
1.  Introduction 
Ultraviolet (UV) detectors have drawn much attention due 
to its industrial and military applications1–7. Basically, all 
those applications required fast response and high sensi-
tive photodetectors. Several UV detectors technologies are 
currently available such as Si-based detectors and photo-
multipliers. Despite the high sensitivity and fast response 
of those detectors, they have some property limits such 
as the need of filters and low efficiency specifically for the 
Si-based detectors8–10 and the need of high vacuum and 
high voltage supply for the photomultipliers, in addition to 
the fabrication difficulties and the high cost of those detec-
tors. Recently, wideband gap materials such as zinc oxide 
and titanium dioxide semiconductors have been used in 
the fabrication of the UV detectors due to their wide band 
gap (~3 eV)11–16. However, these detectors required addi-
tional work before they become commercially available. 

Among these, Dye Sensitized Solar Cells (DSSCs) 
have been extensively studied as an alternative to the con-

ventional silicon solar cells due to its low cost and easy to 
fabricate.17–19 However, the lack of efficiency has limited 
their commercial implementation. On the other hand, 
dye sensitized cell was proved to be used as a photodetec-
tors as well. This is due to its self-powered and excellent 
physical and chemical properties20–25. In this paper, new 
fabrication steps were added to the original design of the 
dye sensitized cell photodetector to improve its proper-
ties. Additionally, new testing techniques were applied to 
evaluate the detector for commercial production.

2.  Device Fabrication
TiO2 nano-powder was mixed with ethanol and then soni-
cated for 1 h. A TiO2 layer of ~ 200 µm was deposited on 
the ITO glass which has dimensions of (50 × 50 × 1) mm, 
then was heated on a hot plate at 180°C for 15 min to form 
TiO2 electrode. The TiO2 electrode was dipped in a dye 
solution (Eosin) for 15 min. After that, a drop of electrolyte 
was put on the TiO2 electrode. Prior to combination of the 
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two ITO glasses, a drop of electrolyte (Lugol’s iodine, 2.2% 
iodine and 4.4% potassium iodide) was added in between 
the two ITO glasses. The edges were covered by SU8 2025 
photo resist as it is stable and resists most acids and sol-
vents26. In order to obtain cross-linked SU8, the device was 
soft baked for 2 min at 95°C, exposed to UV light for 20 
sec and hard baked at 95°C for 3 min. After the device had 
cleaned by ID water and dried by N2 gas, a silver paste was 
used to connect two wires to the ITO. Finally, a protection 
layer of PDMS was spin coated on both sides of the device. 
Figure 1 shows the schematic of the device.

Figure 1.  Schematic of the UV photodetector.

3.  Detector Operation 
The expose of dye sensitized cell to UV causes electrons 
in the dye to get excited. The electrons then ejected 
from the dye into the conducting band of the TiO2 layer. 
Regeneration of the lost electrons is handled by the elec-
trolyte27. The electrons that were ejected from the dye 
diffuse through the TiO2 layer than into the conductive 
glass and finally the electrons flow through the output 
wires that are connected to the metal pads. Basically, the 
current flowing through the cell is depending on the 7 
amount of the UV intensity. As depicted in Figure 1, a 
small amount of biasing is applied to the cell to motivate 
the electrons of the cell to flow and also to control the 
current gain and elevate the responsivity of the detector.

4.  Experimental Results
The I-V characteristic of the device is shown in Figure 2. 
The UV irradiation at 1 V bias, wavelength of 365 nm and 
intensity of 0.1 mW/cm2, the photo current could reach 
0.9 mA. This means increasing bias voltage from 0 to 1 
V leads to increase in the photocurrent by more than 3 
orders of magnitude.

