
*Author for correspondence

Indian Journal of Science and Technology, Vol 10(21), DOI: 10.17485/ijst/2017/v10i21/100023, June 2017
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Malware Classification Framework for Dynamic
Analysis using Information Theory

Ehsan Moshiri*, Azizol Bin Abdullah, Raja Azlina Binti Raja Mahmood and Zaiton Muda

Computer Science and Information Technology Department (CSIT), Universiti Putra, Malaysia (UPM);
ootkit.py@gmail.com, azizol@upm.edu.my, raja_azlina@upm.edu.my, zaitonm@upm.edu.my

Keywords: Information Theory, Malware Classification, Mutual Information, Neural Network

Abstract
Objectives: 1. To propose a framework for Malware Classification System (MCS) to analyze malware behavior dynamically
using a concept of information theory and a machine learning technique. 2. To extract behavioral patterns from execution
reports of malware in terms of its features and generates a data repository. 3. To select the most promising features using
information theory based concepts. Methods/Statistical Analysis: Today, malware is a major concern of computer
security experts. Variety and in- creasing number of malware affects millions of systems in the form of viruses, worms,
Trojans etc. Many techniques have been proposed to analyze the malware to its class accurately. Some of analysis techniques
analyzed malware based upon its structure, code flow, etc. without executing it (called static analysis), whereas other
techniques (termed as dynamic analysis) focused to monitor the behavior of malware by executing it and comparing it with
known malware behavior. Dynamic analysis has proved to be effective in malware detection as behavior is more difficult
to mask while executing than its underlying code (static analysis). In this study, we propose a framework for Malware
Classification System (MCS) to analyze malware behavior dynamically using a concept of information theory and a machine
learning technique. The proposed framework extracts behavioral patterns from execution reports of malware in terms of
its features and generates a data repository. Further, it selects the most promising features using information theory based
concepts. Findings: The proposed framework detects the family of unknown malware samples after training of a classifier
from malware data repository. We validated the applicability of the proposed framework by comparing with the other
dynamic malware analysis technique on a real malware dataset from Virus Total. Application: The proposed framework is
a Malware Classification System (MCS) to analyze malware behavior dynamically using a concept of information theory and
a machine learning technique.

1. Introduction
Despite of numerous anti malware software, number of
known and unknown malware incidents are increasing day
by day. Now days, detection of malware is the focus of cur-
rent research community in the field of computer security.
However, malware analysis is labor oriented and time con-
suming task. Moreover, it does not scale well with the ever
increasing prevalence of malware1. Various techniques
have been proposed for detection and analysis of malware.

The important detection techniques include tradi-
tional signature based techniques, and dynamic behavior

based tech- niques. Detection techniques further use
analysis techniques to observe a malware and its inten-
tion2. Researchers proposed three types of approaches for
analysis of malware that includes: static analysis, dynamic
analysis and hybrid analysis. Static analysis works by ana-
lyzing malware based upon its structure, control flow, etc.
without executing it3. Moreover, static analysis depen-
dent on a pre-established signature database, it is unable
to detect novel malware until the signature database is
updated4–6. Whereas in dynamic analysis, the malware is
observed for its behavior by executing it in a controlled
environment. During dynamic analysis, reports are gener-

Indian Journal of Science and TechnologyVol 10 (21) | June 2017 | www.indjst.org 2

Malware Classification Framework for Dynamic Analysis using Information Theory

ated to conclude about the in- tent of malware based upon
record behavior of malware like sequence of Application
Programming Interface API. As malware authors are
designing more complicated and sophisticated malware
using obfuscation and encryption techniques, its static
analysis is becoming very hard and unable to classify its
behavior. The problem is solved by dynamic analysis by
recording the behavior of malware by executing it in a con-
trolled environment. So, dynamic analysis has a potential
of providing more accurate results than static analysis
and is wildly used for achieving more accurate malware
detection. Keeping in view the better results of malware
analysis, researchers have shifted their focus from tra-
ditional static based methods3,7 to more dynamic and
automatized methods for malware analysis2,8. Dynamic
malware analyses are generally based on collecting mal-
ware behavior traces during execution of malware9.

In this work, we propose a framework for dynamic
analysis of malware based upon information theory con-
cepts. The framework performs malware analysis in three
phases namely: Feature Extraction, Feature Selection and
Malware Classification. The working of the proposed
framework is validated using a real time collection of
dataset and by comparing it with representative tech-
niques in the field of malware analysis.

Article overview: Section 2 presents the work related
to malware analysis. A critical review of the state of art in
the field is presented for better understanding and cur-
rent trends of the field. The methodology adopted in
the proposed work consisting of experimental setup,
stages in the proposed works, malware dataset descrip-
tion is presented in Section 3. Section 4 highlights the
proposed framework, and it’s working. All the modules
of the framework are described here. Section 5 presents
the details of the results of experiments. The discussion
of results is presented for proving its validity to the field.
Finally, the paper concludes the framework and provides
clues for future research in the field of malware analysis
in Section 6.

Most of the traditional malware analysis and classi-
fication systems are based on static features. The static
features are extracted from executable of malware with-
out executing them. These features are generally extracted
by using reverse-engineering methods. Many research-
ers proposed to detect malware by analyzing the API call
sequence6,10. They believe that API call sequences are
related to the behavior of the Portable Executable (PE)
code in win- dows environment. However, the extracted

information in terms of API sequences for PE files has
been static. It may not properly represent the actual
behavior of the PE code. So, these approaches can easily
get failed by obfuscation techniques. Most of approaches
proposed in early stages of malware analysis are signature
based approaches. How- ever, these approaches have many
weaknesses. The major weakness includes the continu-
ous updating of signatures of malware that is a laborious,
time consuming and a challenging task. Moreover, these
approaches can be easily evaded by malware in polymor-
phic form3.

