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1.  Introduction

An independent approach in modern physics of any 
symmetry considerations at all is the study of a gravitational 
wave. Just as identical to water waves of small ripples 
rolling across the ocean, the name gravitational waves 
derive for their small ripples rolling across spacetime1-5. 
Space time is similar. Propagating through the universe, 
according to Einstein’s theory, must be a complex pattern 
of small-scale ripples in the space time curvature. These 
ripples are produced by binary stars, by supernovae, by 
gravitational collapse, by explosions in galactic nuclei. 
Locally, one can ignore the interaction of these ripples 
with the large-scale curvature of space-time and their 
nonlinear interaction with each other. One can pretend 
the waves propagate in flat space-time; and one can write 
down a simple wave equation for them. But globally one 
cannot. The large-scale curvature due to quiescent stars 
and galaxies will produce redshifts and will deform wave 
fronts; and the energy carried by the waves themselves 

will help to produce the large-scale curvature. The 
gravitational waves of our universe as propagating through 
flat, empty space time (local viewpoint). Then they can 
be analyzed using the linearized theory of gravity, which 
has an extant availability in texts on general relativity and 
its astrophysical consequences6-10. Linearized theory, one 
recalls, is a weak-field approximation to general relativity. 
The equations of linearized theory are written and 
solved as though space time were flat (special-relativity 
viewpoint); but the connection to experiment is made 
through the curved-space formalism of general relativity.

In the recent years, a huge attempt has been devoted 
to detect the gravitational waves, which finally led to their 
detection in 201611. A gravitational wave detector is even 
easier to analyze than the generator (for example, a binary 
system or a black-hole) when one deals with gravitational 
waves within the framework of general relativity. Potential 
detectors are usually installed in the solar system, where 
gravity is so weak and space-time so nearly flat that 
a plane gravitational wave coming in remains for all 
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practical purposes a plane gravitational wave. Moreover, 
the nearest source of significant waves is so far away that, 
for all practical purposes, one can consider the waves as 
plane-fronted when they reach the Earth. Consequently, 
as they propagate in the z -direction past a detector, they 
can be described to high accuracy by the transverse-
traceless linearized expressions. Because of the increasing 
importance of constructing gravitational waves detectors, 
we deal with the possible ways of building such detectors, 
in a mathematical viewpoint. The paper is organized as 
follows: In Section 2, we consider a resonant detector 
based on a definite pattern of an ideal detector. In Section 
3, we assume that this detector obeys polarized wave 
equations in the vibrationE kT  limit. In Section 4, we 
take into account small displacements and solve the wave 
equations which results in the determinations of the 
massive approximation. We conclude in Section 5.

2.   The Idealized Resonant 
Detector 

We consider the proper reference frame of a vibrating-bar 
detector. In such detectors, the bar hangs by a wire from 
a cross beam, which is supported by vertical posts (Figure 
1) that are embedded in the Earth. Consequently, the 
bar experiences a 4-acceleration given, by ˆ( / )g z= ∂ ∂a ,  
where g  is the local acceleration of gravity. Later, 
the spatial axes will have rotated relative to the bar, 
so the components of a  but not its magnitude will 
have changed. The proper reference frame relies on an 
imaginary clock and three imaginary gyroscopes located 
at the bar’s center of mass. Coordinate time is equal to 
proper time as measured by the clock, and the directions 
of the spatial axes ˆ

/ jx∂ ∂  are attached to the gyroscopes. 
The forces that prevent the gyroscopes from falling in the 
Earth’s field must be applied at the centers of mass of the 
individual gyroscopes.

The metric perturbation results in the Riemann tensor 
perturbations 
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These together, give the following stress-energy tensor:
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Figure 1.    A schematic view of the vibrating bar detector.

