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Abstract
Objectives: To build a model for the prediction of the code smells using the supervised learning techniques. The motive 
to build code smell prediction model is to propose a model with less false positive code smells. Also, the proposed model 
is cross validated using 10-fold cross validation Methods/Statistical Analysis: To build a smell prediction model, two 
code smell detection tools are used i.e. IPlasma and PMD. The metrics are extracted using understand and IPlasma. To 
achieve the above mentioned objective, two experiments are performed. One is using the code smells of the PMD and the 
other one is using the smells of the IPLasma. The smells of the PMD are associated with the metrics that are extracted 
using Understand. Then, the model is trained using the different supervised learning algorithms that are called classifiers 
i.e. Random Forest, Naïve Bayes and Kstar. Findings: In this research work, two experiments are performed. One is using 
the code smells of the PMD and other one is using the code smells of the IPlasma. From the results obtained i.e. with the 
code smells of the PMD, it is concluded that Random Forest predicts small number of false positive and false negative code 
smells as the precision and Recall of the Random Forest in each dataset is larger than the other two classifier’s. Moreover, 
the ROC value of Random Forest is higher in some datasets and in some datasets the ROC value of KStar is higher. The 
results obtained i.e. with the code smells of the IPlasma, it is concluded that again Random Forest predict code smells more 
correctly than the other two classifiers and give less number of false positive and false negative code smells.  Moreover, there 
is an exception, there is one dataset in which Random Forest and KStar both shows 100% accuracy  i.e., Precison and Recall 
both are equal to 1, which shows that both classifiers predicts no false positive and false negative code smells. Moreover, 
the ROC value of Random Forest is higher than the other two classifiers, even in some datasets it is equals to 1. Using this 
it is concluded that Random Forest gives the best code smell predicting model. Application/Improvements: The results 
of this experiments shows only one case where the false positive and false negative code smells are not predicted by the 
models. This can improve such that on apply each and every dataset it gives zero false positive code smells.

1. Introduction
Code smells are indications of inadequate design, which 
are implemented by the programmer at the time of the 
development of the software. KENT Beck defines the 
term code smells as: 

“Note that a code smell is a hint that something might 
be wrong, not a certainty. A perfectly good idiom may 
be considered a code smell because it’s often misused, 

or because there’s simpler alternative that works in most 
cases. Calling something a code smell is not an attack; it’s 
simply a sign that a closer look is warranted”.1

The structural characteristics of software are code 
smells that indicates that something is wrong, or the soft-
ware may have some design problem and it can make 
difficult to maintain the software. Code smells are very 
helpful in refactoring the software; it will enhance the 
interior quality of the software. The quality and mainte-
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nance of the software are negatively affected by the bad 
code smells. Removal of these bad code smells is very cru-
cial and to remove them, a process called refactoring is 
required. There are a number of techniques available for 
refactoring. The technique required to remove the code 
smell will differ for smell to smell. Refactoring is used to 
enhance the quality of the software and also to improve 
the maintenance of the software by removing the code 
smells from the system.2

There is no exact definition of code smells as these are 
subjective in nature. The different author explains differ-
ent code smells, even gives different definitions of code 
smells. Back and Fowler gives an informal definition of a 
set of a 22 bad code smells and also provide the refactor-
ing strategies to remove them.1

Whenever the developers finds any bad code smells, 
the very first thing that they should do is to evaluate 
whether the presence of code smell clues the relevant 
degradation in the code structure, and if they found the 
results positive, then they should decide the refactoring 
used to remove them. There is no need to remove all the 
code smells from the code, what type of code smells needs 
to be removed is completely depends on the system. If a 
particular code smell is found it needs to be removed, 
then it’s better to remove it as early as possible. To remove 
them, it is required to detect the code smells first. For the 
detection of the code smells there is a support of automatic 
detection tools. These tools are very helpful as there are 
many smells which go unobserved by the programmers. 
However, the conceptions of bad smells is undefined and 
are subjectively interpreted. Different tools may provide 
different results when they analyze the same system as the 
various detection techniques used by the tools.2