To meet the limitations of these approaches, research-
ers shifted their focus to dynamic analysis of malware.
Dynamic analysis of malware includes the execution of
malware, monitors its behavior, and generates a profile. It
detects the unknown malware by computing it’s similarly
of the known profile of malware4. Dynamic analysis of
malware is either based upon control flow analysis or API
call analysis6. Both techniques compare the behavior of
malware by analyzing the similarity.

Recently, many researchers have been proposed to
analyze API call sequences for their behavior. Some
of them have used the API calls and their frequency11,
whereas other studies focused to mine API call sequence
for each malware class12. Recent studies centered that low
level system calls remain unchanged until function or
intent of malware is changed6.

Lee and Mody represented malware samples with
sequences of system calls and proposed to use string edit
distance to classify them13. Whereas defined the behav-
ior of malware in terms of not-transient state changes
that malware causes on the system and apply Normalized
Compression Distance (NCD) as a similarity mea- sure
for classifying malware samples14. Rieck et al. used the
information contained in the analysis reports created by
CWSandBox to generate behavioral profiles and train
Support Vector Machines (SVM) to build classifiers for
malware families15. Most of the work on malware clas-
sification discriminates between malicious and benign
exe- cutables. In contrast to these works, we aim to dis-
criminate between different malware families and classify
samples into their respected families.

Another focus of researchers is clustering of mal-
ware samples into groups with similar behavior15,16. They
proposed to cluster the malware into groups and detect
new families of malware by comparing its similarity with
existing clusters. However, malware representation is a
challenging task in clusters based techniques.

Indian Journal of Science and Technology 3Vol 10 (21) | June 2017 | www.indjst.org

Ehsan Moshiri, Azizol Bin Abdullah, Raja Azlina Binti Raja Mahmood and Zaiton Muda

Some of the researchers have focused on network
behavior of the malware17. They proposed to analyze
network traces in the form of pcap files to extract the
network flow information. Further, they proposed to rep-
resent network flow information graphically and extracted
network behavior based features. Unknown samples of
malware are classified based upon trained classifier using
labeled dataset of network features.

Recently, it is proposed an approach to detect mal-
ware based on API call sequence analysis6. They utilized
DNA sequence alignment algorithm along with Longest
Common Sequence (LCS) concept to find the similarities
among the patterns. They compared the results with that
of representative techniques in the field. They reported
better results than others techniques. However, they
excluded benign LCSs from their database to reduce the
false positives. It may be the fact behind their reporting of
better results.

However, most of the researchers utilized one subset
of features of malware to represent its behavior pattern
and ignored other ones. For example, some studies have
used only API based sequences but not considered net-
work based features and vice versa. It may be possible that
a feature subset used for predicting malware family con-
tain some redundant and/or irrelevant features leading to
the extra computation overhead and reduced accuracy. It
may also be possible that some feature may be irrelevant
but become relevant and provide important information
for predicting class of malware in the presence of some
other feature.

In this work, we propose a framework for dynamic
analysis of malware. The proposed framework is focused
to extract dynamic behavior of malware during its exe-
cution in term of different features including duration,
network features, API frequencies along with their
sequences and count of various files read, written or
created etc. For each program under consideration, a fea-
ture vector is generated for further analysis of its behavior
and intent. Most promising features out of the repre-
senting feature vector are selected to represent behavior
patterns of malware based upon information theory con-
cepts. A labeled data repository is generated for training
a machine learning technique as a classifier. Further, the
trained classifier is used to predict the class of test sample
as a malware family or a benign. Specifically, we consider
the use of mutual information to select promising features
and Multi-Layer Perceptron based Neural Network for
classification of malware in this work. To determine the

effectiveness of the proposed approach, we compare our
detection results to the results obtained by using static
analysis and dynamic analysis. We show that signifi-
cantly stronger results can be obtained using the dynamic
approach.

2. Methodology
This section is devoted to present the overall methodology
followed in the present research work.

2.1 Experimental Setup
Dynamic analysis of malware has attracted lots of attention
recently. Multiple systems have been proposed, such as
CWSandbox18, and Anubis19. Those systems can execute
malware binaries within an instrumented environment
and monitor their behaviors for analysis and development
of defense mechanisms.

For further analysis, Malheur was developed to clus-
ter and classify malware by processing the malware
behaviors20, CWSandbox18 was employed for monitoring
malware behaviors and represented the results in MIST
format, by means of n-grams algorithm and several
related approaches. Malheur can classify the malware to a
predefined set of classes and find novel classes by cluster-
ing. Unfortunately, CWSandbox and MIST21 are not open
source, so we use Cuckoo sandbox22 as a replacement.

In this work, we set up a virtual environment to run
malicious programs. We observer dynamic the behav-
ior of the malware sample by executing it in controlled
and virtual environment created by Cuckoo sandbox22.
Cuckoo sandbox is an open source automated malware
analysis system. It can analyze PE, PDF, MS Office, PHP
scripts, etc. In our experiments, the output from Cuckoo
environment is stored in a file format of JSON report.

2.2 Extraction of raw features and their
statistics from JSON files
To extract the raw features and their statistics from JSON
reports, a Python language based automated system has
been developed with the main steps as:

1. Read sections of JSON file
2. Extract features including

•	 Basic features
•	 Network feature statistics based upon protocol

headers

Indian Journal of Science and TechnologyVol 10 (21) | June 2017 | www.indjst.org 4

Malware Classification Framework for Dynamic Analysis using Information Theory

•	 CPU and memory usage statistics
•	 Statistics of APIs based upon their categories
•	 Statistics of file system activities in terms of

number of files written, delated, read, commands
executed,

•	 services started, services created
•	 Resolved APIs
•	 Number of sub processes generated

3. Labeling of malware samples

The Python based system extracts the raw features
from JSON files into a CSV file format for further analy-
sis of malware.