To analyze most easily the response of the detector 
to these impinging waves, use not the TT coordinate 
system { }xα  (which is specially “tuned” to the waves), 
but rather use coordinates ˆ{ }xα , specially “tuned” to the 
experimenter and his detector. The detector might be a 
vibrating bar, or the vibrating Earth, or a loop of tubing 
filled with fluid. But whatever it is, it will have a center of 
mass. Attached the spatial origin, ˆ

0jx = , to this center 
of mass; and attach orthonormal spatial axes, ˆ

/ jx∂ ∂ , to 
gyroscopes located at this spatial origin. If the detector is 
accelerating (i.e., not falling freely on a geodesic curve), 
make the gyroscopes accelerate with it by applying the 
necessary forces at their centers of mass. Use, as time 
coordinate, the proper time 0̂x τ=  measured by a 
clock at the spatial origin. Finally, extend these locally 
defined coordinates ˆxα  throughout all space time in the 
straightest manner possible.

Now let the 4-velocity, i.e. the tangential vector to the 
trajectory curve, measured by an observer. Whose proper 
time is measured by the parameter τ , be denoted by uα .  
The whole system would therefore obey the evolution 
equations12-17
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in which, , µνσΘ  and µνω  are respectively the 
scalar expansion, the symmetric traceless shear tensor 
and the anti-symmetric rotation tensor. Moreover 

2 2,µν µν
µν µνσ σ σ ω ω ω= =  and Cλνµρ  is the Weyl 

conformal tensor. Also hµν  is the projection tensor which 
for time-like curves is defined by 

.u uh gµν µν µ ν= +           (5)

The equations (4) deal with the kinematics of flows 
which are generated by vector fields. Such flows are indeed 
congruence’s of integral curves which may or may not 
be geodesics. Actually in the context of these equations, 
we are interested in the evolution of the kinematical 
characteristics of the so-called flows, not the origin of 
them. These characteristics which are contained in those 
equations, may constitute one equation like18 
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and the antisymmetric part is 

[ ].vµν ν µω = ∇            (7)

Geometrically, these quantities are related to a cross-
sectional area which encloses a definite number of integral 
curves and is orthogonal to them. Moving along the flow 
lines, this area may isotropsically changes its size or being 
sheared or twisted, however it still holds the same number 
of flow lines. There are some analogies with elastic 
deformations. Here we should note that the evolution 
equations may be essentially regarded as identities, which 
become equations when they are for example used in 
space-time defined by Einstein field equations. Moreover, 
thee equations are of first order and non-linear. Also 
the expansion equation is the same as Riccati equation 
in mathematical regards19. The expansion is indeed the 
change of the cross-sectional area which is orthogonal to 
the geodesic (or non-geodesic) bundle. 

Now for a detector which is falling on an integral curve 
in a weak gravitational system, the above formulations, do 
hold also when the waves impose small perturbations on 
the system. Regarding this, one can deal with the energy 
of the system, which the detector would feel. By using the 
advantage of the Hamilton-Jacobi equations, we have 

2( ) 0,g p p mcµ ν
µν + =           (8)

in which according to a parameterized trajectory 
bundle and in terms of the coordinates, pµ  is usually 
defined as19
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For a typical spherical metric 
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where 0x ct= . For a conformal spherically symmetric 
metric, with 00 ( )g B r= −  and 1( )rrg B r −=  where ( )B r  
is definitely dimensionless. One can write 
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For pure radial geodesics curves, this gives 
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Substitution of (11) and rearrangements result in
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Since each part of (15) has to be dimensionless, 
therefore we require that

2 2Dim[ ] .a mc=
        (14)

Equation (13), hinging on the energy definition 
0

00E g p= − , could be also written in the form
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This shows an explicit dependence on energy of the 
curves for any kind of objects which move on such curves 
which also holds for a detector. In the next section, we 
will use these mathematical descriptions to describe a 
polarized gravitational wave equation and the consequent 
adjustments needed for the detectors to function 
appropriately.

