
Indian Journal of Science and Technology, Vol 10(32), DOI: 10.17485/ijst/2017/v10i32/110638, August 2017
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

Abstract
Objective: In the material world, objects like railway tracks, bridges, roofs etc., are constructed by collections of non-
elastic rigid rods, beams, etc.. A structure is said to be rigid if there is no continuous motion of the structure that changes 
its shape without changing the shapes of its components like rods or beams. In this survey work, we accumulate the 
fundamental concepts on graph rigidity. Methods and Analysis: We give the analytical definition of rigid graphs using 
the idea of rigid motions. The Laman’s theorem and Hendrickson’s algorithm are presented as methods for testing 
graph rigidity in the plane. The construction of the rigid graphs is also analyzed using the Henneberg’s operations. We 
describe how in distributed environments the rigidity of graphs can be checked using the vertex ordering in the graph.  
For frameworks lying in the higher dimensional spaces rigidity testing method is presented in form of a theorem.  
Novelty and Improvements: The results of this review works may help the readers to better understand the graph rigidity 
theory from different perspectives. This study founds a positive association between the analytical and combinatorial 
concepts of graph rigidity investigated so far.
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1.  Introduction

Rigidity prevents the deflection of each solid structure 
under externally applied forces. In real life applications, 
constructions like bridges and roofs, etc. (Figure 1) is 
made of rigid rods hinged at their end points. Such a 
structure may be viewed as bar-joint framework which 
may bend at the joints. Thus it is crucial to prevent the 
bending or flexing of bar-joint structures under external 
forces. The number of rods may be increased to enhance 
the rigidity of the structure. A bar-joint structure may 
be modeled as an edge-weighted graph with joints as 
vertices, bars as edges, and lengths of the bars as edge-
weights. Rigidity of such edge-weighted graphs is covered 
in the graph rigidity theory.

Figure 1.    Constructions of bridges and roofs15.

The notion of graph rigidity first appeared in Cauchy’s 
rigidity theorem for a convex triangulated polyhedron 
with rigid edges and flexible joints1,2. In the nineteenth 
century the rigidity theory was developed for the bar 
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and joint structures3. Characterizing the flexibility of 
constructions like roads, railways, airlines, wireless sensor 
networks etc., by using their graphical representations in 
the Euclidean space is given special attention in different 
domains of studies such as material science, engineering, 
etc. Recently it acquires much attention due to its growing 
applications in different fields, e.g., in transportation 
problem, VLSI design, robotics and social networks.

1.1 Graph Realization in the Plane
The real life objects like roofs, bridges or sensor networks 
can be represented as graph G = (V, E), where the set of 
bars can be identified by edge set E and the set of joints 
by vertex set V. Since multiple edges between same pair 
of joints has no effect on equilibrium of the structure, 
without lose of generality, we put G to be a simple graph. 
The study of the structural rigidity with the help of 
underlying graph G needs reconstruction of the structure 
from G. This reconstruction problem can be modeled as 
the graph realization problem4.

A realization of the graph G = (V, E) in the plane is a 
one to one mapping , i.e., every vertex  
is assigned a position . For any p, (G,p) is called 
a configuration of G. The pair is also called a framework 
or a straight line realization of the graph in . If  
then  is a joint of the framework. If  then 
the straight line joining p(u) and p(v) is called a bar of the 
framework (G, p). Let, , then  is a point in 

. Figure 2 shows three different frameworks (a), (b), 
(c) for the same graph. 

Figure 2.    Different frameworks for a graph.

Let (G, p) and (G, q) be two different realizations of a 
graph G(V, E) in . They are said to be  if 

       || p(u) - p(v) || = || q(u) - q(v) || for all edges 
 (Here  is the standard Euclidean norm in 

). If this equality holds for all pairs of vertices of the 
graph  then  and  are said to be congruent. 
(G, p) is called a unique realization of G if all the equivalent 
frameworks are congruent. Figure 3(a) can be obtained 

from Figure 3(b) by reflecting the sub graph below the 
edge  with respect to . Therefore these two 
frameworks are equivalent but not congruent. 

Figure 3.    Equivalent frameworks which are not congruent.

In Figure 4(a), two equivalent frameworks of a 
quadrilateral are shown which are not congruent. 
However, Figure 4(b) has a unique realization up to 
congruence.

Figure 4.    (a) is not uniquely realizable but (b) 

1.2 Edge Function of a Graph
Different realizations of a graph may have different 
lengths between the terminal points of a particular edge 
in E. Figure 2 shows different realizations of a graph 
G having different edge lengths. In reality, if G(V,E) 
represents a bar-joint structure then any realization of 
G preserves the edge lengths. If  is 
a realization of  in then may be considered as a 
point in because each . With respect to the 
realization , each edge is assigned a value    
(denote by || er ||) where || er || = || ti - tj || and ||.|| is the 
Euclidean norm. 

Definition 1: Let  be a graph having vertex 
set labelled and edge set labelled as 

. Suppose each vertex is assigned a position 
for . A function defined 
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by : = (|| e1 || 
2  , || e2 || 

2 ,…, || ek || 
2)  is 

called the 2 of . 
Intuitively, for if is 

a framework in R2 then gives the squares of the 
edge lengths of  in the given order.

Example 1. In Figure 5, the rectangle has 
vertex set  and edge set 

 where,
       e1 = {v1, v2};

Let ;  

be the positions of vertices respectively in 
Figure 5(a). The square of edge lengths are,
|| e1 ||

2 = 5/9, || e2 ||
2 = 2/9,     || e3 ||

2 = 8/9,     || e4 ||2 =5/9,
	  || e5 ||2 = 1;

Therefore,

1 2 3 4

5 2 8 5
( , , , ) ( , , , ,1).