2.3 Labeling of Malware Samples
It is most critical task in malware analysis using machine
learning techniques in supervised mode. It is found that
different antivirus vendors label malware samples differ-
ently. In most of cases, the labels are inconsistent with
each other. So, the labeling of malware may be less accu-
rate when employed to dynamic analysis of malware
samples. Since, we are using the dataset for our experi-
ments same as that used in our anchor paper proposed in
6. They used Kaspersky detection for labeling the malware
samples6. Therefore, in this work we decided to use the
labeling of malware categories as reported by Kaspersky
anti-virus during their execution in Cuckoo environ-
ment. Because, used it in the anchor paper6.

2.4 Malware Dataset
After labeling of malware samples, we are able to gener-
ate a malware dataset from JSON reports from Cuckoo
sandbox. We have chosen 23,146 malware samples ran-
domly from the malware dataset of the VirusTotal23. In
the dataset, we found a large number of classes of mal-
ware. For testing purpose of the proposed frame work,
we categorized malware samples of different families into
categories as reported in6, the statistics of the collected
malware with families are depicted in Table 1.

In this set of experiments, we used randomly 70% of
malware samples as training dataset, whereas rest of 30% is
used as test dataset. Malware dataset contains symbolic as
well as continuous features. The dataset is pre-processed
before it is used for training and testing the classifiers.
The pre-processing steps involve mapping of symbolic
value features to numeric value and scaling of feature val-
ues to a uniform scale. We have mapped malware class

labels in dataset to numeric numbers in range of 0 to 16 as
depicted in Table 1.

Table 1. Categories of malware and number of
malware samples in dataset

Malware family Class label No of samples
Backdoor 0 501
Benign 1 1336
DangerousObject 2 531
Email-Worm 3 4536
Adware 4 672
Net-Worm 5 2592
Packed 6 2100
Trojan 7 873
Trojan-Downloader 8 2011
Trojan-Dropper 9 552
Trojan-FakeAV 10 1465
Trojan-GameThief 11 550
Trojan-PSW 12 588
Trojan-Ransom 13 895
Trojan-Spy 14 1120
Virus 15 1678
Worm 16 1080

Total 23080

2.5 API Categories
The malware samples are executed in a controlled
environment of Cuckoo sandbox and it behaviour is
recorded in form of JSON reports. The behaviour of a
malware sample is recorded in terms of API calls. It is
observed that there are about 2727 different API names
in our dataset6. These API names are categorized into dif-
ferent categories depending upon its intended use. The
API categories are depicted in Table 2. The major API
categories contains the API calls related to Exceptions,
File system operations, Internet explorer, Network, OLE,
Processes, Registry, Synchronization, User interface, and
Miscellaneous as categories reported by Kaspersky anti-
virus program in JSON reports of malware behaviour.

2.6 Feature Selection
For dynamic analysis of malware, we extracted a large
number of raw features from JSON reports produced in
Cuckoo environment representing the dynamic behav-
iour of malware. In theory, higher dimensions of the data

Indian Journal of Science and Technology 5Vol 10 (21) | June 2017 | www.indjst.org

Ehsan Moshiri, Azizol Bin Abdullah, Raja Azlina Binti Raja Mahmood and Zaiton Muda

improve the classification accuracy of the algorithm. But,
practically, it is not true. All the raw features of the data
are not important to understand it. However, the higher
dimensions of the data suffer from difficulty called curse
of dimensionality24–27. In addition, high dimensional data
requires more computational overhead and leads to delay
in detection of malware, which is not desirable. In order
to tackle this difficulty of analyzing the high dimensional
data, we identified a filter based feature selection tech-
nique proposed in28. The identified feature selection
tech- nique keeps the original features as such and select
subset of the features that predicts the target class variable
with maximum classification accuracy using expression 1.

PE F = RelevanceT erm − β ∗ RedundancyT erm + γ ∗
ClassCondtionalT erm

n n
= M I(Xn , Y) − β ∗

X
M I(Xn , Xk) + γ ∗

X
M I(Xn , Xk

|Y) (1)

k=1 k=1
Where MI () gives the mutual information between

two variables. The parameters β, γ are the weights
assigned to redundancy term and class conditional inter-
action information term respectively. The parameter β
regulates the relative significance between candidate fea-
ture and already selected set of the features with respect to
the target class variable. Only the MI with the target class
variable is considered for each feature selection ignor-
ing redundancy and interaction information by putting
β = 0, γ = 0. A large value of β ensures high penalty
for redundancy, and net MI of candidate feature is dis-
counted by a quantity equivalent to its redundancy with
already-selected features. γ = 0 assumes the non-inter-
action of features. A large value of γ results the addition of
interaction information of candidate feature with already
selected features to its net MI.

For effective feature selection, an automated system is
developed in Python language that implements the iden-
tified feature selection technique. The system takes a
raw dataset as an input and selects most promising fea-
tures using mutual information. It gives an output as a list
indexes selected corresponding to reduced dataset. The
reduced dataset is generated using only selected indexes
from the raw dataset in a CSV format. Selected dataset is
further used to train the classifier model for prediction of
unknown malware samples.

2.7 Malware Classification
A large number of machine learning techniques in
supervised mode have been proposed that are used for
classifying malware dataset into a set of malware classes.
For instance, Artificial Neural Networks are designed
to mimic the human brain. They have the capability
to learn any nonlinear relationship between input and
desired output even in presence of noisy input training
data. So, keeping advantages of neural networks in mind,
we utilized MLP neural network as a classifier to learn
the behavior of malware samples29. The MLP classifier is
trained using raw dataset as well as reduced dataset con-
taining only selected features. The trained model of MLP
classifier is further used to predict the class of unknown
malware samples.