1.1 Code Smell Detection
Nowadays there is raising a number of tools available for 
the analysis of the software that detects bad programming 
errors, identifying bad programming practices, highlight-
ing unusual errors, and in general raise the knowingness 
of the software engineer about the structural character-
istics of the program under development.  Some of these 
tools detect bad code smells at the time of programming, 
and some of them are used to identify after the comple-
tion of the programming phase. As different tools use 
different detection rules, their results may also differ even 
if the tools are applied on the same source code.3

These tools are very useful in detecting the bad code 
smells and improving the quality and maintainability of 
the software project. But there is a problem with this soft-
ware’s. The problem is that they give many false negative 
results as well. Means when these bad code smells are 
manually validated by researchers they found that among 
the detected smells, there are many smells detected by the 
tools which are not bad smells in actual, i.e. false nega-
tive results. Because of this weak point, it is required to 
build a model that can give better results, or a model that 
can reduce the number of false negative bad code smells. 
In this research work, detected bad code smells of open 
source software source code are collected from the differ-
ent tools and extract metrics of the same source code using 
open source tool. After that, the code smells are associ-
ated with the metrics. Then, this dataset is used to build 
a model for the detection/prediction of bad code smells 
with less false negative results using supervised learning 
techniques. In other words, a model with a better accuracy. 
The extracted metrics represent the independent variables, 
and the code smells dependent variables in the machine 
learning approach. After the experiment, comparison will 
be done to compare the performance of the classifiers that 
are used to train the models. At last, compare the results of 
the proposed model using cross validation techniques. For 
this purpose, two experiments are performed and in both 
experiments different tools are used for detection of bad 
code smells and different tools for the extraction of metrics. 
Even different code smells and metrics are used in both the 
experiments. The reason behind performing two tests is 
to analyze the results of the classifier. To check the perfor-
mance of the classifier in each case in a manner that does 
the performance of the classifier affected with the change 
of the dataset. To answer these few questions, two experi-
ments are performed.

The codes smells are subjective, different authors 
explain them differently. This section discusses an over-
view of the smells that are defined by various authors. 
Substantial work has been carried in the area of bad smells. 
The review of those work covered in this literature review.

In the reported article introduced the concept of code 
smells and produced an original catalog of twenty-two 
smells providing heuristics of qualitative nature for their 
detection.4 After evaluation of Fowler’s code smell, the 
author investigated the relationship between the bad code 
smells and class error probability in three severity levels 
as High (Blocker and Critical), Medium (Major), and 
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Low (Normal and Minor).5 He also suggested that refac-
toring a class besides improving the architectural quality, 
reduces the probability of the class having errors after a 
system is released, because the probability of these classes 
having errors is very small. The author extended his pre-
vious work in  which author investigated the relationship 
between the bad smells and class error probability.5,6 In 
the examined three releases of Eclipse project to answer 
the question “whether the software metrics are still able 
to guess the class error-proneness of the post-release evo-
lution of the system’s?”6 The author found out that there 
are still some software metrics which can still predict the 
class proneness in three error severity categories. In the 
reported article had worked on the effectiveness of encap-
sulation and object oriented metrics to re-factor code and 
identify error-prone classes using bad smells.7 

