
A Theoretical Framework for Password Security
against Offline Guessability Attacks

Shah Zaman Nizamani1*, Syed Raheel Hassan2 and Rafia Naz1

1Department of Information Technology, Quaid-e-Awam University of Engineering, Science and Technology,
Sakrand Road, Nawabshah – 67450, Pakistan; shahzaman@quest.edu.pk, rafia@quest.edu.pk

2Department of Computer Systems Engineering, Quaid-e-Awam University of Engineering, Science and
Technology, Sakrand Road, Nawabshah – 67450, Pakistan; raheel.hassan@quest.edu.pk

Abstract
Objectives: Security of textual passwords is increased against offline guessability attacks by using different encryption
methods. However, even after encryption textual passwords may be guessed through brute-force or dictionary attacks.
Method: In this paper, a theoretical framework is developed which provides guidelines for improving password secu-
rity against offline guessability attacks such as brute force and dictionary attacks. In the proposed framework different
password security layers are defined which convert a password into a form which is very difficult to crack through offline
guessability attacks. The framework layers are implemented at application and database level. Findings: In the proposed
framework a short and easy to remember password string is converted into a long and random string which does not
provide any hint of original password. However, it is important that the methodology or logic used for implementing the
framework layers should be hidden from the attackers because the layers’ methodology may provide a clue for password
cracking. Layers of the proposed framework can be implemented with different logics, which are helpful in hiding the
implementation details of the layers. Application/Improvements: Proposed framework is not only helpful for improv-
ing security of traditional textual password scheme but it can also improve the security for graphical password schemes
against offline guessability attacks.

*Author for correspondence

1. Introduction
Textual password scheme is most widely used technique
for user authentication, but this technique has different
security and memorability weaknesses. Researchers have
proposed many user authentication schemes to over-
come the deficiencies of textual password scheme. Some
authentication schemes are just the improvement in the
user interface of textual password scheme such as S3PAS1,
while other schemes belong to a new category of pass-
words called graphical password schemes for example

Indian Journal of Science and Technology, Vol 10(33), DOI: 10.17485/ijst/2017/v10i33/115252, September 2017

ISSN (Print) : 0974-6846
ISSN (Online) : 0974-5645

cognitive authentication2. Both type of schemes generally
provides better security than traditional textual password
scheme but they are weaker in usability i.e. users require
large amount of time for authentication.

Password security attacks may be offline or online, in
offline attacks passwords are cracked after hacking the
database of an application. While in online attacks the
passwords are captured from login screen or through
network interception. Brute force and dictionary attacks
belong to offline attacks, while shoulder surfing and spy-
ware attacks belong to online attacks.

Keywords: Authentication, Guessability Attacks, Privacy, Password Security, Textual Passwords

A Theoretical Framework for Password Security against Offline Guessability Attacks

Indian Journal of Science and TechnologyVol 10 (33) | September 2017 | www.indjst.org2

In order to improve the security against online attacks,
all the password elements are need to be indirectly inserted
into a login screen. Many authentication schemes allow
indirect insertion of passwords, for example in S3PAS
scheme1 alphanumeric characters are randomly shown
in the image format. For authentication, a user has to
click on the logical triangles formed by the password ele-
ments or type characters which belong to each password
triangle. Indirect insertion of password helps in improv-
ing the security of passwords but it weakens the usability
i.e. large effort and time requires for password insertion.
Password encryption is used for improving the security
of passwords against brute force and dictionary attacks.

In brute force attack a user’s password is cracked by
comparing all the passwords available inside a password
dictionary. A password is cracked when both stored user
password string and applied string matches. In brute force
attack, large amount of processing and time requires for
password cracking.

In dictionary attack a list of passwords is created
which has high chances of being set as passwords. The
password list may contain previously hacked passwords of
different applications or dictionary words. Passwords are
cracked through dictionary attack by comparing stored
user password string with the dictionary of passwords. In
dictionary attack relatively short amount of processing
and time is required than brute force attack.

