; 9(33):1–7.
Crossref

19.	 Wu F, Song Y, Huang Y. Microblog sentiment classification
with heterogeneous sentiment knowledge. Information
Sciences. 2016 Dec 10; 373:149–64. Crossref

20.	 Marrese-Taylor E, Velásquez JD, Bravo-Marquez F,
Matsuo Y. Identifying customer preferences about tourism
products using an aspect-based opinion mining approach.
Procedia Computer Science. 2013 Jan 1; 22:182–91.
Crossref

21.	 Bucur C. Using Opinion Mining Techniques in Tourism.
Procedia Economics and Finance. 2015; 23:1666–73.
Crossref

22.	 Basari AS, Hussin B, Ananta IG, Zeniarja J. Opinion
mining of movie review using hybrid method of support

vector machine and particle swarm optimization. Procedia
Engineering. 2013 Jan 1; 53:453–62. Crossref

23.	 TuzhilinA. Customer relationship management and Web
mining: the next frontier. Data Mining and Knowledge
Discovery. 2012; 24(3):584–612. Crossref

24.	 Li Y, Qin Z, Xu W, Guo J. A holistic model of mining
product aspects and associated sentiments from online
reviews. Multimedia Tools and Applications. 2015 Dec 1;
74(23):10177–94. Crossref

25.	 George A, Nirmal VJ. Parallelization techniques in Pre-
Processing Phase for Sentiment Analysis in Big Data: A
Comparative Analysis. International Journal of Applied
Engineering Research. 2015; 10(16):37270–7.

26.	 Porter MF. An algorithm for suffix stripping. Program.1980;
14(3):130–7. Crossref

27.	 Baeza-Yates R, Ribeiro-Neto B. Modern information
retrieval. New York: ACM press; 1999 May 15.

28.	 Salton G. Automatic text processing: The transformation
analysis and retrieval of Reading: Addison-Wesley; 1989.

29.	 Twitter developer documentation. Available from: Crossref
30.	 Google APIs Explorer. Available from: Crossref Date

Accessed: 5/1/2017
31.	 The NewYark times developer network. Available from:

Crossref Date Accessed: 5/1/2017
32.	 Free ebooks-Project Gutenberg. Available from: Crossref

Date Accessed: 5/1/2017

https://doi.org/10.1145/1963405.1963456%C2%A0
https://doi.org/10.1007/s10791-012-9215-y
https://doi.org/10.1016/j.ipm.2016.08.003
https://doi.org/10.17485/ijst/2016/v9i33/87336
https://doi.org/10.1016/j.ins.2016.09.002
https://doi.org/10.1016/j.procs.2013.09.094
https://doi.org/10.1016/S2212-5671%2815%2900471-2
https://doi.org/10.1016/j.proeng.2013.02.059
https://doi.org/10.1007/s10618-012-0256-z
https://doi.org/10.1007/s11042-014-2158-0
https://doi.org/10.1108/eb046814
https://dev.twitter.com/overview/documentation.%20Date%20Accessed:%207/6/2017
https://developers.google.com/apis-explorer/%23p/.
http://developer.nytimes.com/docs/read/article_search_api_v2.
https://www.gutenberg.org.