Till now the focus of several authors are on the bad 
code smells, but in the coming paragraphs, the author 
concentrated on the detection tools of these bad code 
smells. The detection of code smells can either be manual 
or automated. The manual approach frequently involves 
subjective assessment, whereas the automated include 
software metrics, heuristics, and tools. In the proposed a 
procedure which is based on manual detection to detect 
the code smells for quality assessments.8 The manual 
approach poses several limitations, such as lack of scal-
ability and subjective bias. In the reported article that 
manually detected code smells depend much on the expe-
rience level of the subjects performing the detection (e.g. 
experienced developers identified complex smells more 
frequently than the less experienced).9 Most detection 
approaches for code smells are automated. Earlier work 
suggested the use of metrics to identify situations where 
particular refactoring is needed but did not provide any 
formal specification of code smells. In the proposed 
article a language to detect code smells and other viola-
tions of code quality principles.10 In the proposed article a 
detection and resolution sequence for duplication code., 
Long method, Large class, Long parameter list, Feature 
envy, Primitive obsession, Useless fields, method, and 
class to simplify their detection and resolution to support 
more efficient refactoring.3 Despite the latest advances 
in automated code smell detection and several upcom-
ing commercial tools, there are no conclusive answers to 
whether automated approaches provide better support for 
refactoring decision than manual procedures.  The author 
in the Studies several tools for the automate detection of 
bad smells.3 In the study the author found 84 tools; 29 
of them are available online for download, and these tool.

Aim to detect 61 bad smells. The author also target 
different programming language, such as C, C++, and 
C#. The author also present a comparative study of four 
detection tools concerning two bad smells: Large Class 
and Long Method. The author also focuses on the detec-
tion tools and reviews the current panorama of the tools 
for automatic code smell detection.11 Last two reviews 
focused on the detection tools, but the author develops 
a metrics model to identify the smelly classes and also 
validate that through the identification of the smelly 
and error prone classes.12 The author also investigated 
two metrics (encapsulation and information hiding) for 
identifying smelly and faulty classes in software code. To 
develop this model the author examined the three ver-
sion of the open source project i.e. Mozilla Firefox. The 
author studied several refactoring tools mainly based on 
Java on its usability and discussed the automation of dif-
ferent code smells.13

2. Experimental Approach
To predict a model for the prediction of smells, it is 
required to follow an approach. The very first thing is to 
select open source software system on which the experi-
ment is performed. Next step is to extract the metrics for 
the selected software system. In this work, only object 
oriented metrics are extracted. Later on these metrics are 
considered as independent variables in the supervised 
learning approach which is used to train the model. After 
the extraction of metrics, the smells are being detected 
using the detection tools. In this research work PMD 
and IPlasma is used for the detection of smells. Next the 
extracted code smells are associated with the metrics. 
This association is done manually. Using this approach, 
one more label is added that shows whether the class is 
affected by smell or not in the dataset. This will be the 
final dataset on which the experiment is going to be 
performed and different machine learning algorithm is 
applied to trained the model which is used for the predic-
tion of the smelly classes. After the training phase testing 
is performed using the same supervised learning algo-
rithms and check for the accuracy of the model. 

2.1 Data Collection

2.1.1 Selected Code Smells 
For this research work, number of smells has been cho-
sen  that are detected using two automatic detection tools 
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i.e. PMD and IPlasma, IPlasma is a standalone software, 
whereas PMD is a Plug in of Eclipse. The smells that are 
detected by PMD are Data Clumps, Long Parameter 
List, Long Method, Large Class, and Dead code whereas 
IPlasma is used to detect God Class, Brain Class, Refused 
Parent Bequest and Data class code smells.

2.1.2 Selection of Open Source Software System 
For this research work, different versions of open source 
system ArgoUML are considered. The reason for the 
selection is that this is an open source system, and is 
freely available online; also these source codes are com-
piled correctly and computed its metrics value. For 
this research work five version of Argouml are selected 
i.e., Argouml_0.24, Argouml_0.28, Argouml_0.30, 
Argouml_0.34

2.1.3 Metrics Extraction 
For this research work, object-oriented metrics are com-
puted that are considered as independent variables in our 
machine learning approach. The metrics are computed 
using two tools: Understand and IPLasma. These metrics 
are widely used in the literature and are well known as 
well. The chosen metrics are reported in Table 1, clas-
sified under six quality dimensions of object-oriented 
software.14-17

2.1.4 Smell Detection Tools
For this experiment, number of tools analyze many tools, 
some of them are PMD, Checkstyle, JDeodrant, Robust, 
etc. but there are only two tools that are finalized for 
this experiment, i.e., IPlasma and PMD. These tools are 
selected as both are simply available online, understand-
able, and the best thing is their results are easily decodable. 
PMD shows smells in the form of violations. These viola-
tions are then categorized into smells. Table 2 shows the 
mapping of violations with code smell.