2.8 Implementation
To perform experiments and evaluate the performance of
the proposed framework, we implemented it as an auto-
mated system in Python language. In these experiments,
we used Python on a Linux PC with Core i3-2330M 2.20.

GHz CPU and 2 GB RAM. Identified feature selection
technique and MLP ANN based classifier is implemented
in Python.

3. Proposed Framework
In this section, we describe the proposed framework for
malware classification based on dynamic behavior repre-
sented in terms of feature vectors. Figure 1 shows a
schematic overview of the proposed framework.

Functioning of the major modules of the proposed
framework is summarized:

3.1 Cuckoo Sandbox Environment
This module is designed to observe the behavior of mal-
ware by executing it in a controlled environment. We used
Cuckoo sandbox to execute the malware and record its
behavior in the form JSON reports. These reports contain
the detailed recording of duration, system calls, its argu-
ments, network information etc. The output of the module
is set of reports in JSON format for malware and benign.

3.2 Feature Extraction Module
The module extracts the raw features of program for its
dynamic behavior from reports in JSON format pro-

Indian Journal of Science and TechnologyVol 10 (21) | June 2017 | www.indjst.org 6

Malware Classification Framework for Dynamic Analysis using Information Theory

vided as output of Cuckoo environment. The extracted
features are transformed into a tabular form and saved
to a CSV file containing all possible dynamic features of
a malware. The dynamically extracted features includes
features related to Dynamic Imports, File Operations,
Mutex Operations, Network Operations, Processes
Created, injected or terminated, Registry Operations,
Windows API Calls and their frequency. The working of
the feature extraction module is summarized in Figure 2.

After extracting the features from JSON reports, the
values are summarized and further are converted to a fea-
ture vector to represent the malware dynamic behavior.
The labeling of the feature vector is done on the basis of
detection results by Kaspersky Antivirus into categories
of malware family. The process is repeated for all JSON
reports to extract all feature vectors of malware samples.

Figure 2. Schematic overview of the feature extraction
module.

In this proposed work, we extracted 361 features and 01
feature as family of malware. The description of extracted
features is as depicted in Table 2.

Figure 1. Schematic overview of the proposed framework.

Indian Journal of Science and Technology 7Vol 10 (21) | June 2017 | www.indjst.org

Ehsan Moshiri, Azizol Bin Abdullah, Raja Azlina Binti Raja Mahmood and Zaiton Muda

The last feature named API name and its frequency
contains the name of 321 different APIs and their occur-
rences in JSON report.

Table 2. Features extracted from JSON report

Category Feature Data type

Info Duration Numeric

Network UDP requests Numeric

IRC requests Numeric

http requests Numeric

smtp requests Numeric

tcp requests Numeric

hosts contacted Numeric

DNS requests Numeric

domains contacted Numeric

ICMP requests Numeric

Usage CPU usage Numeric

mem usage Numeric

Dropped Dropped Numeric

API categories Noti API Numeric

Certi API Numeric

Crypto API Numeric

exception API Numeric

file API Numeric

iexplore API Numeric

misc API Numeric

netapi API Numeric

network API Numeric

ole API Numeric

process API Numeric

registry API Numeric

resource API Numeric

services API Numeric

Syn API Numeric

system API Numeric

ui API Numeric

other API Numeric

API summaries files accessed Numeric

files written Numeric

files deleted Numeric

Mutexes Numeric

executed cmds Numeric

started services Numeric

files read Numeric

resolved APIs Numeric

created services Numeric

Processes processes generated Numeric

API name and
its frequency

API (321) Numeric

Malware
Family

Family Categorical

3.3 Feature Selection Module
The module is responsible for selecting most promis-
ing features from the raw features dataset provided by
the extraction module of the proposed framework. The
malware dataset contains some irrelevant and redundant
features. Processing of these irrelevant and redundant fea-
tures leads to many problems including, 1) Undesirable
delay in classification task which in turn loses the real time
capability of MCS; 2) Increase computation overhead in
terms of memory and time; and 3) Deteriorate the classi-
fication and prediction accuracy. To solve this problem, we
employed an information theoretic approach to feature
selection suggested by28. This feature selection approach
is a filter approach and independent of any classification
technique. Thus, relevant features of malware dataset are
selected using the approach. The reduced dataset is not
dependent upon any classification technique. Here, we
utilized Mutual Information to compute the relevance
of features to predict the class labels. The reduced mal-
ware dataset contains 50 features of the original number
of instances as depicted in Table 3. The most promis-
ing features are selected by considering the relevance,
redundancy and class interaction information of features
in predicting the class of malware as per expression 1. The
output of this module is a set of indices of selected fea-
tures in the feature vector of the dataset.

3.4 Classification Module
The working of this module involves two phases namely,
training phase and testing phase. 1) Training Phase: A
machine learning based technique specifically MLP-

Indian Journal of Science and TechnologyVol 10 (21) | June 2017 | www.indjst.org 8

Malware Classification Framework for Dynamic Analysis using Information Theory

ANN is being trained using selected features only for
learning the behavior of malware. The output of this phase
is trained model of the classifier. 2) Testing Phase: Here,
the trained model is given input of Test dataset in terms
of selected features only to predict the class label of mal-
ware. A report is generated as an output that can be used
by security analysts for further policy decisions.