Password cracking through ordinary dictionary attack
and brute-force attack is time consuming. An efficient form
of dictionary attack is called Lookup Table attacks. In this
form of dictionary attack, a list of passwords is saved along
with pre-computed hash values. In Lookup Table attack
hash values of a password dictionary is compared with a
user’s passwords. Once hash value of Lookup Table matches
with the hashed password string of a user then original
password is fetched from the Lookup Table. Lookup Table
attacks require less processing and time because runtime
generation of hash strings is not required.

Another efficient method of password cracking is called
Reverse Lookup Tables attack. In this method, a previously
hacked database is used for cracking the passwords of a new
database. Before applying this technique hash values and
their corresponding password strings of previously hacked
database are saved into Reverse Lookup Tables. The com-
puted hash values of Reverse Lookup Tables then compared
with the hash values of newly hacked database. Users gen-
erally set same password on multiple accounts3 therefore
passwords can be cracked through Reverse Lookup Tables.

Rainbow Table attack is another efficient password
cracking method of dictionary attacks. In this method,
pre-computed hash values are stored similar to Lookup
Tables but passwords and their hash values are saved based
upon the length of passwords. Majority of users set pass-
words of size up to 10 alphanumeric characters4, therefore
in Rainbow Table those password strings are saved whose
length may be from 6 to 10 or 12 alphanumeric characters.
This intelligent technique of password dictionary genera-
tion helps in cracking majority of passwords.

In authentication, cryptographic hash functions5 such
as SHA256 and MD5 are used to protect passwords. Hash
functions convert a string into a different set of alphanu-
meric characters6. Hashing may be one-way or two-way,
in one-way hashing original data is changed into a new
form which cannot be reversed. In two-way hashing orig-
inal form of data can be generated from hashed string.
One of the best techniques for password protection is
the use of password hashing through salt scheme7. In salt
based hashing some alphanumeric characters are added
into the original password, so that same password strings
could have different encrypted values.

Although one-way hashing greatly improves password
security but even though the hashed passwords may be
guessed by brute-force or dictionary attacks. Therefore, in
the proposed framework some additional measures are sug-
gested along with hashing to improve the password security.
In the framework, different layers of password conversion
are proposed which works at application and database level.
The proposed measures of the framework help in strengthen
the security of passwords against offline guessability attacks.

2. Background
User authentication techniques can be divided into three
categories based upon the procedure through which cre-
dentials are taken from the users8. These three categories
are discussed here.
a. Knowledge based authentication: In this form of authenti-

cation a user provides some information (username and
password) for identification. A user given information
is compared against the stored information or creden-
tials for authentication. Knowledge based authentication
technique is most commonly used technique because
it is very easy to use and does not require any special
hardware for execution. Textual passwords and graphi-
cal passwords are the two categories of knowledge based
authentication technique.

Shah Zaman Nizamani, Syed Raheel Hassan and Rafia Naz

Indian Journal of Science and Technology 3Vol 10 (33) | September 2017 | www.indjst.org

b. Token based authentication: In this form of authenti-
cation a user provides a specially designed hardware
for identification. In the hardware, authentication
information is stored inside a chip. This technique
is expensive to execute because a special hardware is
required for authentication process. Another concern
with this technique is that users have to carry the iden-
tification hardware; this can be problematic because
the hardware may be theft or lost. In order to further
improve the security of token based authentication
systems, a password is also need to be provided along
with the authentication hardware.

c. Biometric authentication: In this technique of user
authentication a system identifies through the physi-
cal or behavioural characteristics of a user, for example
finger print of a user. Although this form of authenti-
cation is secure but it is very complex to develop and
require special hardware. Privacy is also an issue with
biometric based authentication techniques9.

2.1 Issues in Textual Passwords
In a study10 researchers found that 87% passwords were
consist of only lowercase letters, digits or dictionary
words. Based upon the research different password set-
ting restrictions are imposed, in order to create strong
passwords.

For better security passwords need to be created with
higher entropy and they are also required to be frequently
changed.11 Although both the strategies improve password
security but it will affect the memorability of passwords.