2.2 Association and Labelling
In this phase, the association of detected code smells with 
the extracted metrics is to be done. Here two tools are 
used to obtain the code smells i.e. IPlasma and PMD. 
The smells obtained from PMD are associated with the 
metrics that are extracted from the tool Understand, 
whereas there is no need to manually associate the smells 
of IPlasma, as the metrics are used in this experiment are 
derived from IPlasma itself. After the procedure of asso-
ciation, labelling is to be performed. Labelling of bad code 
smells with the metrics means that we are going to label 
each class of the source code with an entry i.e. smelly or 
non-smelly which indicates whether that particular class 
is affected by any smell or not.

Finally, a dataset is obtained. This data set is then used 
for the training and testing purpose of the smell predic-
tion model.

Using this procedure total ten datasets are obtained, 
two for each version of ArgoUML (one dataset is formed 
using PMD smells and with the metrics of the Understand, 
and the other one is formed using IPlasma). 

The number of instances is different in various version 
of ArgoUML. The details of the instances and number of 
smelly instances from them of all the version is given in 
Table 3.

3. Experimental Setup
This work is experimented, by selecting three suitable 
supervised learning algorithms i.e. Naïve Baye KStar and 
Random Forest and testing them on the generated data-
sets by trained them using immediate previous version 
of ArgoUML.18-21 After that, cross-validation is done to 
validate the results of the performed experiments using 
ten-fold cross-validation. 

For each version, two datasets have been created. One 
is created using the smells of the PMD, and the other is 

Table 1. List of Metrics

Tools Size Complexity Cohesion Coupling Encapsulation Inheritance
UNDERSTAND WMC LCOM CBO

RFC
DIT
NOC
NIM

IPLASMA NOM
NOA
LOCC

AMW
WOC
WMC

TCC ATFD
CBO
CC
CM
FANOUT

NOAM DIT
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being created using the smells of IPlasma.22,23 The smells 
that are selected for this experiment are already men-
tioned in the above sections, also both the datasets have 
different metrics, and the list of metrics is also given in 
Table 1.

Table 2. Mapping of PMD Violations with code smells

Sl. No Smell Violations
1. Data clumps Too many fields
2. Comments Comment is too large
3. Long 

parameter list
Parameter list is too long

4. Duplicate code Duplicate imports
Consecutive strings
Occurrence 

5. Large class God class
Too many methods
Long class

6. Long method Long method
NPath complexity
Cyclomatic complexity

7. Dead code Empty catch block
Empty if statement
Empty block statement
Document empty method body
Document empty constructor

In each dataset, each row represents class instances 
and has one attribute for each metric. Besides, a binary 
value represents the label that shows whether the instance 
is affected by code smells or not. 

The supervised learning algorithm that selected cov-
ers different machine learning approaches, i.e., Decision 
tree, the Bayesian network, K-Nearest neighbor. The 
implementation of these algorithms is available in weka.24

The aim of the cross-validation is to validate the results 
of the predicted models. For this, we selected four stand-

Table 3. Detail summary of smelly classes

Dataset Argouml_Version Total no. 
of classes

Smelly 
class

Percentage of smelly 
classes

PMD_SMELLS 
+ METRICS OF 
UNDERSTAND

Argoum_0.24 1703 335 19.67%
Argouml_0.28 2396 316 13.19%
Argouml_0.30 2707 312 11.53%
Argouml_0.30.1 2738 312 11.39%
Argouml_0.34 2412 474 19.65%

IPLASMA 
(BOTH 
METRICS AND 
SMELLS)

Argouml_0.24 1771 92 5.19%
Argouml_0.28 2377 162 6.82%
Argouml_0.30 2687 167 6.22%
Argouml_0.30.1 2708 168 6.20%
Argouml_0.34 2355 168 7.13%