3.5 Performance Analysis Module
After the testing phase, performance analysis module
computes the defined performance metrics. The per-
formance metrics divided into three classes: threshold,

ranking and probability metrics30. Threshold metrics
include Classification Rate (CR), F-Measure (FM) and
Cost Per Example (CPE). It is not important how close
a prediction is to a threshold, only if it is above or below
threshold. The value of threshold metrics lies in [0,
1]. Ranking metrics include False Positive Rate (FPR),
Detection Rate (DR), Precision (PR) and area under
ROC curve (ROC). The value of ranking metrics lies in
[0, 1]. These metrics depend on the ordering of the cases,
not the actual predicted values. As long as ordering is
preserved, it makes no difference. These metrics measure
how well the negative instances are ordered before posi-

Table 3. Most promising features selected from malware dataset

Sr No Feature name Sr No Feature name

1 Duration 26 CreateThread

2 UDP req 27 CreateToolhelp32Snapshot

3 http req 28 Process32FirstW

4 tcp req 29 NtAllocateVirtualMemory

5 hosts contacted 30 NtCreateSection

6 ICMP req 31 NtOpenProcess

7 CPU usage 32 NtOpenSection

8 Dropped 33 NtProtectVirtualMemory

9 Noti API 34 NtResumeThread

10 filesystem API 35 NtSuspendThread

11 misc API 36 NtTerminateThread

12 network API 37 NtUnmapViewOfSection

13 process API 38 RegCloseKey

14 registry API 39 GetLocalTime

15 system API 40 GetSystemTime

16 other API 41 GetSystemTimeAsFileTime

17 resolved APIs 42 NtDelayExecution

18 FindFirstFileExW 43 NtQuerySystemTime

19 NtQueryInformationFile 44 IsDebuggerPresent

20 NtReadFile 45 LdrGetDllHandle

21 NtSetInformationFile 46 LdrGetProcedureAddress

22 GetCursorPos 47 NtClose

23 GetSystemMetrics 48 SetWindowsHookExA

24 recv 49 FindWindowA

25 socket 50 other

Indian Journal of Science and Technology 9Vol 10 (21) | June 2017 | www.indjst.org

Ehsan Moshiri, Azizol Bin Abdullah, Raja Azlina Binti Raja Mahmood and Zaiton Muda

tive instances and can be viewed as a summary of model
performance across all possible thresh- olds. Probability
metrics include Root Mean Square Error (RMSE). Value
of RMSE lies between 0 and 1. The metric is minimized
when the predicted value for each negative class coincides
with the true conditional probability of that class being
normal class. These metrics are computed from confu-
sion matrix. The matrix gives the values of True Positives
(TP), True Negatives (TN), False Positives (FP) and False
Negatives (FN).

In this work, we focus to compute confusion matrix
and derive different performance metrics namely:
Accuracy, TPR, FPR, FNR, Precision, Recall, Specificity,
Sensitivity, and F-measure to evaluate the performance of
the proposed approach.

4. Results and Discussion
This section describes the evaluation dataset, and experi-
mental setup. The section presents a comparison of the
proposed method and other representative dynamic mal-
ware analysis method in terms of defined performance
metrics. In order to evaluate the performance of proposed
framework, we conducted the experiments to evolve MLP-
ANN with parameters as described in Table 4 based upon
selected the dataset for malware analysis.

Table 4. Configuration setting of MLP

Input nodes Number of features of the
malware dataset

Hidden layer 1
Number of hidden nodes 300
Output nodes Number of malware families

in the dataset

For our experiment, we set up a virtual environment
of the Cuckoo Sandbox to run malicious programs. A
detailed report is fetched containing full set of features in a
JSON format. We executed malicious programs of different
families as well benign program and collected their JSON
reports.

We performed experiments by randomly selecting
instances from malware dataset as described in above
cited section. We computed the defined performance met-
rics from confusion matrix for different malware classes in
terms of True Positives (TP), True Negatives (TN), False
Positives (FP) and False Negatives (FN) as depicted in
Table 5.

Table 5. Performance metrics

Performance
metric

Expression

Accuracy (TP+TN)/(TP+TN+FP+FN)
True Positive rate(TPR)
TP/(TP+FN)

False Positive
rate(FPR)

FP/(FP+FN) False Negative
rate(FNR) FN/(FN+TP)
Precision TP/(TP+FP)

Recall TP/(TP+FN) Specificity TN/
(TN+FP) Sensitivity TP/
(TP+FN)

F-measure 2*TP/(2*TP+FP+FN)

4.1 Results for Malware Dataset having Full
Feature Set
The confusion matrix for test results of MLP based upon
malware dataset having full feature set is computed.
Subsequently, identified performance metrics have been
computed from confusion matrix and depicted in Table 6.

4.2 Results for Malware Dataset having a
Selected Feature Set
We employed the identified feature selection technique to
select the promising features from malware dataset. The
most promising selected features are depicted in Table 3.

We run our experiments with dataset having selected
feature set and number of instances are same as described
in Table 1. The confusion matrix for test results of MLP
based upon malware dataset having selected feature set
is computed. Subsequently, identified performance met-
rics have been computed from confusion matrix and are
depicted in Table 7.

It can be observed from values mentioned in Table 6
and Table 7 that our proposed framework leads to improve
the detection of malware to their respective classes.