An organization named as CSID4 analysed password
habits of American users in 2012. This research shows
that password security is the primary concern of users
and memorability comes at second number. However,
researchers found that 61% people reuse same password
in different accounts and mostly users set passwords of
size between 8 to 10 characters.

Password creation policies are enforced for strong pass-
words, for example minimum password length should be
eight alphanumeric characters. However, users create weak
passwords even after ensuring password creation policies12.

3. Proposed Framework
A password moves from human mind to application
database through different components. In a typical client
server architecture password moves through following
four components.

1. User Machine/ Client Application
2. Transmission Line
3. Application
4. Database
Security of a user authentication scheme depends upon
the security of all the above components. In the pro-
posed framework security measures are suggested at
the application and database levels. Password security
at first component (user machine / client application) is
improved by indirectly inserting the passwords. Password
security at second component (transmission line) is
improved by using a secure communication protocol
such as SSL or TLS13,14.

Generally passwords are stored into a database
through the following steps.

1. Get a password
2. Apply encryption function
3. Save hash value of the password in the database

Password storing through the above mechanism
contains security weaknesses against offline attacks. In
the proposed framework five layers are identified which
works after getting the password of a user up to database
storage. A password is stored after making the changes of
the five layers. Proposed framework is shown in Figure 1.

Figure 1. Proposed framework.

A Theoretical Framework for Password Security against Offline Guessability Attacks

Indian Journal of Science and TechnologyVol 10 (33) | September 2017 | www.indjst.org4

3.1 Change Password Characters
Generally, an encryption function is applied to the exact
user password and then encrypted value is stored into a
database. Passwords of this approach may be cracked by
trying all the combinations of strings until matching hash
value is reached. In order to overcome this security weak-
ness, alphanumeric characters of a user’s password need
to be exchanged with different alphanumeric characters
as shown in Figure 2.

Figure 2. Alphabet mapping.

Figure 2 shows that character “A” will be converted into
“T”, “B” will be converted into “4” and so on. The infor-
mation about the conversion of alphanumeric characters
should be saved, in order to reuse same conversion method
at the time of password matching. Each implementation
needs to have different conversations of the alphanumeric
characters so that an attacker would not utilize the infor-
mation of previously hacked application server.

3.2 Increase Effective Password Space
In textual password scheme, theoretical password can
be shown through the equation 1 based upon Standard
American keyboard.

94

1
94

i

i=
∑

 (1)

Theoretical password space contains all the passwords
that can be generated from 94 alphanumeric characters
in textual password scheme excluding space key. Effective
password space is the number of passwords created by
the users inside an authentication scheme. Due to mem-
orability issues, users mostly set passwords of size 10
alphanumeric characters or in rare case the password size

could reach up to 20 alphanumeric characters. Therefore,
effective password space is the number of passwords cre-
ated from 20 alphanumeric characters. Most applications
restrict users to follow password policies such as pass-
words size should be at-least 8 alphanumeric characters.
In such conditions, effective password space of textual
password scheme is shown in equation 2.

94

8
94

i

i=
∑ (2)

Due to small size of effective password space, effort
for brute-force and dictionary attacks is largely reduced.
Therefore, effective password space needs to be increased so
that dictionary and brute force attacks become hard to apply.

Effective password space can be increased by convert-
ing each alphanumeric character of a password into a list
of characters. Table 1 shows the sample conversion of
alphabets.

Table 1. Alphabet to string conversion
SNo. Alphabet String

1 A Apple

2 B Banana

3 C Cat

… … ...

Table 1 shows that character “A” is converted into
“Apple” and character “B” is converted into “Banana” and
so on. In this case the password “AB” becomes “Apple
Banana”. Hence in case of brute force attack all the strings
whose size consist of 11 characters need to be compared
rather than strings of size to 2 characters. For security pur-
pose conversion of characters to strings need to be different
among different implementations of the proposed layer.

3.3 Assign Separate Salt String
Hashing passwords through salt based encryption tech-
nique makes the passwords resilient to Lookup Table
and Reverse Lookup Table attacks but salt based hashes
can be cracked by dictionary or brute-force attacks.
Generally single salt string is used for encrypting all the
passwords of an application. Problem with this approach
is that once an attacker recognizes the salt string, then
other passwords can be easily cracking by using the
identified salt string.