Table 4. Extracted smells summary using PMD

Dataset PMD SMELLS

Dataclumps Long 
parameter_
list

Duplicate 
code

Large 
class

Long 
method

Deadcode

Argouml_0.24 20 1 22 257 203 113

Argouml_0.28 15 0 16 222 178 141

Argouml_0.30 14 0 16 219 177 144

Argouml_0.30.1 14 0 16 219 177 144

Argouml_0.34 21 3 91 317 240 212
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alone performance measures: F-Measures, ROC, Recall 
and Precision. These four criteria explain the different 
point of views of the performance of the predictive models. 

3. Experimental Results
In this section, the data collected data is described, the 
experiments performed on them and their results as well. 

Table 4 shows the detailed summary of the smells that 
are extracted using PMD. At the time of smell extraction 
and association of PMD code smells with the metrics, a 

difference between the smells that are detected by PMD 
and the code smells after the association of smells is found. 
This means that there are some classes which is smelly 
according to the PMD but are not present in` the metrics 
dataset  that are extracted by Understand. But these differ-
ences is found in few classes only and are ignorable. Table 
5 explains the detailed summary of the smells which are 
extracted by IPLasma. Table 5 shows the total number of 
instances/classes, a number of smells found of the par-
ticular type and the last columns shows the total number 
of classes which are affected by the smells.

Table 5. Extracted smells detailed summary using IPLasma

Dataset Total number of 
classes

Brain class Data class God class Refused parent 
bequest

Total smelly 
classes

Argouml_0.24 1771 10 17 62 6 92
Argouml_0.28 2377 21 71 61 14 162
Argouml_0.30 2687 21 71 68 13 167
Argouml_0.30.1 2708 21 71 69 13 168
Argouml_0.34 2355 20 74 69 10 168

Table 6. PMD evaluated instances summary details

Dataset Classifier Total instances 
evaluated

Correctly evaluated 
instances (%)

Incorrectly evaluated 
instances (%)

Dataset
training dataset-
Argouml_0.24   &&  
testing dataset- 
Argoum_0.24

Naïve Bayes 1703 86.7293 13.2707
KStar 98.121 1.879
Random Forest 98.7082 1.2918

Training dataset-
Argouml_0.24   &&  
testing dataset- 
Argoum_0.28

Naïve Bayes 2396 85.5593 14.4407
KStar 89.1486 10.8514
Random Forest 89.2738 10.7262

Training dataset-
Argouml_0.28   &&  
testing dataset- 
Argoum_0.30

Naïve bayes 2707 88.5482 11.4518
KStar 97.0816 2.9184
Random Forest 97.3033 2.6967

Training dataset-
Argouml_0.30   &&  
testing dataset- 
Argoum_0.30.1

Naïve Bayes 2738 88.6413 11.3587
KStar 98.466 1.534
Random Forest 98.8678 1.1322

Training dataset-
Argouml_0.30.1  
&&  testing dataset- 
Argoum_0.34

Naïve Bayes 2412 84.8611 15.1389
KStar 90.5848 9.4152
Random Forest 90.6263 9.3737
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Table 7. IPLasma evaluated instances summary details

Dataset Classifier Total instances 
evaluated

Correctly evaluated 
instances (%)

Incorrectly 
evaluated 
instances (%)

training dataset-
Argouml_0.24   &&  
testing dataset- 
Argoum_0.24

Naïve Bayes 1771 95.8216 4.1784
KStar 100 0
Random Forest 100 0

Training dataset-
Argouml_0.24   &&  
testing dataset- 
Argoum_0.28

Naïve Bayes 2377 94.1944 5.8056
KStar 96.0034 3.9966
Random Forest 97.2655 0.7345

Training dataset-
Argouml_0.28   &&  
testing dataset- 
Argoum_0.30

Naïve bayes 2687 93.8221 6.1779
KStar 99.2929 0.7071
Random Forest 99.5162 0.4838