In order to prove the practicality of the proposed
approach, we compare the results of the proposed paper
with representative paper in the field proposed in 6. It can
be observed from Table 8 that the proposed approach
proved the results comparable to that of provided by 6 and
31. To summarize for the proposed framework, the FPR is 0,
Recall is 0.999, and Precision is 1. This implies that the
proposed framework for malware classification system is
highly reliable for a real malware dataset. Moreover, the
proposed framework provides a small number of more

Indian Journal of Science and TechnologyVol 10 (21) | June 2017 | www.indjst.org 10

Malware Classification Framework for Dynamic Analysis using Information Theory

Table 6. Performance metrics for malware dataset having full feature set

Malware category Accuracy TPR FPR FNR Precison Recall Specificity Sensitivity F-measure

Backdoor 0.99 0.64 0.00 0.36 0.80 0.64 1.00 0.64 0.71

benign 0.98 0.75 0.00 0.25 0.91 0.75 1.00 0.75 0.83

DangerousObject 0.99 1.00 0.01 0.00 0.77 1.00 0.99 1.00 0.87

Email-Worm 1.00 0.99 0.00 0.01 1.00 1.00 1.00 1.00 1.00

Adware 1.00 0.95 0.00 0.05 1.00 1.00 1.00 1.00 1.00

Net-Worm 1.00 0.99 0.00 0.01 1.00 1.00 1.00 1.00 1.00

Packed 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00

Trojan 0.97 0.45 0.01 0.55 0.78 0.45 1.00 0.45 0.57

Trojan-Downloader 0.99 0.99 0.01 0.01 0.93 1.00 0.99 1.00 0.96

Trojan-Dropper 0.99 0.78 0.00 0.22 0.99 0.78 1.00 0.78 0.87

Trojan-FakeAV 1.00 0.97 0.00 0.03 1.00 1.00 1.00 1.00 1.00

Trojan-GameThief 1.00 0.96 0.00 0.04 0.99 1.00 1.00 1.00 1.00

Trojan-PSW 0.99 0.85 0.00 0.15 0.87 0.85 1.00 0.85 0.86

Trojan-Ransom 0.98 0.97 0.02 0.03 0.70 1.00 0.98 1.00 0.82

Trojan-Spy 1.00 1.00 0.00 0.00 0.96 1.00 1.00 1.00 0.98

Virus 0.97 0.71 0.00 0.29 0.94 0.71 1.00 0.71 0.81

Worm 0.98 1.00 0.02 0.00 0.68 1.00 0.98 1.00 0.81

Table 7. Performance metrics for malware dataset having a selected feature set

Malware category Accuracy TPR FPR FNR Precison Recall Specificity Sensitivity F-measure
Backdoor 0.99 0.64 0.00 0.36 0.80 0.64 1.00 0.64 0.71

Benign 0.98 0.75 0.00 0.25 0.91 0.75 1.00 0.75 0.83

DangerousObject 0.99 1.00 0.01 0.00 0.77 1.00 0.99 1.00 0.87

Email-Worm 1.00 0.99 0.00 0.01 1.00 1.00 1.00 1.00 1.00

Adware 1.00 0.95 0.00 0.05 1.00 1.00 1.00 1.00 1.00

Net-Worm 1.00 0.99 0.00 0.01 1.00 1.00 1.00 1.00 1.00

Packed 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00

Trojan 0.97 0.45 0.01 0.55 0.78 0.45 1.00 0.45 0.57

Trojan-Downloader 0.99 0.99 0.01 0.01 0.93 1.00 0.99 1.00 0.96

Trojan-Dropper 0.99 0.78 0.00 0.22 0.99 0.78 1.00 0.78 0.87

Trojan-FakeAV 1.00 0.97 0.00 0.03 1.00 1.00 1.00 1.00 1.00

Trojan-GameThief 1.00 0.96 0.00 0.04 0.99 1.00 1.00 1.00 1.00

Trojan-PSW 0.99 0.85 0.00 0.15 0.87 0.85 1.00 0.85 0.86

Trojan-Ransom 0.98 0.97 0.02 0.03 0.70 1.00 0.98 1.00 0.82

Trojan-Spy 1.00 1.00 0.00 0.00 0.96 1.00 1.00 1.00 0.98

Virus 0.97 0.71 0.00 0.29 0.94 0.71 1.00 0.71 0.81

Worm 0.98 1.00 0.02 0.00 0.68 1.00 0.98 1.00 0.81

Indian Journal of Science and Technology 11Vol 10 (21) | June 2017 | www.indjst.org

Ehsan Moshiri, Azizol Bin Abdullah, Raja Azlina Binti Raja Mahmood and Zaiton Muda

abstract features to predict the malware family which
leads to low computational overhead. Low computational
overhead leads to fast detection of malware and hence
minimize the damage of resources. In order to prove
the practicality of the proposed framework, we compare
the results of the proposed framework with representa-
tive techniques in the field. It can be observed from Table
8 that the proposed framework provided the results com-
parable to that of provided by6 and best results proved by
31. To summarize for the proposed framework, the FPR is
0, Recall is 0.999, and Precision is 1. This implies that the
proposed framework for malware classification system is
highly reliable for a real malware dataset. Moreover, the
proposed framework provides a small number of more
abstract features to predict the malware family which
leads to low computational overhead. Low computational
overhead leads to fast detection of malware and hence
minimize the damage of resources.

The comparison of results of the proposed approach
with the representative proves its practical capability in
the real world.

Therefore, we draw a conclusion that the proposed
framework can lead to better results in malware analysis.

4.3 Discussion
This section elaborates on the reporting results. If the
results for a particular malware type are good enough to
be used in a future system that can pre-filter newly regis-
tered malware samples. It should be noticed that future
work will be devoted to optimize the classifier such that
a pre-filtering system can be developed to identify novel
malware samples and sort out legacy malware that have
minor changes.

It can be concluded from the Table 7 that in most of
malware classes, the proposed framework is capable to

report TPR very close to 1 and FPR close to 0. However,
in some cases, it reported low detection results. Low
detection results for some of malware classes may be due to
imbalance in sampling of malware dataset. The imbalance
in samples of malware dataset generally leads to biasing
of the classifier MLP towards a majority class and poor
classification of minority class samples.

Figure 3. Comparative results of the proposed framework in
terms of accuracy.