9 9 9 9Gf t t t t =

If ; 
in Figure 5(b) then,

Eventually in this case two realizations are equivalent 
but not congruent.

Let  be a realization of  in the plane. 
There may be many different realizations  of  such that

. The set  = { R2ν and 
} is called the fiber of  for the realization 

 and is denoted by .  is 
the set of all equivalent realizations of . For the 
graph , let and  be the complete 
graph with the same vertex set . For , 

 if and only if the frameworks ( ;p) 
and ( ;q) are congruent.  is the set of all 
congruent realizations of . Every realization of  
congruent to gives a realization of  congruent 
to . In view of the property that every congruent 
realization of  is an equivalent realization of , 
the above discussion may be summarized in the following 
lemma.

Figure 5.    Equivalent frameworks which are not congruent.

Lemma 1. If  is a graph with  and 
 then .

The equality holds if  is uniquely realizable up to 
congruence.

1.3 Motion of the Plane and a Framework
Intuitively, motion can be described as a continuous 
movement of the plane or of a framework. Whether 
a framework lying in the plane is rigid or not can be 
determined by investigating possible motions of it. 
If a motion of a frame work can be created by small 
perturbation to the framework keeping some portion 
(consisting of two or more points) fixed then the 
framework may be viewed as a flexible one, otherwise it is 
rigid. This intuitive idea is formally described below.

Definition 2. A motion f of the real plane  is a function 
which maps at a time t for  
satisfying the following conditions:

1. For each , ,
2. For each  and each pair of points  and  in 
,  || ft (x) - ft (y) || = || x - y || ,  i.e.,  is an isometry 

(distance preserving mapping of the plane).
Thus from the definition of plane motion, we can 

write for a given pair of points x,y ϵ R2,
 || ft (x) - ft (y)||2 = || x - y ||2       =   constant.   

If the function  is differentiable w.r.t.  then 
differentiating w.r.t. t we get,

 || ft (x) - ft (y)||2 = 0… … … (1).
d
dt

We know for a vector  that varies on t,
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This gives from Equation (1),

or,

Similarly, motion (or, continuous deformation) of a 
framework  in the plane is a family of functions 

of time  such that:
1. , for each  in V,
2. For each  in ,  is differentiable in  (i.e., 

 moves along a smooth curve),
3. For each t,  is a realization of  in plane,
4. The function  preserves the edge lengths of 

.

A plane motion f always defines a motion Φ of the 
framework  by restricting f to  over the set 
of points . The converse is not always true.

1.4 �Infinitesimal Motion of the Plane and a 
Framework

The movement of a framework or the plane in motion 
occurs under certain initial velocity map (i.e., every point 

 of a framework or the plane in motion is associated 
with a velocity vector ). Such a velocity map is called 
an infinitesimal motion under certain conditions in view 
of small displacements of the positions. In the motion of 
the framework or the plane, the distance between each 
pair of points is presented. On the contrary, in the case of 
infinitesimal motion, the distance between each pair of 
points is preserved up to the first order derivative of the 
displacement. This intuition is formally described in the 
following definition.

Definition 4. An infinitesimal motion  of the plane is a 
mapping ψ such that the distance between 
any pair of points remain unchanged in the first order 
derivative with respect to , i.e.,

at x, y  with .
If is an infinitesimal plane motion then,

=
At , . This 

discussion is summarized in the following lemma.

Lemma 27. A vector map ψ  is an infinitesimal 
motion of  if and only if 

In view of Lemma 2, infinitesimal motion is an 
initial velocity map such that the resultant of velocity 
vectors at any two different points of the plane is in the 
perpendicular direction to the line joining the points.

Let be a plane motion which is differentiable. 

Assuming  and substituting in 

Equation (2) of Section 1.3 we get,

since Thus,  is an orthogonal 
mapping. Using Lemma 2 we get the following lemma,

Lemma 3. Let  be a given plane motion which is 
differentiable. A velocity vector  associated with 
points in the plane such that,

 

 is an infinitesimal motion of the plane.
The infinitesimal motion for a framework can be 

defined equivalently where the distance between each 
pair of adjacent vertices of the framework is preserved up 
to the first order changes of distances.

Definition 5. Let  be a graph and  is a 
framework of . An infinitesimal motion  of  is a 
map where , such that at ,

 ||(pi + tqi) - (pj + tqj)|| = 0, { i, j } ∈ E.
d
dt

Proceeding in the same way as for frameworks the 
following result can be obtained,

Lemma 415. If  is an infinitesimal motion of  and 
, then for each edge {vi , vj } of ,

 〈qi - qj, pi - pj ⟩ = 0.

2.  Rigid and Flexible Frameworks

Any motion of the plane restricted to a framework in the 
plane gives a motion of the framework. A framework in 
the plane having some motion may not be extended to a 
motion of the plane Figure 6. A motion  of a framework 

is said to be trivial21 if it can be obtained from a 
motion  of the plane. A framework is called rigid if it 
has only trivial motions. If  is not rigid it is said to 
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be a flexible framework. Thus a flexible framework always 
has a motion which cannot be obtained from a plane 
motion.

Figure 6.    Square is flexible but square with a diagonal is 
rigid.

Example 221. A square is flexible in  since it has a 
nontrivial motion which deforms the square to a class of 
rhombus; but a square with a diagonal is rigid.

Suppose the vertices of the square framework 
shown in Figure 6 have initial positions at ,

.Vertex  and  are fixed 
in the initial positions.  and  can slide from their 
positions. Let  and  represent the variable positions 
of  and  as they moves along a path which preserves 
the edge lengths of the square at initial position. This 
gives, 

, 

Such a system of equations is called the system of edge 
equations for the framework. For the square framework 
here the above system of equations has solution set as 
follows, 

From this parametric solution a continuous motion 
 of the square framework can be defined 

as,
, ,  

, 
In this parametric solution of the system of edge 

equations for any , the length of the diagonals of 
the initial square frame work are not preserved. Therefore, 
this cannot be a plane motion.