Training dataset-
Argouml_0.30   &&  
testing dataset- 
Argoum_0.30.1

Naïve Bayes 2708 93.72 6.28
KStar 99.8892 0.1108
Random Forest 99.9631 0.0369

Training dataset-
Argouml_0.30.1  
&&  testing dataset- 
Argoum_0.34

Naïve Bayes 2355 92.7389 7.2611
KStar 99.3631 0.6369
Random Forest 99.7028 0.2972

Table 8. Classifier results (PMD)

Dataset Classifier Precision Recall F-Measure Roc Best/Classifier Worst 
Classifier

Training Dataset-
Argouml_0.24   
&&  Testing 
Dataset- 
Argoum_0.24

Naïve Bayes 0.858 0.867 0.858 0.835 Random Forest Naïve Bayes
Kstar n0.982 0.981 0.981 0.998
Random Forest 0.987 0.987 0.987 0.999

Training Dataset-
Argouml_0.24   
&&  Testing 
Dataset- 
Argoum_0.28

Naïve Bayes 0.857 0.856 0.856 0.798 Kstar Naïve Bayes
Kstar 0.904 0.891 0.897 0.912
Random Forest 0.907 0.893 0.898 0.909

Training Dataset-
Argouml_0.28   
&&  Testing 
Dataset- 
Argoum_0.30

Naïve Bayes 0.867 0.885 0.873 0.811 Kstar Naïve Bayes
Kstar 0.97 0.971 0.97 0.988
Random Forest 0.974 0.975 0.974 0.986

Training Dataset-
Argouml_0.30   
&&  Testing 
Dataset- 
Argoum_0.30.1

Naïve Bayes 0.872 0.886 0.877 0.817
Kstar And 
Random Forest

Naïve Bayes
Kstar 0.985 0.985 0.984 0.998
Random Forest 0.988 0.988 0.988 0.998

Training Dataset-
Argouml_0.30.1  
&&  Testing 
Dataset- 
Argoum_0.34

Naïve Bayes 0.85 0.849 0.824 0.842 Random Forest Kstar
Kstar 0.865 0.906 0.895 0.788
Random Forest 0.873 0.907 0.897 0.889



Indian Journal of Science and TechnologyVol 10 (24) | June 2017 | www.indjst.org 8

Improving Smell Prediction: Developing an Improved Model with Supervised Learning Techniques

Table 9. Classifier results (IPLasma)

Dataset Classifier Precision Recall F-Measure ROC Best/Classifier Worst 
Classifier

Training Dataset-
Argouml_0.24   &&  
Testing Dataset- 
Argoum_0.24

Naïve Bayes 0.963 0.958 0.96 0.936 Kstar And 
Random Forest

Naïve Bayes
Kstar 1 1 1 1
Random 
Forest

1 1 1 1

Training Dataset-
Argouml_0.24   &&  
Testing Dataset- 
Argoum_0.28

Naïve Bayes 0.938 0.942 0.94 0.788 Random Forest Naïve Bayes
Kstar 0.957 0.96 0.955 0.945
Random 
Forest

0.972 0.973 0.97 0.95

Training Dataset-
Argouml_0.28   &&  
Testing Dataset- 
Argoum_0.30

Naïve Bayes 0.939 0.938 0.938 0.868 Random Forest Naïve Bayes
Kstar 0.993 0.993 0.993 0.993
Random 
Forest

0.995 0.995 0.955 1

Training Dataset-
Argouml_0.30   &&  
Testing Dataset- 
Argoum_0.30.1

Naïve Bayes 0.938 0.937 0.938 0.857 Random Forest Naïve Bayes
Kstar 0.999 0.999 0.999 0.999
Random 
Forest

1 1 1 1

Training Dataset-
Argouml_0.30.1  
&&  Testing Dataset- 
Argoum_0.34

Naïve Bayes 0.929 0.927 0.928 0.842 Random Forest Naïve Bayes
Kstar 0.994 0.994 0.994 0.991
Random 
Forest