The responsivity of the detector can be determine 
by R = I/AE16, where R is the responsivity, I is the photo 
current, A is the effective area of the device and E is the 
irradiation of the UV light. The responsivity was calcu-
lated to be 1440 A/W, which is higher than the reported 
values28. The higher responsivity indicates high internal 
photoelectric current gain. This gain can be expressed by 
g = τµVB/L29, where τ is the mean lifetime of the charge 
carrier, L is the inter-electrode spacing, VB is the applied 
bias and µ is the electron mobility. 
A UV Light-Emitting Diode (LED) with a peak wave-
length of 365 nm was used in our experiment. The LED 
was driven by a function generator (RIGOL-G1022), 
which was used to drive the UV LEDs and also to control 
the light intensity and to obtain both discrete (pulses) and 
continuous (sinewave) light signals. The photocurrent 
was measured using HP 4145B semiconductor parameter 
analyzer. In all experiments, the photodetector was biased 
at 0.1 V to increase the device photocurrent. 
Before device testing, the intensity of the LEDs torch was 
measured and calibrated by AB-M model 100-C UV inten-
sity meter [Figure 3a]. The calibration curve was obtained 
by applying several voltage values to the UV LEDs array 
and measuring the corresponding intensities. The calibra-
tion curve showed linear relationship [Figure 3b].

The response speed is a significant parameter which 
can be used to determine the property of the photode-
tectors. Figure 4 shows incident light dependent current 
measured at 50 mV bias with a light pulse of 50 mHz and 
light intensity of 0.25 mW/cm2. It is obvious that the rise 
time and fall time of the detector are almost the same, 
< 0.1 s, which is good Compared to the other photode-
tector technologies16. Additionally, since the device is 
encapsulated, then it would not be attacked by the oxygen 
of the environment. As a result, the number of trapped 
holes would be minimized, and then the combination 
between the negative and positive charge carriers would 
be increased, thus, the fall time would decrease. 

In the reported articles only discrete time (on/off) 
response of UV detectors has been study. In this work, 
the response for continuous UV light was studied too. 
Sinewave light with a frequency of 50 mHz was irradi-
ated on the detector [Figure. 5]. The response observes a 
perfect sinewave photocurrent response with no distor-
tion. This means that the detector has perfect response for 
analog as well as digital light signal irradiations.
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Photocurrent of the device versus incident light 
intensities were investigated [Figure 6]. The photocur-
rent measurements were carried out at 100 mV bias and 
under 365 nm UV light irradiation with light intensities 
varying from 0.1 W/cm2 to 8 mW/cm2. The photocurrent 
increases linearly with the light intensity. This linear rela-
tion suggests that the device can be used not only as a UV 
detector but also for precise UV measurements.

Figure 2.  I-V characteristics of the device with no 
irradiation and under the incident light of 365 nm.

Figure 4.  Time response of the device to on/off light pulses.

Figure 5.  Time response of the device to continuous 
sinewave light irradiation.

Figure 3.  Device calibration 
a  The experimental setup for calibration of the UV LEDs torch. 
b  detector photocurrent at different intensities. Inset is the linear relationship obtained from the calibration.
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Figure 6.  Photocurrent as a function of the incident UV 
(λ = 365 nm).

5.  Waterproof Test
The device was also tested in water based on the reported 
articles30. Several factors affect underwater UV measure-
ments. First, the view angle of the UV detector is reduced 
and then a small amount of UV light reaches the detec-
tor. Second, is the light scattering due to impurities, 
especially when measurement done in ocean or unclean 
water. Therefore, it is expected to achieve a smaller pho-
tocurrent values underwater measurements compared to 
the in air measurements. To run underwater test, a glass 
tank was used with a jacket, as a light isolator. Testing was 
done in the depth of 30 cm. Figure 7 shows the testing 
setup of the device. No significant differences in the time 
response were observed, however, an attenuation in the 
photocurrent was recognized which can be attributed to 
the absorption characteristic of the UV underwater30–32. 
Results show the ability for using the photodetector 
underwater as well as in air.

Figure 7.  Underwater testing, inset is the testing setup.

6.  Conclusion
Dye sensitized cell was characterized and modified. The 
device exhibits fast response and high sensitivity for 
both discrete and continuous light intensity variations. 
Bias voltage was applied in order to control the gain and 
then the responsivity of the detector. The device shows 
stable characteristic in ambient as well as underwater. 
No significant change in the underwater detector char-
acteristic except attenuation in the photocurrent that 
can be attributed to the water absorption and scattering 
of the UV light that leads to decline in the UV energy. 
This type of photo- detector technology seems promis-
ing towards commercial production of optoelectronic 
components.
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