The example shows that rigidity or flexibility of a 
framework in plane depends on the nature of the solution 
set of the system of edge equations near the initial 
realization of the framework. The proposition given 
below describes a necessary condition for a framework to 
be rigid.

Proposition 12. Let  be a rigid framework of graph 
 in plane with QUOTE  then 

 must have a neighborhood  such 
that .

Proof. Let  be a rigid framework. From Lemma 
1 we get, 

for all neighbourhoods  of . The result will be 
followed if we can prove 

for some neighbourhood  of . If 
possible let for every neighborhood of , 

. Then in each 
neighborhood  of  there exists at least one point 

 such that 
 is equivalent to  but not congruent. 

Using the algebraic approximation theory for 
curves5, we get a continuous path, , from  
to  in   such that all points of the path

, i.e., 
each point on corresponds an equivalent but 
non-congruent framework to . Thus along the 
path ,  has a non-trivial motion6,7. It contradicts that 

 is rigid. Hence the result follows.
In view of Proposition 1, the rigidity of a framework 

 may alternatively be defined as a local property of 
the initial realization .

Definition 6. A framework  is rigid8 if there exists 
a real number  such that for each equivalent 
framework  of  satisfying the condition

 ( ),  is congruent 
to . If  is not rigid, it is called a flexible 
framework.

Let  be an infinitesimal motion of a frame work
. If the plane has an infinitesimal motion ψ such 

that the restriction of ψ to  coincides with  then
 is called a trivial infinitesimal motion of .  

is called infinitesimally rigid if all infinitesimal motions 
of the framework are trivial. A framework is called 
infinitesimally flexible if it is not infinitesimally rigid.

Proposition 2. An infinitesimally rigid framework is 
always rigid but the converse may not be true.

Figure 7 shows a degenerated triangle (A triangle 
is degenerated if it has three vertices on a line) which 
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is rigid but not infinitesimal rigid. The rigidity of the 
triangle can be verified by using the definition. To prove 
that the triangular framework is not infinitesimally 
rigid let, ,  and  
be the locations of vertices of the triangle. If 

then

( ) ( )2 2
1 1 3 3|| (  ) ( ) || || ( ,0) (0,0) (0,0) (0, ) ||

d dp t p t a t t m
dt dt

+ − + = + − +

2 2 2 2|| , || (  )
d da tm a t m
dt dt

= − = +

22  .m t=

Therefore at ,

2
1 1 3 3|| ( ) ( ) || 0.

d p t p t
dt

µ µ+ − + =

Similarly for the remaining pairs of vertices the 
derivatives vanish as above. So,  is an 
infinitesimal motion of the triangle.

Figure 7.    Rigid but not infinitesimally rigid.

If it is possible that  is a trivial infinitesimal 
motion of the triangle the nit can be extended to an 
infinitesimal motion of the plane. We consider a point

 in the plane. Let  
be the infinitesimal motion at the point . From 
Lemma 2 we get, for the points  and , 

Similarly for and , 
and for  and ,  Thus for the 
point  the infinitesimal motion  satisfies 
the following:

The above system of equations is not consistent since 

and . Therefore  does not exist 
for . Therefore  cannot be a trivial 
infinitesimal motion of the triangle.

Hence the degenerated triangle is not infinitesimally 
rigid.

An alternative method for rigidity testing is calculating 
the rank of the rigidity matrix (discussed later).

2.1 Generic Realization of a Graph
Let  be a field9,10 and be a 
finite subset of elements of . Let  be a subfield of 

. The set  is algebraically independent over  if 
there exists no polynomial  with coefficients 
from  such that . Algebraically 
independent is generalization of Linear independence. If 

 is not algebraically independent it is 
algebraically independent.

A framework  in is said to be if the 
co-ordinates of all vertices are algebraically independent 
over the field of rational numbers. Generic realization of 
a graph  is a realization  in which coordinates 
of all vertices are generic. A graph is generically 
globally rigid in if all generic realizations of  are 
congruent11. From here onwards, if not mentioned 
otherwise, globally rigid means generically globally rigid. 
A rigid framework is not necessary globally rigid Figure 
8.

Figure 8.    Both the frameworks are rigid but not globally 
rigid.

A framework is  if it has three or more 
collinear vertices or concurrent edges. Figure 9 shows 
examples in which 3 or more vertices are collinear. 
These vertices are algebraically dependent in  since 
each vertex coordinate is a linear combination of two 
remaining position vertices. Thus it is an example of 
degenerate framework. Existing rigidity theory is specially 
concerned about the generic realizations of frameworks. 
How to check rigidity of a degenerate framework still is 
an open problem.
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Figure 9.    Non-generic graphs.

2.2 Rigidity Matrix
Let  be a graph with vertices and 

 edges. Suppose, is the edge 

function of , i.e., , 

where , , . Let  be 
a framework of . Starting from the initial position  of 

 we give a motion on  such that each  varies 
with time  preserving the edge lengths, in other words, 
at any time ,

If ’s are differentiable function of , then 
differentiating with respect to  we get,

In view of Lemma 4, at , is the infinitesimal 
motion of  of  where . 
Substitution of  by and by  in equation 
(7) gives a set of equations each for an edge of  with 

 as variables. At  Equation (7) gives a system of 
equations as,

Solving these equations we can find the 
possible infinitesimal motions 

 of . The coefficient matrix of 
this set of equations is called the Rigidity Matrix of the 
framework12 . In the rigidity matrix has rows 
and each corresponds to an edge of . Simplifying the 
above equation we get,

Since each  has two components in , the 
rigidity matrix has  columns. In order to get the 
rigidity matrix of the frame work , instead of 
differentiating individual edge equations, we compute 

 and . Let  and 
.  and 

 are the coefficients of and in 
the equation corresponding to the edge . This 
row has maximum four nonzero entries and others are 
zero. By considering the equations for all edges in similar 
manner, the rigidity matrix can be computed.