0.997 0.997 0.997 0.996

Table 10. Cross-Validation Results (PMD)

Testing Dataset Classifier Precision Recall F-Measure Roc Best/Classifier Worst 
Classifier

Argouml_0.24   Naïve Bayes 0.851 0.861 0.852 0.831 Random Forest Naïve Bayes
Kstar 0.853 0.861 0.855 0.888
Random 
Forest

0.875 0.88 0.876 0.907

Argoum_0.28 Naïve Bayes 0.86 0.879 0.864 0.806 Random Forest Naïve Bayes
Kstar 0.878 0.89 0.882 0.881
Random 
Forest

0.881 0.891 0.884 0.889

Argoum_0.30 Naïve Bayes 0.868 0.883 0.874 0.813 Random Forest Naïve Bayes
Kstar 0.887 0.898 0.89 0.888
Random 
Forest

0.894 0.905 0.897 0.891

Argoum_0.30.1 Naïve Bayes 0.87 0.884 0.875 0.808 Random Forest Naïve Bayes
Kstar 0.883 0.896 0.887 0.886
Random 
Forest

0.887 0.9 0.89 0.888

Argoum_0.34 Naïve Bayes 0.85 0.861 0.848 0.836 Random Forest Naïve Bayes
Kstar 0.865 0.872 0.867 0.892
Random 
Forest

0.873 0.879 0.874 0.911
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Table 6 shows the detailed summary of the instances 
that are evaluated by the classifiers. In Table 6, the first 
column shows the detail of dataset, here the dataset which 
is created by using PMD code smells. The next column 
shows the classifier. Each dataset is evaluated using three 
classifiers (Naïve Bayes, KStar and Random Forest). In 
the next column, total number of instances that are evalu-
ated. The last two columns show the details of correctly 
classified instances and incorrectly classified instances 
in percentage Table 6 shows that Random Forest classi-
fier evaluates instances more correctly than the other two 
classifiers.

Table 7 shows the detailed summary of instances of 
the dataset which is created by using the code smells of 
IPLasma. This dataset is also evaluated using the same 
classifiers. Table 7 shows that Random Forest more cor-
rectly classifies the instances than the other two. Even 
in the first dataset, it classifies all the instances correctly 

i.e. 100%. But there are exception in one case, that is in 
Dataset 4. In dataset 4 KStar classifies the instances more 
correctly than Random Forest.

Table 8 shows the results of the classifier. There are 
Four performance parameters are used to measure the 
performance of the proposed model i.e. Precision, Recall, 
F-measure, and ROC. Table 8 shows the results of the clas-
sifiers which are applied on the PMD dataset. The Table 
8 shows that the best performance is given by Random 
Forest in some datasets and in some datasets it is given 
by KStar whereas Naïve Bayes gives the worst results. It is 
also noticed that in dataset 1 the ROC value of Random 
classifier is 0.999, which shows that its accuracy is out-
standing.

Table 9 shows the results of the classifier which are 
applied on the IPlasma dataset. Table 9 shows that the best 
performance is obtained by using the classifier Random 
Forest. Even in some cases, it shows the value of ROC 

Figure 1. ROC Curve for the PMD datasets.

Figure 2. ROC Curve for the IPlasma datasets.
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nearly 1, which means the model, predicts the code smells 
100% accurately. There is one exception, where KStar also 
shows 100% accuracy. As in the case of PMD dataset, the 
worst performance in this case is also given by classifier 
naïve Bayes.  

Figure 1-2 shows the line graph for the ROC values 
of each classifier for each dataset. ROC is a plot of true 
positive rate against false positive rate as the distinction.

Threshold of the classifier is varied. The area under 
ROC gets close to value 1 when the discrimination per-
forms better, while a bad classification brings value close 
to 0.5.