The problem of having a small number of Trojan sam-
ples classified as Adware can be caused by the fact that
some of the Adware samples actually are Trojans, which
have been used to install the Adware while running the
experiment. With this small amount of FPs the classifier
still performs satisfactory for Trojan. Similarly, for Trojan
Ransom the proposed framework reported satisfactory
results of accuracy of 98% with FPR 2%.

For Trojan-PSW, the proposed framework performs
well regardless of the low amount of samples, which
could be because of its distinct behavior. Therefore, it can
be used as pre-filtering criteria, but in order to ensure a
good performance, more samples should be used to train

Table 8. Comparative summary of the malware classification systems

Malware Classification System FPR FNR Recall Precision F-score

APIMDS [6] 0 0.0011 0.998 1 0.999

MSPMD [31] 0.613 0.038 0.962 0.959 0.960

(using ANN classifier)

The proposed framework 0.596 0.016 0.984 0.929 0.956

(Full feature set)

The proposed framework 0 0.000459 0.999 1 0.999

(Selected feature set)

Indian Journal of Science and TechnologyVol 10 (21) | June 2017 | www.indjst.org 12

Malware Classification Framework for Dynamic Analysis using Information Theory

the model. Similar case can be considered for other low
amount of samples. We compared the performance of the
proposed framework over two set of malware data con-
taining all features and selected set of features in terms of
accuracy as depicted in Figure 3. The results indicate that
the proposed framework has improved the results of mal-
ware classes to a significant level by using a selected set of
features over use of all features.

We analyzed the performance of the proposed frame-
work over two set of malware data containing all features
and selected set of features in terms of TPR as depicted
in Figure 4. The results indicate that the proposed frame-
work has improved the results of malware classes to a
significant level by using a selected set of features over use
of all features.

Figure 4. Comparative results of the proposed framework in
terms of TPR.

Figure 5. Comparative results of the proposed framework in
terms of precision.

Figures 5–7 depicts the result comparison of the pro-
posed framework in terms of precision, F- measure and
FPR respectively. The results indicate that the proposed

framework has improved the results of malware classes to
a significant level by using a selected set of features over use
of all features in terms of precision, F-measure and FPR.

Figure 6. Comparative results of the proposed framework in
terms of F-measure.

Figure 7. Comparative results of the proposed framework in
terms of FPR.

It can be concluded above cited paragraphs that the
proposed framework has shown significant improvements
of results in terms of accuracy, TPR, FPR, precision and
F-measure using selected set of features over all features
of malware dataset. Use of a selected set of features in the
proposed work is not only able to improve the malware
classification results but also requires less computation
cost in terms of CPU usage and memory usage.

Figure 8 depicted the comparison of the results for
the proposed technique with representative techniques in
the field.

It can be noticed from Figure 8 that the proposed
framework reported improved results than representative
techniques and proposed framework with all features in
terms of identified metrics.

In a nutshell, most of the malware classes have been
categorized by the proposed framework satisfactory using

Indian Journal of Science and Technology 13Vol 10 (21) | June 2017 | www.indjst.org

Ehsan Moshiri, Azizol Bin Abdullah, Raja Azlina Binti Raja Mahmood and Zaiton Muda

a subset of features quickly. This proves its validity for real
time detection of malware.

Figure 8. Comparative summary of the malware classification
systems.

5. Concluding Remarks and
Future Directions
In the study, we proposed a framework for effective analysis
and classification of malware. It extracts the dynamic raw
features from JSON reports and selects the most promising
features by using mutual information based upon informa-
tion theory. The features are selected by taking relevance,
redundancy and class conditional interaction information
into consideration. The feature selection process helps to
reduce the amount of data required for effective malware
analysis without compromising the accuracy. A MLP-NN
based classifier is trained based upon selected feature set
of malware training data and further used to predict the
family of unknown malware. Here, feature selection is
based upon computation of mutual information of all fea-
ture with target class and process is repeated to compute
relevance, redundancy and class conditional interaction
information. So, it is computationally expensive. This is
a major limitation of the proposed framework, which can
be addressed using parallel computing. Moreover, quality
of MLP-NN classifier can be further improved by training
using quality malware dataset. Availability of quality train-
ing dataset is a challenging task. We validated proposed
approach using a small subset of malware dataset only.
The applicability of the proposed approach can be tested
for different malware real datasets. So, our future research
will be to carry out more experiments by choosing differ-
ent malware datasets to improve the classification results.
Another direction for research work is to explore different
techniques to reduce the training time of MLP-NNs.

6. References
1. Krister KM. Automated analyses of malicious code.

Springer. 2006; 2:67–77.
2. Egele M, Scholte T, Kirda E, Kruegel A. A survey on auto-

mated dynamic malware-analysis techniques and tools.
ACM Computing Surveys (CSUR) USA. 2012; 44(2):6.

3. Moser C, Kruegel E, Kirda K. Limits of static analysis
for malware detection. Computer Security Applications
Conference, ACSAC Twenty-Third Annual, IEEE, Vienna;
2007. p. 421–30. Crossref

4. Cesare S, Xiang Y. Software similarity and classification.
Springer Science & Business Media; 2012. Crossref

5. Kane PO, Sezer S, Laughlin K. Obfuscation: The hidden mal-
ware. Security & Privacy, IEEE. 2011; 9(5):41–7. Crossref

6. Ki Y, Kim K, Kim HK. A novel approach to detect malware
based on API call sequence analysis. International Journal
of Distributed Sensor Networks; 2015. p. 4.