Example 3.12 Let  be the triangle shown in Table 1 
Vertices  have initial positions at p1 = (0; 1); p2 = 
(-1,0) and p3 = (1; 0) respectively. The rigidity matrix is,

The dimension of the solution space of the system of 
equations given in Equation (7) can be determined by 
the number of independent nontrivial solutions of the 
system. Any framework lying in the plane always has three 
trivial motions and a rigid framework cannot have any 
nontrivial motion in the plane. Thus a framework is rigid 
in plane if the rigidity matrix has rank exactly equal to

. With the help of these properties, Hendrickson 
proved a result described below which is useful for testing 
the rigidity of a framework.

Table 1.    Triangle ABC and the rigidity matrix
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Theorem 512. A framework  having  vertices is 
rigid in plane if and only if the rigidity matrix has rank 

.
Time complexity for calculating rank of rigidity 

matrix: The rigidity matrix of a framework  is the 
coefficient matrix of a system of  equations with 
variables. As the Gauss elimination method takes O(ν3) 
time for computing the rank of this matrix therefore 
using Theorem 5, it is possible to test rigidity of any given 
framework within polynomial time.

Later Laman proposed some combinatorial properties 
for graphs to test the rigidity.

3.  Rigidity Testing Methods

In this section we present some properties of rigid graphs 
in the plane and some useful methods to test the graph 
rigidity.

Definition 7. A graph  is rigid in the plane if each 
framework of  is rigid in the plane.  is redundantly 
rigid, if  is rigid for each .  is minimally 
rigid if  is rigid but for any edge , is no 
more rigid.

The graph , is said to be an  if 
and for each subgraph  of 

 with , .

Theorem 6 (Laman13). A graph  is minimally rigid 
in  if and only if and for all subset  
of with  the subgraph  has less 
than  edges, i.e., a graph is an E-graph if and 
only if it is minimally rigid.

Since a rigid graph always has a minimally rigid 
subgraph, every rigid graph has an E-graph as a subgraph. 
Some authors refers E-graph as Laman graph. A Laman 
subgraph is a subgraph which is itself a Laman graph.

Definition 8. The edge set  of a graph  
is independent in if and only if each subgraph 

 of  with  has no more than 
 edges. Independent subsets, , of the edge set 

 are defined equivalently.
In view of Theorem 6, we have the following result.

Theorem 7. The edge set of a Laman graph is independent.
For an arbitrary independent subset of edges of a 

graph the following result holds.

Theorem 8. Let  be a graph.  is 
independent if rows corresponding to the edges  in the 
rigidity matrix of  are independent.

Testing rigidity of graphs using Theorem 6 requires 
counting the number of edges in every subgraph of the 
graph. Since a graph with  vertices has 
number of induced subgraphs, time complexity of testing 
the graph rigidity is exponential in . In a graph , 
Laman graphs can also be identified using Henneberg’s 
construction of graphs.

3.1 Henneberg Operation
Let  be a graph. Henneberg operations on  
involves the following two steps:

1. Addition of a new vertex  and two edges  
and  to  is called a  operation 
on  Figure 10(a). The resulting graph is called the

 of .
2. Subdivision of an edge  by inserting a new 

vertex  and adding a new edge  for some 
;  in  is called  operation 

on  Figure 10(b). The resulting graph is called the 
of .

Definition 9. A sequence of Henneberg operations 
starting from  to construct a new graph is known as a 
Henneberg construction of the graph.

Example 4. The complete bipartite graph  may be 
constructed from using the Henneberg operations. A 
0-extension operation is applied on  to form a triangle. 

Figure 10.    (a) 0-extension operation. (b) 1-extension operation.
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Using 1-extension operation, each edge of the triangle is 
subdivided into two parts and the subdivision point is 
connected to the remaining vertex of the triangle Figure 
11.

Figure 11.    (a) Henneberg construction of k(3; 3). (b) 
Rearrangement of vertices of k(3; 3).

An extension operation is either a 0-extension or a 
1-extension operation.

Theorem 916. A graph is Laman graph if and only if it can 
be constructed by a sequence of Henneberg operations on 

.
Similar result holds for -graph and minimally rigid 

graph, since each of these is identical to a Laman graph. 
An immediate consequence of the above theorem is given 
below.

Theorem 1016. Let G(V;E) be a minimally rigid graph and 
 is a minimally rigid subgraph of . Then  

can be obtained from  by a sequence of Henneberg 
operations.

Redundant rigidity of a graph can also be verified 
from Henneberg’s construction of the graph as stated in 
the theorem below.

Theorem 1116.  is generically redundantly rigid in  
if and only if  can be obtained from  by a sequence 
of Henneberg operations and edge insertions.

3.2 �Henderickson’s Idea for Graph Rigidity 
Testing

Let  be a graph.  is a set consists of two identical 
copies of  and . A bipartite graph {
} is constructed such that each  is connected to four 
vertices in , each of which is an end vertex of edge  in 

. If  and  then  has  
vertices and  edges. Figure 12 shows an example of 

such a bipartite graph for a triangle. We shortly see that 
the Laman’s condition on the graph  can be followed 
based on some conditions on .

Figure 12.    (a) . (b)  for .

Definition 10. A matching in  is a set of pairwise 
non-adjacent edges. A vertex is said to be covered  by a 
collection of edges if the vertex appears as an end vertex 
of some edge in that collection. A complete matching is 
a matching in  which covers all vertices of the graph.