3.   The Polarization Limit and the 
Adjustments

One can derive all the results for vibrating, resonant 
detectors. To pattern the derivation after the treatment of 
the idealized detector we should let it be wave-dominated 
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( vibrationE KT
). We can show that the displacements 

x = (x, )tδ ξ  of its mass elements are described by

) ( ),( n
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where the time-dependent amplitude for the n th 
mode satisfies the driven-oscillator equation
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and where the curvature-induced driving term is
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To Fourier-analyze the amplitudes of the detector and 
waves, we have
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and solve the equation of motion (18) and (19), to 
obtain, in the neighborhood of resonance,
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Also to calculate the total energy deposited in the 
detector by integrating

3 per unit
energy
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We apply Parseval’s theorem and combine with 
expression (19) to obtain20-23
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where nσ  is given in23, and (for ω−∞ < < +∞ )
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It is shown that ( )ν ν  is the total energy per unit 

area per unit frequency carried by the waves past the 
detector24,25. One can obtain all the remaining cross sections 
by appropriate manipulations of this cross section25. In the 
next section, we use the mathematical tools for projecting 
out and integrating the transverse-traceless parts, which 
were developed the above discussions.

4.  Solving the Wave Equations

The observed period of quadrupole vibration of the earth 
is 54 minutes26,27. To analyze that mode of vibration, 
with all due allowance for elasticity and the variation of 
density in the earth, is a major enterprise. Therefore, for 
a first estimate of the cross section of the earth for the 
absorption of quadrupole radiation, one can treat it as a 
globe of fluid of uniform density held in the shape of a 
sphere by gravitational forces alone (zero rigidity). Let the 
surface be displaced from r a=  to

2 (cos )r a Paα θ= +        (25)

where θ  is polar angle measured from the North Pole 
and α  is the fractional elongation of the principal axis. 
The motion of lowest energy compatible with this change 
of shape is described by the velocity field
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which implies zero divergence and zero curl. The 
sum of the kinetic energy and the gravitational potential 
energy is derived as
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This shows that the angular frequency of the free 
quadrupole vibration is
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The reduced quadrupole moments are
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Therefore the rate of emission of vibrational energy, 
averaged over a period, is
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In this regard, the exponential rate of decay of energy 



Farrin Payandeh

Vol 10 (25) | July 2017 | www.indjst.org Indian Journal of Science and Technology 5

by reason of gravitational wave damping, or gravitational 
radiation line broadening, will be

2
GW

44
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       (31)

Finally, the resonance integral of the absorption cross 
section for radiation incident from random directions 
with random polarization is
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By evaluating this resonance integral, this model of 
a globe of fluid of uniform density would imply for the 
earth, with average density 5.517 3

gr

cm
, a quadrupole 

vibration period of 94 min, as compared to the observed 
54 min; and a moment of inertia 2(2 / 5)Ma as compared 
to the observed 20.33Ma . These can be estimated as the 
correction factors for both effects and give for the final 
resonance integral 25 cm Hz .

5.  Conclusion

We are considering a transverse-traceless configuration for 
a gravitational wave form, we calculated the perturbations 
for small displacements. This configuration was used in 
order to find applicable constructions for a gravitational 
wave detector, which is aimed to be installed in the solar 
system. The dynamic analysis of the idealized masses-
on-spring detector, as developed in our investigations, 
is readily extended to a vibrating detector of arbitrary 
shape. The extension was carried out in Section 3 and 
its main results are summarized in Section 4. Part of the 
energy that goes into a detector is reradiated as scattered 
gravitational radiation. For any detector of laboratory 
dimensions with laboratory damping coefficients, this 
fraction is fantastically small. However, in principle one 
can envisage a larger system and conditions where the 
re-radiation is not at all negligible. In such an instance 
one is dealing with scattering. The attempt here, was 
made to analyze such scattering processes. For a simple 
order-of-magnitude treatment, one can use the same type 
of scattering formula that one employs to calculate the 
scattering of neutrons at a nuclear resonance or photons 
at an optical resonance. In conclusion, the detectors are 
heavily based on the stress-energy tensors of the system, 
which are imposed on the space-time geometry and 
consequently, on the geometric congruence.