7. Sharif M, Yegneswaran V, Saidi H, Porras P, Lee W. Eureka: A
framework for enabling static malware analysis. Computer
Security-ESORICS Springer. 2008; 5283:481–500. Crossref

8. Ahmad S, Ahmad S, Xu S, Li B. Next generation malware
analysis techniques and tools. Electronics, Information
Technology and Intellectualization: Proceedings of the
International Conference EITI Shenzhen, China,CRC
Press; 2015. p. 17. Crossref

9. Gorecki C, Freiling FC, Kührer M, Holz T. Trumanbox:
Improving dynamic malware analysis by emulating the
internet. Stabilization, Safety, and Security of Distributed
Systems, Springer; 2011. p. 208–222. Crossref

10. Griffin K, Schneider S, Hu X, Chiueh TC. Automatic gen-
eration of string signatures for malware detection. Recent
advances in intrusion detection, Springer; 2009. p. 101–
120. Crossref

11. Tian R, Islam R, Batten L, Versteeg S. Differentiating
malware from cleanware using behavioural analysis. 5th
International Conference on Malicious and Unwanted
Software (MALWARE), IEEE, Australia; 2010. p. 23–30.
Crossref

12. Shankarapani MK, Ramamoorthy S, Movva RS,
Mukkamala S. Malware detection using assembly and
API call sequences. Journal in Computer Virology. 2011;
7(2):107–19. Crossref

13. Lee T, Mody JJ. Behavioral classification. EICAR
Conference, USA. 2006; 45(4):1–17.

14. Bailey M, Oberheide J, Andersen J, Mao ZM, Jahanian F,
Nazario J. Automated classification and analysis of inter-
net malware. Recent Advances in Intrusion Detection,
Springer; 2007. p. 178–97. Crossref

15. Rieck K, Holz T, Willems C, DüsselP, Laskov L. Learning
and classification of malware behavior. Detection of intru-
sions and malware, and vulnerability assessment, Springer;
2008. p. 108–25. Crossref

https://doi.org/10.1109/acsac.2007.21
https://doi.org/10.1007/978-1-4471-2909-7
https://doi.org/10.1109/MSP.2011.98
https://doi.org/10.1007/978-3-540-88313-5_31
https://doi.org/10.1201/b17988-6
https://doi.org/10.1007/978-3-642-24550-3_17
https://doi.org/10.1007/978-3-642-04342-0_6
https://doi.org/10.1109/malware.2010.5665796
https://doi.org/10.1007/s11416-010-0141-5
https://doi.org/10.1007/978-3-540-74320-0_10
https://doi.org/10.1007/978-3-540-70542-0_6

Indian Journal of Science and TechnologyVol 10 (21) | June 2017 | www.indjst.org 14

Malware Classification Framework for Dynamic Analysis using Information Theory

16. Bayer U, Comparetti PM, Hlauschek C, Kruegel C, Kirda
K. Scalable, behavior-based malware clustering. NDSS,
Citeseer, 9; 2009. p. 8–11.

17. Nari S, Ghorbani AA. Automated malware classification
based on network behavior. 2013 International Conference
on Computing, Networking and Communications (ICNC),
IEEE, Canada; 2013. p. 642–7. Crossref

18. Willems C, Holz T, Freiling F. Cwsandbox: Towards auto-
mated dynamic binary analysis. IEEE Security and Privacy.
2007; 5(2):32–9. Crossref

19. Bayer U, Moser A, Kruegel C, Kirda K. Dynamic analysis
of malicious code. Journal in Computer Virology. 2006;
2(1):67–77. Crossref

20. Rieck K. Malheur-automatic analysis of malware behavior.
2015.

21. Trinius P, Willems C, Holz T, Rieck K. A malware instruc-
tion set for behavior-based analysis; 2009. p. 1–11.

22. Sandbox C. Automated malware analysis. Germany; 2013.
p. 1–11.

23. VirusTotal, Virustotal-free online virus, malware and url
scanner [Internet]. [cited 2016 Jun 16]. Available from:
www.virustotal.com.

24. Bellman R. Adaptive control processes: a guided tour.
Princeton university press, Princeton, New Jersey, USA;
2007.

25. Sharma UM. Hybrid feature based face verification and
recognition system using principal component analysis
and artificial neural network. Indian Journal of Science and
Technology. 2015; 8(S1):115–20. Crossref

26. Das K, Ray J, Mishra D. Gene selection using information
theory and statistical approach. Indian Journal of Science
and Technology. 2015; 8(8):695. Crossref

27. Radhika S, Arumugam S. Improved non mutual informa-
tion based multi-path time delay estimation. Indian Journal
of Science and Technology. 2014; 7(8):1101–06.

28. Kumar G, Kumar K. An information theoretic approach for
feature selection. Security and Communication Networks.
2012; 5(2):178–85. Crossref

29. Shekar MS, Krishna PM, Venkatesan M. Artificial neural
network based prediction of pressure drop in heat exchang-
ers. Indian Journal of Science and Technology. 2015;
8(S9):87–92. Crossref

30. Kumar G, Kumar K. Ai based supervised classifiers:
An analysis for intrusion detection. Proceedings of
International Conference on Advances in Computing and
Artificial Intelligence, ACM, USA; 2011. p. 170–4. Crossref

31. Fan Y, Ye Y, Chen L. Malicious sequential pattern min-
ing for automatic malware detection. Expert Systems with
Applications. 2016; 52:16–25.

https://doi.org/10.1109/iccnc.2013.6504162
https://doi.org/10.1109/MSP.2007.45
https://doi.org/10.1007/s11416-006-0012-2
https://doi.org/10.17485/ijst/2015/v8iS1/57754
https://doi.org/10.17485/ijst/2015/v8i8/64508
https://doi.org/10.1002/sec.303
https://doi.org/10.17485/ijst/2015/v8iS9/65549
https://doi.org/10.1145/2007052.2007087