Let  be a graph. is an independent 
subset. is the set of vertices covered by . We consider 
the graph . Suppose, . 

Let  be a graph obtained from  by 
quadrupling an arbitrary edge of .

Theorem 1212. For an arbitrary edge  
is an independent set in  if and only if  has a 
complete bipartite matching.

Thus for an edge , if  fails the matching 
test for every edge in  then  cannot be 
independent in . If  is independent in for 
no then has  independent edges 
where has  vertices, i.e.,  is a Laman subgraph.

Lemma 13. The union of any two Laman subgraphs of 
, which share common edges, is a Laman subgraph.

Lemma 13 is useful for enlarging the size of an 
independent subset of edges of a graph to produce a 
maximal independent edge set.

Theorem 14. If a maximal independent edge set of a 
graph  has edges then  is rigid.

3.2.1 Hendrickson’s Algorithm
The basic idea of Hendrickson’s algorithm is to find a 
maximal independent set of edges in a graph  using 
Theorem 12. Let be an independent set of edges 
from . is called an initial basis. In each step, a new 
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edge  is identified such that  is 
independent. If the graph  has  vertices and an 
independent edge set of size  is found, then the 
graph is a rigid graph.

1: procedure Test Rigidity (G(V; E)) /* u = current 
node */

2: basis Φ
3: for each vertex v ∈ V do
4: mark each vertex in a Laman subgraph with v and 

unmark all the remaining
5: for each edge {v; u} do
6: if u is unmarked then
7: if {v; u} is independent of basis then
8: add {v; u} to basis
9: create Laman subgraph consisting of {v; u}
10: else a new Laman subgraph is identified
11: merge all Laman subgraphs with common edge
12: mark each vertex in a Laman subgraph with v
13: end if
14: end if
15: end for
16: end for
17: end procedure

3.2.2 Time Complexity in Hendrickson’s Algorithm
Checking whether a new edge  is independent of the 
existing independent edge set  requires  time where 

 is the number of vertices of graph . Marking 
each vertex in a Laman subgraph and merging two Laman 
subgraphs needs  time12. Thus the total run-time is 

 which much betterthan Laman’s method is.

4.  �Condition for Unique 
Realizability of Frameworks

A generic framework  is uniquely realizable or 
generically globally rigid if all realizations equivalent to 

 are congruent. Both redundant rigidity and vertex-
connectivity have significant role for testing unique 
realizability of a graph.

Definition 11. A graph  is -connected if it is 
necessary to remove at least  vertices to increase 
the number of components.

Theorem 1512. If a generic framework  is a unique 

realization of  in  then either  is a complete graph 
with  vertices or 

1.  is -connected and
2.  is redundantly rigid in .

 Hendrickson conjectured that conditions the 
Equations (1) and (2) are sufficient for unique graph 
realizations. The proof for sufficiency follows immediately 
when  lies in , since  is rigid in  if and 
only if it is connected. In 1991, Connelly14 proved that 
this conjecture is false for . For example, in the 
complete Bipartite Graph  is redundantly rigid and 
vertex 4-connected; though there are generic realizations 
where  is not uniquely realizable15. Jackson and 
Jordan16 established the result for  based on 
rigidity matroid.

4.1 Rigidity Matroid
An ideal or hereditary family is a collection  of subsets 
of a set  such that every subset of a set in  is also 
in . A matroid16 or hereditary system RM on is a 
nonempty ideal  of subsets of  with some properties. 
These properties are called aspects of . Elements of 

 are called independent sets. The empty set is trivially 
independent as shown in Table 1.

Definition 1216. Let  be a graph. The 
 is defined on the 

edge set  of  as  is an independent set 
of edges in .

Note that the characterization for independence of 
edge subsets are the aspects of . However, in20 it 
is shown that,  is a matroid if and only if it has the 
following properties: 

1. Φ is in 
2.  then .
3. For every  the maximal independent 

subsets of  have the same cardinality.

Since Φ is trivially independent, property (1) is 
immediate. From definition of matroid we get (2). 
Equation (3) follows from Lemma 16.

Lemma 1616. Let  be a graph with . 
If is a maximal in dependent subset of  then

where minimum is taken 
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over all collection  such that  
is partitioned by the edge sets of the induced subgraphs 

.

4.2 Global Rigidity Testing
Let  be a graph and  be the 
rigidity matroid. A redundantly rigid graph  
is called an -circuit if  has  number of 
edges. Figure 13 shows some examples of -circuits.

Figure 13.    Examples of  -circuits.

Let  and  be two edges of .  is said to be 
related with  if and only if either  or both of 
them belong to a single -circuit contained in . This 
is an equivalence relation on . Each equivalence class 
with respect to this relation is called an -component. 
A graph with a single -component is called 
-connected. A vertex-3-connected graph  is called a 
brick if it is -connected.

Theorem 1716. A graph is a brick if and only if it can be 
obtained from  by edge addition and  
operations.

Theorem 1816. Any graph obtained from  by sequence 
of edge addition and  is uniquely 
realizable.

Theorem 1916. In if a generic framework  is 
-connected and redundantly rigid then  has a 

unique realization, i.e., Hendrickson’s conjecture is true 
in .

5.  �Rigid Graph with Ordering of 
Vertices

Vertex ordering of a graph is useful in testing the graph 
rigidity specially in distributed environments. If a graph is 
identified as uniquely realizable then the unique positions 
can be computed by existing localization techniques, e.g., 
semi-definite programming17,18. Though an arbitrary 

uniquely realizable graph can efficiently be recognized 
in a centralized environment, the realizability testing 
in distributed environment is still an open problem. 
However, some popular graphs, like bilateration graph, 
trilateration graph, wheel extension, triangle bar19,20 in 
several real applications, can uniquely be recognized in 
distributed environment. In this section, the rigidity 
properties of these graphs are presented in the light of 
vertex ordering.