6.  Acknowledgements

This work has been supported by Payame Noor University.

7.  References
1. Greene J, Bailyn CD, Orosz JA. Optical and Infrared Pho-

tometry of the Micro quasar GRO J1655-40 in Quiescence. 
The Astrophysical Journal. 2001; 551(2):1290-97.  Crossref

2. Fabian AC, Pringle JE, Rees MJ. Tidal capture formation 
of binary systems and X-ray sources in globular clusters. 
Monthly Notices of the Royal Astronomical Society. 1975; 
172:15-8.  Crossref

3. Fabian AC, Ree MJ, Stella L, White NE. X-ray fluorescence 
from the inner disc in Cygnus X-1. Monthly Notices of the 
Royal Astronomical Society. 1989; 729:729-36.  Crossref

4. Fabian AC. Broad line emission from iron K- and L-shell 
transitions in the active galaxy 1H 0707-495. Nature. 2009; 
459:540-2.  Crossref  PMid:19478778.

5. Jiang J, Bambi C, Steiner JF. Using iron line reverberation 
and spectroscopy to distinguish Kerr and non-Kerr black 
holes. Journal of Cosmology and Astroparticle Physics. 
2015; 5:25.  Crossref

6. Jin C, Ward M, Done C, Gelbord J. A combined optical and 
X-ray study of unobscured type 1 active galactic nuclei - I. 
Optical spectra and spectral energy distribution modelling. 
Monthly Notices of the Royal Astronomical Society. 2012; 
420(3):1825-47.  Crossref

7. Esin AA, McClintock JE, Narayan R. Advection-Dominat-
ed Accretion and the Spectral States of Black Hole X-Ray 
Binaries. Application to Nova Muscae 1991. The Astrophys-
ical Journal. 1997; 489(2):865-89.  Crossref

8. Houck JC, Denicola LA. ISIS. An Interactive Spectral Inter-
pretation System for High Resolution X-Ray Spectroscopy. 
Astronomical Data Analysis Software and Systems IX, ASP 
Conference Proceedings. 2000; 216:591.

9. Jin C, Done C, Middleton M, Ward M. A long XMM-New-
ton observation of an extreme narrow-line Seyfert 1. PG 
1244+026. Monthly Notices of the Royal Astronomical So-
ciety. 2013; 436(4):3173-85.  Crossref

10. Brenneman LW, Reynolds CS. Constraining Black Hole 
Spin via X-Ray Spectroscopy. The Astrophysical Journal. 
2006; 652(2):1028-43.  Crossref

11. Abbott PB. Observation of Gravitational Waves from 
a Binary Black Hole Merger. Physical Review Let-
ters. 2016; 116:061102.  Crossref1  Crossref2  Crossref3  
PMid:26918975.

12. Fabian AC. Observational Evidence of Active Galactic Nu-
clei Feedback. Annual Review of Astronomy and Astro-
physics. 2012 Jun; 50:455-89.  Crossref

13. Greene JE, Ho LC. Active Galactic Nuclei with Candidate 
Intermediate-Mass Black Holes. The Astrophysical Journal. 
2004; 61(2):722-36.  Crossref

14. Hubeny I, Agol E, Blaes O, Krolik JH. Non-LTE Models and 
Theoretical Spectra of Accretion Disks in Active Galactic 

https://doi.org/10.1086/321411
https://doi.org/10.1093/mnras/172.1.15P
https://doi.org/10.1093/mnras/238.3.729
https://doi.org/10.1038/nature08007
https://doi.org/10.1088/1475-7516/2015/05/025
https://doi.org/10.1111/j.1365-2966.2011.19805.x
https://doi.org/10.1086/304829
https://doi.org/10.1093/mnras/stt1801
https://doi.org/10.1086/508146
https://doi.org/10.1103/PhysRevLett.116.131102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1146/annurev-astro-081811-125521
https://doi.org/10.1086/421719