Shah Zaman Nizamani, Syed Raheel Hassan and Rafia Naz

Indian Journal of Science and Technology 5Vol 10 (33) | September 2017 | www.indjst.org

Better strategy for salt based encryption is that, each
password is encrypted with different salt string. In this
approach if an attacker recognizes the salt string of a
password, then the salt string cannot be used with other
passwords. The attacker has to find out the salt strings of
every password.

Separate salt string can be created from many ways
such as random or run time salt string generation. In ran-
dom or static salt string generation, the strings are created
once and then they are saved into a database. While run
time salt strings can be created by concatenating values
of a user’s profile such as account creation time, age and
gender or any other combination of user profile values. In
random salt string generation, the list of salt strings need
to be secure. While in run time salt string generation, the
process of creating salt strings need to secured.

3.4 Use Secure Encryption Function
Before storing passwords into a database, the passwords
need to be encrypted with a secure encryption function.
Many encryption functions are available but developers
normally do not make enough research for selecting an
encryption function. For example, MD515 encryption
function is still being used, whereas much better bcrypt16
encryption function is available.

Salt based hashing is a better option for password
encryption17. Generally, passwords are encrypted with a
single salt string. The process of salt based hashing can
be further improved by using dynamic salt string i.e. each
password is encrypted with different salt string.

3.5 Apply Differential Masking
Generally, passwords are stored in a single database field;
due to this approach attackers easily find the hashed pass-
word strings after hacking the database of an application.
After hacking the database attackers only make efforts in
cracking the hash values present in the password field.

In deferential masking hashed password strings are
not stored in single field of a table but multiple fields are
used for storing hashed password strings. The password
strings may be divided into different parts and each part
can be stored into a different database field or some use-
less hash values can be stored in different database fields.
Due to differential masking the attackers need to make
extra effort for finding actual hashed password string.
Differential masking can be implemented with different

techniques; one of the techniques is shown in Table 2 for
useless password strings.

Table 2. Information stored differential masking
User Id Password1 Password2 Password3 Password4

1 fs3sdf!@sdff lkjs*&dsdf a44asdff%dd dfsdg@@sd23

2 soidfso322lkj fs98sdfsdf wefsdf23s asdf232bb!

… …. …. … …

In Table 2 four password hashes are stored for each user
and actual hash string is retrieved by the following steps
based upon the flowchart as shown in Figure 3.

1. If remainder becomes 0 after dividing four with user
id, then actual hashed password string is present in the
column “password4”.

2. If remainder becomes 1 after dividing four with user
id, then actual hashed password string is present in the
column “password3”.

3. If remainder becomes 2 after dividing four with user
id, then actual hashed password string is present in the
column “password2”.

4. If above steps fail, then actual hashed password string
is present in the column “password1”.

A password becomes highly secure after applying the
changes of each framework layer and the procedure of
each layer is hidden from the attacks.

Figure 3. Flowchart for getting password field.

A Theoretical Framework for Password Security against Offline Guessability Attacks

Indian Journal of Science and TechnologyVol 10 (33) | September 2017 | www.indjst.org6

4. Conclusion
Traditional textual password scheme has security weak-
ness against offline attacks and online attacks. Proposed
framework is designed for improving the security of tex-
tual password and other authentication schemes against
offline security attacks. For securing both offline and
online attacks, the proposed framework may be used
with an authentication scheme which is resilient to online
security attacks.

In the proposed framework five layers are suggested
for securely storing passwords into a database. Every layer
improves the password security but it is not necessary to
implement all the framework layers. The proposed frame-
work can be implemented with some selected layers.
However, it is important that the layers need to be imple-
mented with different logic on every implementation.

Proposed framework provides security layers at appli-
cation and database level. Passwords stored with the
proposed framework can be cracked when both applica-
tion and database servers are hacked. For such conditions
password security can be maintained when all the frame-
work related processes run on different application server
called framework server. The framework server should
reply to an IP address where application server is run-
ning, in order to hide the implementation logic of the
proposed framework.