5.1 Bilateration Ordering
A bilateration ordering is a sequence  
of nodes, where  form a  and every  
is adjacent to two distinct nodes  and for some 

 (i.e., two nodes before  in ). A graph having 
a bilateration ordering of nodes is called a bilateration 
graph Figure 14. A bilateration graph always contain 

 edges where  is the number of vertices in it. 
Using Theorem 9 we reach the following result.

Figure 14.    example of Bilateration ordering.

Theorem 20. Bilateration graphs are always minimally 
rigid, i.e., they are Laman graphs.

In applications, uniquely realizable graphs without 
having bilateration ordering are rare21. Recognition of 
uniquely realizable graphs having bilateration ordering in 
distributed environment is an open problem.

5.2 Trilateration Ordering
A trilateration ordering is a sequence  
where  form a triangle and every  
is adjacent to at least three nodes such that 

. A trilateration graph is a graph with a 
trilateration ordering Figure 15. Trilateration graphs are 
uniquely realizable. Under the distributed environment, 
trilateration ordering is popularly used for location 
finding, though a large number of uniquely realizable 
graphs exist beyond trilateration graphs.
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Figure 15.    example of trilateration ordering.

5.3 Wheel Extension
A wheel extension is a graph having an ordering 

 of nodes where  form 
a triangle and every  lies in a wheel subgraph 
containing at least three nodes before  Figure 16. 
A trilateration graph is a special case of wheel extension 
graph24 which is uniquely realizable. Wheel extension 
graphs can efficiently be recognized in distributed 
environment.

Figure 16.    wheel extension graphs.

5.4 Triangle Bar
Triangle bar is a more generalized class of uniquely 
realizable graphs which includes trilateration graphs 
and wheel extension graphs as special cases. Triangle 
bars can efficiently be recognized under the distributed 
environment. We define some basic elements which are 
used to develop the concept of triangle bar.

5.4.1 Triangle Chain and Triangle Cycle
Let  be a sequence of distinct 
triangles such that for each , has 
two distinct edges common with  and . Such a 
sequence  of triangles is called a triangle stream. Figure 
17(a) shows an example of triangle stream. Let  be 
the graph-union of all ’s in . A node of a triangle 

 is termed a , if the edge opposite to 
the vertex in  is shared by another triangle in . This 
shared edge is called an inner side of . If a graph has an 
unique pendent it is called a . Each triangle  has 
at least one edge which is not shared by any other triangle 
in . Such a non-shared edge is called an outer side of 
. In Figure 17(a), has two pendants and 

, two inner sides  and  and one outer side 
. In a triangle stream , if  and  
has unique and distinct pendants then the triangle union 

 is termed as triangle chain. For example, 17(a) is a 
triangle chain. Triangle chains are rigid by construction 
since they involve only flips. Ina triangle chain, if  and 

 share a common edge other than those shared with 
 and , then the graph union  is called a 

triangle cycle. In a triangle cycle, each triangle has exactly 
two inner and one outer sides. Figure 17(b) shows an 
example of a triangle cycle. Every wheel graph is a triangle 
cycle.

Figure 17.    Triangle streams.

5.4.2 Triangle Circuit and Triangle Bridge
If  is neither a triangle chain nor a triangle cycle 
for the triangle stream  and  and  have a unique 
pendant in common, then  is called a triangle circuit 
Figure 18 (c). The common pendant is called a circuit 
knot. For example  is the circuit knot of the triangle 
circuit shown in Figure 18(c). 

Figure 18.    More examples of triangle streams.
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Let  be a triangle stream 
corresponding to a triangle chain. and  have unique 
and distinct pendants. We connect these pendants by an 
edge  like Figure18(d).  is called a triangle 
bridge Figure 18(d).The edge  is called the bridging 
edge. The length of a triangle stream  is the number of 
triangles in it and is denoted by .

5.4.3 Triangle Net and Triangle Bar 
Let  be a sequence of distinct 
triangles such that every  shares exactly one with 
exactly one  such that .  has no pendant 
and  has exactly one pendent for . The graph 
corresponding to such a sequence of triangles is called a 

. Let  be a triangle tree. A node , 
outside  is called an extended node of  if  is 
adjacent to at least three nodes among which each node 
is either a pendant in  or an extended node of  
previously added to the graph. Each of the edges which 
connects the extended node to a pendant or an extended 
knot of  is called an extending edge.

A graph  is called a triangle tree, if it may be 
generated from a triangle tree  by adding one 
or more extended nodes and satisfying the following 
conditions: 

1.  contains no triangle cycle, triangle circuit or 
triangle bridge and

 2. There exists an extended node  such that every 
leaf knot of  is connected to  by a path (extending 
path) containing only extending edges. The last extended 
node added to generate the triangle net is called an apex 
of the triangle net.

A graph  is called a triangle bar, if it satisfies at least 
one of the followings:

1.  can be obtained from a triangle cycle, triangle 
circuit, triangle bridge or triangle net by adding zero or 
more edges, but no extra node;

2.  where  and  are triangle bars 
which share at least three nodes; or,

3.  where  is a triangle bar and  is a 
node not in , and adjacent to at least three nodes of .

Triangle cycle, triangle circuit, triangle bridge and 
triangle nets are generically globally rigid graphs by 
construction. If two triangle bars  and share three 

nodes in generic position, then  is generically 
globally rigid. Leta triangle bar  be obtained from 
another triangle bar  by adding a node which is 
adjacent to three nodes in B0. In a generic realization 
of , any node placed with three given distances 
from known positions has a unique location. So  is 
generically globally rigid.