Vol 10 (25) | July 2017 | www.indjst.org Indian Journal of Science and Technology6

A Note on Stimulus Gravitational Wave Detection

Nuclei. III. Integrated Spectra for Hydrogen-Helium Disks. 
The Astrophysical Journal. 2000; 533(2):710-28.  Crossref

15. Jin C, Ward M, Done C. A combined optical and X-ray 
study of unobscured type 1 active galactic nuclei - III. 
Broad-band SED properties. Monthly Notices of the Royal 
Astronomical Society. 2012; 425(2):907-29.  Crossref

16. Brenneman LW. The Spin of the Supermassive Black Hole 
in NGC 3783. The Astrophysical Journal. 2011; 736(2):10.  
Crossref

17. Hubeny I, Blaes O, Krolik JH, Agol E. Non-LTE Models 
and Theoretical Spectra of Accretion Disks in Active Ga-
lactic Nuclei. IV. Effects of Compton Scattering and Metal 
Opacities. The Astrophysical Journal. 2001; 559(2):680-702.  
Crossref

18. Emmanoulopoulos D, McHardy IM, Papadakis IE. Nega-
tive X-ray reverberation time delays from MCG-6-30-15 
and Mrk 766. Monthly Notices of the Royal Astronomical 
Society. Letters. 2011; 416(1):L94-8.  Crossref

19. Emmanoulopoulos D, Papadakis IE, Dovciak M, McHar-
dy IM. General relativistic modelling of the negative re-
verberation X-ray time delays in AGN. Monthly Notices 
of the Royal Astronomical Society. 2014; 439(4):3931-50.   
Crossref

20. Jamil O, Fender RP, Kaiser CR. iShocks. X-ray binary jets 
with an internal shocks model. Monthly Notices of the Roy-
al Astronomical Society. 2010; 401(1):394-404.  Crossref

21. Hubeny I, Lanz T. Non-LTE line-blanketed model atmo-
spheres of hot stars. 1: Hybrid complete linearization/accel-
erated lambda iteration method. The Astrophysical Journal, 
Part I. 1995; 439(2):875-904.  Crossref

22. Brenneman LW, Elvis M, Krongold Y, Liu Y, Mathur S. 
NGC 5548. Lack of a Broad Fe Kα Line and Constraints on 
the Location of the Hard X-Ray Source. The Astrophysical 
Journal. 2012; 744(1)(13):15.

23. Nayakshin S, Power C, King AR. The Observed M-σ Re-
lations Imply That Super-massive Black Holes Grow by 
Cold Chaotic Accretion. The Astrophysical Journal. 2012; 
753(1):7.  Crossref

24. Narayan R, Yi I. Advection-dominated accretion. A 
self-similar solution. The Astrophysical Journal. 1994; 
428(1): L13-6.  Crossref

25. Narayan R, Yi I. Advection-dominated accretion: Self-simi-
larity and bipolar outflows. The Astrophysical Journal, Part 
I. 1995; 444(1):231-43.  Crossref

26. Nayakshin S, Kazanas D, Kallman TR. Thermal Instability 
and Photoionized X-Ray Reflection in Accretion Disks. The 
Astrophysical Journal. 2000; 537(2):833-52.  Crossref

27. Brito R, Cardoso V, Pani P. Springer: Berlin: Lecture Notes 
in Physics. 3rd edn. 2015. 

https://doi.org/10.1086/308708
https://doi.org/10.1111/j.1365-2966.2012.21272.x
https://doi.org/10.1088/0004-637X/736/2/103
https://doi.org/10.1086/322344
https://doi.org/10.1111/j.1745-3933.2011.01106.x
https://doi.org/10.1093/mnras/stu249
https://doi.org/10.1111/j.1365-2966.2009.15652.x
https://doi.org/10.1086/175226
https://doi.org/10.1088/0004-637X/753/1/15
https://doi.org/10.1086/187381
https://doi.org/10.1086/175599
https://doi.org/10.1086/309054