5. References
1. Zhao H, Li X. S3PAS: a scalable shoulder-surfing resis-

tant textual-graphical password authentication scheme.
In the Proceedings of the Institute of Electrical and
Electronics Engineers (IEEE) 21st International Conference
on Advanced Information Networking and Applications
Workshops (AINAW), Canada. 2007 May 21–23; 2:467–72.
Crossref.

2. Weinshall D. Cognitive authentication schemes safe against
spyware. In Institute of Electrical and Electronics Engineers
(IEEE) Symposium on Security and Privacy, USA; 2006
May 21–24. p. 1–6. Crossref.

3. Das A, Bonneau J, Caesar M, Borisov N, Wang X. The
tangled web of password reuse. In the Proceedings of the
NDSS, San Diego, CA, USA; 2014 Feb 23–26. p. 1–15.

4. Consumer Survey: Password Habits. CSID; 2012. Accessed
on 08 January 2017 Available from https://www.csid.

com/wp-content/uploads/2012/09/CS_PasswordSurvey_
FullReport_FINAL.pdf

5. Preneel B. Cryptographic hash functions. Transactions on
Emerging Telecommunications Technologies. 1994 Jul;
5(4):431–48. Crossref

6. Coron JS, Dodis Y, Malinaud C, Puniya P. Merkle-Damgard
revisited: how to construct a hash function. In the Proceeding
of the Annual International Cryptology Conference, Lecture
Notes in Computer Science, Springer. 2005; 3621:430–48.
Crossref

7. Klein DV. Foiling the cracker: a survey of and improve-
ments to, password security. In the Proceedings of the 2nd
USENIX Security Workshop; 1990. p. 5–14.

8. Suo X, Zhu Y, Owen GS. Graphical passwords: a sur-
vey. In the Proceedings of the Institute of Electrical and
Electronics Engineers (IEEE) 21st Annual Computer
Security Applications Conference, USA; 2005 Dec 5–9.
p. 1–10.

9. Schneier B. Inside risks: the uses and abuses of biomet-
rics. Communications of the Association for Computing
Machinery (ACM). 1999 Aug; 42(8):136. Crossref

10. Morris R, Thompson K. Password security: a case
history. Communications of the Association for
Computing Machinery (ACM). 1979 Nov; 22(11):594–7.
Crossref

11. Cisar P, Cisar SM. Password-a form of authentication. In
the Proceedings of the Institute of Electrical and Electronics
Engineers (IEEE) 5th International Symposium on Intelligent
Systems and Informatics, Serbia; 2007 Aug 24–25. p. 29–32.
Crossref

12. Zviran M, Haga WJ. Password security: an empirical
study. Journal of Management Information Systems. 1999;
15(4):161–85. Crossref

13. Dierks T. The transport layer security (TLS) protocol
version 1.2. Rescorla E editor, RTFM Inc; 2008 Aug.
p. 4–63.

14. Freier A, Karlton P, Kocher P. The secure sockets layer
(SSL) protocol version 3.0. Internet Engineering Task Force
(IETF); 2011 Aug. p. 5–67.

15. Xiao-ling W. Research and application of MD5 encryption
algorithm [J]. Information Technology; 2010.

16. Provos N, Mazieres D. Bcrypt algorithm. USENIX; 1999
Apr 28. p. 1–13.

17. Florencio D, Herley C, Oorschot PCV. An administrator’s
guide to internet password research. In the Proceedings
of the Association for Computing Machinery (ACM)
28th USENIX conference on Large Installation System
Administration (LISA), WA; 2014 Nov 9–14. p. 35–52.

https://doi.org/10.1109/AINAW.2007.317
https://doi.org/10.1109/SP.2006.10
https://doi.org/10.1002/ett.4460050406
https://doi.org/10.1007/11535218_26
https://doi.org/10.1145/310930.310988
https://doi.org/10.1145/359168.359172
https://doi.org/10.1109/SISY.2007.4342618
https://doi.org/10.1080/07421222.1999.11518226