6.  �Rigidity in Higher Dimensional 
Spaces

In the higher dimensional spaces having dimension 
three or more the rigidity of graphs is not much focused. 
However, the basic concepts of graph rigidity, namely 
graph realization, edge-function, equivalent frameworks, 
and congruent frameworks can be generalized 
analogously22,23.

Motion of an dimensional space is the collection 
of distance preserving some tries of the space where 
each point moves along a differentiable (smooth) curve 
to generate the is some tries at a particular time. Motion 
of a framework in dimensional space can be 
defined in similar manner by moving the vertices of the 
framework. Velocity function of a motion of  is called 
the infinitesimal motion Rn and that of a framework is 
called the i  of a framework. 
Trivial motions and Trivial infinitesimal motions of 
a framework lying in -space are obtained from the 
motions and infinitesimal motions of the associated space. 
A framework is said to be rigid in  if it has only trivial 
motions. Likewise a framework is called infinitesimally 
rigid in  if all its infinitesimal motions are trivial 
infinitesimal motions. A result similar to the Theorem 1 
holds for rigid frameworks in higher dimensional spaces.

Proposition 32. If  is a rigid framework 
in -dimensional space then the realization  
must have a neighborhood  in  such that 

 where  is the 
complete graph with vertices.

We have already seen that for two equivalent 
frameworks the edge function gives equal image values, 
i.e., the edge lengths are preserved. Given a framework 

, an equivalent framework  satisfies the 
following system of equations,



Vol 10 (32) | August 2017 | www.indjst.org Indian Journal of Science and Technology14

A Taxonomy on Rigidity of Graphs

for each edge  in . These set of equations is 
called edge equations. Inverse function theorem suggests 
a technique, which identifies all possible equivalent 
realizations of  in a neighborhood of , to 
test the rigidity of the graph.

Theorem 21. Inverse function theorem1. Let  
be a continuously differentiable function. If  is a 
point such that the Jacobean  is non-singular, 
i.e., , then there is a neighborhood  
of  and a neighbourhood  of  such that  is 
one to one on  and  has a continuously 
differentiable inverse from  to  .

The following example illustrates how to use 
inverse function theorem for graph rigidity testing in a 
neighbourhood of a given framework . In plane, 
a rigid framework may have only trivial motions. It has 
no motion at all if two vertices are fixed. Therefore after 
fixing two vertices, a motion (if any) of the graph will be 
a non-trivial.

Example 523. Let us consider the square framework 
with diagonal given in Figure 19 where , 

, ,  are the position 
of vertices. We fix two vertices  and  of the square 
in their initial positions. Let  and  represent the 
positions of  and . If the square has any motion, 
that will be non-trivial. If the different realizations of the 
square are edge distance preserving then we have,

,

and 

We consider a function such that, 

Being polynomial in right hand side, each 
component is continuously differentiable. Let 

. Then, 

Since  is non-singular, from inverse function 
theorem we can conclude that there is a neighborhood 

 of the point  and a neighborhood  of the point 
in  such that  is one-one. Thus it is 

not possible to continuously move vertices  and  of 
the square from their initial positions when  and  are 
fixed. Therefore the framework is rigid.

Figure 19.    Square with diagonal.

On the other hand, the implicit function theorem 
helps to determine whether a specific realization of a 
framework is flexible or not.

Theorem 22. Implicit function theorem1. Let 
be a continuously differentiable 

function.  is a point (where 
such that If 

the last  columns of  are linearly independent 
then  has a neighborhood  in  such that 
there exists a unique continuously differentiable 
function  satisfying  and

 for all .
Using the implicit function theorem, one can find 

a path along which certain vertices of a framework 
 can move in a neighborhood of  keeping the 

remaining vertices stable in their positions. The function 
 determines the path in such a way that 

remains in the solution set of the system of edge equations 
of .

Example 6. Consider the square framework given as before 
let , , ,  
be a realization of the square and vertices  and  are 
fixed in their initial positions.  and  are variables 
positions of  and  in . The edge equations are, 

,

We consider a function such that, 
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where . Therefore 

At 

In  the last three columns are linearly 
independent. Thus using implicit function theorem we 
conclude that, the point  has a neighborhood  
in  such that there exists a unique function 
where and  for 
all . Proceeding similarly as Example 2 we get, 

 for all 
. Thus  is a flexing of the square 

satisfying 

Definition 13. Let  be a framework with  
vertices,  edges and edge function . Let 

 A point 
is called a  if .

Rigidity of frameworks lying in higher dimensional 
space can be verified using the following theorem.

Theorem 232. Let  be a framework with  vertices, 
 edges and edge function . Let 

be a regular point of the edge 
function and , where  is the 
dimension of the affinehull of . Then 

 is rigid  if and only if 

 and  

is flexible in  if and only if 
.

7.  Applications

Graph rigidity has huge applications in defining 

formations of vehicles24. The unique representation of 
the associated framework determines the stability of the 
formation. The rigidity theory helps to determine the 
shape-variables of the appropriate potential function 
associated with the formation.

Another application of graph rigidity is in network 
localization. If the complete information of a network 
is available in a particular machine then the unique 
realizability of the network can be verified by using the 
results in rigidity theory. New domains from different 
disciplines of science and technology are regularly being 
added with them.

Pattern formation is an important problem in the 
area of multi-robot networks. In this problem, when a 
swarm of robots are deployed over certain area to achieve 
a task collectively, they may need to form a target pattern 
to achieve their goal. There is an important relationship 
between the concept of graph rigidity and pattern 
formation problem.

Different mathematical method and algorithms 
developed on the basis of combinatorial rigidity 
theory have several applications in protein science 
and mechanical engineering25. To study allosteric in 
proteins, rigidity based allosteric models and protein 
hinge prediction algorithms are considered as useful 
tools. Abridge consists of metal rods should have a rigid 
structure for its safety.