Table 10 and 11 shows the cross-validation results of 
the experiments. The cross validation was done using the 
ten cross fold. In 10 fold cross validation, in which the 
data breaks into ten sets of equal size and then trained 
the model using nine datasets and perform testing on 
1. This process is repeat for ten times, and the mean of 
the performance measures is taken. Table 10 shows the 
cross-validation results for the PMD datasets. This will 
show that the highest performance is achieved using the 
classifier Random Forest. There is a very small differ-

ence in the results of the classifier and cross- validation. 
There are  two classifier (KStar and Random Forest) in the 
above results  that shows the highest performance but on 
cross-validating it is found that only one of them is show-
ing the best performance i.e. Random Forest, whereas 
the worst performance is given by naïve Bayes in both 
the cases. Table 11 shows the cross-validation results for 
the IPLasma dataset. Table 11 shows that the best per-
formance is achieved by again by the classifier Random 
Forest. The proposed model also shows that the Random 
Forest is the good predicting classifier. The worst perfor-
mance is obtained by naïve Bayes.

5. Conclusion
In this paper, study of different tools that are used for the 
detection of code smells has been done. From the study, 
it is concluded that there are two tools i.e. PMD and 
IPlasma which are easily available online and the code 
smells detected by them are easily interpretable. Although 
PMD is not as simple as IPlasma, but a small study of the 
violations make it very easy to interpret the smells of the 

Table 11. Cross-Validation Results (IPlasma)

Dataset Classifier Precision Recall F-Measure Roc Best/Classifier Worst 
Classifier

Training Dataset-
Argouml_0.24   &&  
Testing Dataset- 
Argoum_0.24

Naïve Bayes 0.962 0.957 0.959 0.937 Random Forest Naïve Bayes
Kstar 0.969 0.984 0.97 0.964
Random 
Forest

0.987 0.987 0.986 0.989

Training Dataset-
Argouml_0.24   &&  
Testing Dataset- 
Argoum_0.28

Naïve Bayes 0.935 0.935 0.935 0.839 Random Forest Naïve Bayes
Kstar 0.955 0.959 0.955 0.95
Random 
Forest

0.983 0.983 0.983 0.993

Training Dataset-
Argouml_0.28   &&  
Testing Dataset- 
Argoum_0.30

Naïve Bayes 0.938 0.936 0.937 0.829 Random Forest Naïve Bayes
Kstar 0.959 0.962 0.962 0.957
Random 
Forest

0.986 0.986 0.984 0.994

Training Dataset-
Argouml_0.30   &&  
Testing Dataset- 
Argoum_0.30.1

Naïve Bayes 0.938 0.936 0.937 0.853 Random Forest Naïve Bayes
Kstar 0.962 0.965 0.962 0.957
Random 
Forest

0.984 0.984 0.984 0.987

Training Dataset-
Argouml_0.30.1  
&&  Testing Dataset- 
Argoum_0.34

Naïve Bayes 0.929 0.929 0.929 0.832 Random Forest Naïve Bayes
Kstar 0.96 0.963 0.959 0.964
Random 
Forest

0.984 0.985 0.984 0.995
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PMD. These tools are further used in this research work 
for the prediction of the code smells. 

In this work, models are predicted that can be used for 
the prediction of the code smells. This work includes two 
experiments, using two different smell detection tools 
i.e. PMD and IPlasma. Both tools are used to detect dif-
ferent code smells. Three classifiers (Naïve Bayes, KStar 
and Random Forest) are used for predicting the code 
smell prediction models. From the results obtained it is 
concluded that Random Forest is the best code smell pre-
dicting model in both the experiments. 

Moreover, Naïve Bayes model for the code smell 
prediction, also predicted code smells well but Random 
Forest and KStar gives more useful output. Naïve Bayes 
models predicted IPlasma code smells more accurately 
than the code smells of the PMD.

Table 10 and Table 11 shows the results of cross-
validation for both PMD code smells and IPlasma code 
smells.  The results show that Random Forest models is 
the best code smell prediction models. Moreover,it is also 
noticed that for the prediction of code smells of IPlasma, 
Random Forest models are the best predicting model.  
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