 Another application of graph rigidity theory is in 
network localization problem in the domain of wireless 
ad-hoc networks26 under the distributed environment. 
In this application, it is assumed that a sensor node 
is capable of measuring the distance between them 
and the neighbouring nodes. Localization method 
determines the positions of nodes satisfying the given 
distance measurements. If we assume the distance as the 
edge length then graph rigidity can be applied to find 
the solutions to the problem. Efficient localization in 
distributed setup is still an open problem which requires 
rigorous research attention.

8.  Acknowledgment

The first author would like to acknowledge Council of 
Scientific and Industrial Research (CSIR), Government 
of India, for giving the financial support in the form of 
junior research fellowship to carry out this work.



Vol 10 (32) | August 2017 | www.indjst.org Indian Journal of Science and Technology16

A Taxonomy on Rigidity of Graphs

9.  References
1.	 Apostol TM. Mathematical Analysis. 2nd ed. Addison Wes-

ley publisher; 1974.
2.	 Biedl T, Lubiw A, Spriggs M. Cauchys theorem and edge 

lengths of convex polyhedra. Algorithms and Data Struc-
tures. 2007 Aug; 4619:398–409.

3.	 Izmestiev I. Infinitesimal rigidity of frameworks and sur-
faces. University spring; 2009. p. 1–79.

4.	 Crapo H. Structural rigidity. Structural Topologl. 1979; 
1:26–45.

5.	 Wallace A. Algebraic approximation of curves. Canad Jour-
nal of Mathathematics. 1958; 10:242–78.  Crossref

6.	 Hermary ME. Rigidity of graphs a thesis submitted in par-
tial fulfilment of the requirement for the degree of Master 
of Science; 1986.

7.	 Roth B, Whiteley W. Tensegrity framework. Transactions 
of American Mathematical Society. 1981; 265(2):1–28.   
Crossref

8.	 Jackson B, Jordan T. Connected rigidity matroids and 
unique realizations of graphs. Journal of Combinatorial 
Theory Series B. 2005; 94(1):1–29.  Crossref

9.	 Krishanan NSG. University Algebra. 3rd ed. New Age In-
ternational Limited Publisher; 2004.

10.	 Herstain IN. Topics in algebra. 2nd ed. John Wiley and Sons 
Publisher; 1975. p. 1–401.

11.	 Connelly R. Generic global rigidity. Discrete and Computa-
tional Geometry; 2005. p. 549–63.  Crossref

12.	 Hendrickson B. Conditions for unique graph realizations. 
SIAM Journal on Computing. 1992; 21(1):65–84.  Crossref

13.	 Laman G. On graphs and rigidity of plane skeletal struc-
tures. Journal of Engineering Mathematics. 1970 Dec; 
4(4):331–40.  Crossref

14.	 Connelly R. On generic global rigidity, applied geometry 
and discrete mathematics. DIMACS Series in Discrete 
Mathematics and Theoretical Computer Science; 1991. p. 
147–55.

15.	 Connelly R. Jordan T, Whiteley W. Generic global rigidity 
of baby-bar framework. Journal of Combinatorial Theory. 
2009 Dec. p. 689–705.

16.	 Oxley JG. Matroid theory. 1st ed. Oxford University Press; 
1992.

17.	 Biswas P, Chuan TK, Yinyu Y. A distributed SDP approach 
for large-scale noisy anchor-free graph realization with ap-
plications to molecular conformation. SIAM Journal on 
Scientific Computing archive. 2008 Mar; 30(3):1251–77.

18.	 Doherty L, Pister KSJ, Ghaoui LE. Convex position estima-
tion in wireless sensor net-works. 20th Annual Joint Con-
ference of the IEEE Computer and Communications Soci-
eties Proceedings; 2001. p. 1655–63.

19.	 Mukhopadhyaya S, Sau B. Rigidity of graphs. CSI Commu-
nications. 2014; 38(2):17–8.

20.	 Sau B, Mukhopadhyaya K. Localizability of wireless sensor 
networks: Beyond wheel ex-tension. Stabilization Safe-
ty and Security of Distributed Systems 15th International 
Symposium SSS 2013; 2013 Nov. p. 326–40.

21.	 Goldenberg D, Bihler KP, Cao M, Fang J, Anderson DO, 
Morse AS, Yang YR. Localization in sparse networks us-
ing sweeps. Proceedings of the 12th annual international 
conference on Mobile computing and networking; 2006. p. 
110–21.

22.	 Asimow L, Roth B. The rigidity of graphs. Transactions of 
American Mathematical Society. 1978 Nov; 245(4):279–89.  
Crossref

23.	 Roth B. Rigid and exible frameworks. The American Math-
ematical Monthly. 1981 Jan; 88(1):6–21.  Crossref

24.	 Saber RO, Murray RM. Graph rigidity and distributed for-
mation stabilization of multi-vehicle systems. Proceedings 
of the 41st IEEE Conference on Decision and Control; 
2002. p. 2965–71.

25.	 Sau B, Mukhopadhyaya K. Length-based anchor-free local-
ization in a fully covered sensor network. In Proceedings 
of the First international conference on COMmunication 
Systems And NETworks, COMSNETS’09; 2009. p. 1–10.  
PMid:19537157 

26.	 Sljoka A. Algorithms in rigidity theory with applications to 
protein flexibility and me-chanical linkages. York Universi-
ty; 2012 Aug.

https://doi.org/10.4153/CJM-1958-028-5
https://doi.org/10.1090/S0002-9947-1981-0610958-6
https://doi.org/10.1016/j.jctb.2004.11.002
https://doi.org/10.1007/s00454-004-1124-4
https://doi.org/10.1137/0221008
https://doi.org/10.1007/BF01534980
https://doi.org/10.1090/S0002-9947-1978-0511410-9
https://doi.org/10.2307/2320705

	_GoBack

