
Indian Journal of Science and Technology, Vol 10(25), DOI: 10.17485/ijst/2017/v10i25/105344, July 2017
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1. Introduction

Numerous scheduling schemes were created that are made
to attain their aims for instance economical use of process
elements, cutback of source idleness or reducing the
overall execution time. Certain strategies are particular
to a specific kind of multiprocessor architecture. Those
methods are introduced utilizing various techniques
for example Minimum Distance Strategy (MDS)1,
Hierarchical Balancing Method (HBM)2 etc. There
are algorithms which use as well as enhance the task
scheduling based on the forecast of procedure conduct.
Most of these algorithms deem the procedure conduct
extraction, category and prediction3. Iterative greedy
strategy can be a vital algorithm to reduce the whole
execution time and communication cost4. The primary
concept within this algorithm is always to enrich the top
notch of the assignment in an iterative fashion employing

outcomes from earlier iteration5. All these algorithms
are employed on particular parallel system along with
the performance has not been widely analyzed on a cube
kind of multiprocessor system. This paper is centered on
examine the scheduling issue on a cube multiprocessor
architecture6-7. The regular dynamic MDS algorithms
are intended initially for cube dependent multiprocessor
networks. Simulation outcomes are examined. The
comparison study based on numerous performance
parameters is performed on the outcomes received by the
algorithms.

The number of topology of the interconnection
network is vital in the layout of substantially parallel
computer systems. With in this paper top three cubes
based multiprocessor interconnection networks
are thought meant for simulation. Furthermore the
performance is usually examined for standard hypercube
(HC)8, Folded Hypercube (FHC)9 as well as Cross Cube

Abstract
Objectives: Topropose analgorithm for better performance interms of scheduling and the network usage is economical.
Method/Statistical Analysis: The dynamic task scheduling algorithm has been proposed for scheduling the load on
numerous cube based multiprocessor interconnection networks. Especially the efficiency of the proposed algorithm
is examined in terms of performance parameters for instance Load Imbalance Factor’s as well as Execution Time for
cube based multiprocessor networks; Nevertheless, a comparison is created with other standard scheduling algorithm.
Findings:The comparative simulation study shows that the proposed algorithm gives better performance in terms of task
scheduling on various cube based multiprocessor networks. Application: The study in such a direction implies that the
variety of processors in folded hypercube has been decreased thus minimizing the cost as well as intricacy of the network
without reducing the efficiency of the network. Therefore, a combination of scalable folded hypercube architecture and
efficient proposed algorithm is a better organization model that supports variety of informatics applications.

Keywords: Dynamic Scheduling Algorithm, Hypercube Networks, Interconnection Networks, Minimum Distance
Property, Scheduling Performance Parameter

Dynamic Scheduling Algorithm for Variants of
Hypercube Interconnection Networks

Zaki Ahmad Khan1*, Jamshed Siddiqui2 and Mahfooz Alam3

1College of Life Science Nanjing Agricultural University Nanjing, Jiangsu, China; t2016041@njau.edu.cn
2Department of Computer Science, Aligarh Muslim University, Aligarh – 202001, Uttar Pradesh, India;

Jamshed_faiza@rediffmail.com
3Department of Computer Science, Al- Barkaat College of Graduate Studies, Aligarh – 202002,

Uttar Pradesh, India; mahfoozalam.amu@gmail.com

Vol 10 (25) | July 2017 | www.indjst.org Indian Journal of Science and Technology2

Dynamic Scheduling Algorithm for Variants of Hypercube Interconnection Networks

(CQ)10-11-12 architecture and a comparative examine is
created. The vital properties of such interconnection
networks are provided in Table 1.
 Table 1. Comparison of Cube

Interconnection Network
Parameter HC FHC CQ
Nodes 2n 2n 2n

Diameter n n+1 N
Degree n n/2 ┌n+1/2┐
Cost n2 n/2*n+1 n┌(n+1)/2┐

2. Dynamic Scheduling Models

It presumes an effective problem characterization
through which the load is partitioned into numerous
tasks required for simulation. Every task is often regime
or maybe partitioned aspects of an individual program.
Virtually all the tasks are neutral to implement practically
in any processor at a series. The scheduling performance
of the method remains examined on the three distinct
networks by simulating imitation dynamic load. In
order to simulate the load on the given networks, it is
epitomized into two groups of task structures uniform
and non-uniformload4-5. For a worthwhile simulation,
tree structures that forms a representative sample of
programs are required that are to be executed on the
network. The tree is seen as a test problem whereby the
algorithms are to be applied. In the event of uniform load,
tasks are created in a deterministic fashion as a regular
tree. Every node of the tree represents a task, and carried
out in parallel in breadth-first influencing via the root
task which is earmarked to particular provided nodes of
the network. The amount of nodes in the task tree at level
shows a specific phase of the load. To manage depict non-
uniform load (non-deterministic load), the total problem
is invented to be an arbitrary tree which relax by itself level
by level13-14-15. A task scheduled on a processor spawns
an arbitrary or random number of subtasks, which are
part of the whole problem tree16.Thus the load on each
processor is varying at run time creating unbalance, and
balancer/scheduler has to be invoked after each stage17-18.

The version of parallel system whereby the task
assignment is performed includes couple of completely
linked processors or nodes. One can find no precedence
interactions between tasks as well as any task tend to be
executed cost. The total cost relies up on the mapping of
application as well as the communication cost sustained
in the network. In the proposed algorithm the tasks

are created in a kind of randomly on the processor. We
consider the pattern of structure namely purely random
task structure.

3. Proposed Dynamic Scheduling
Algorithm

The performance of a multiprocessor system may be
identified by communication holdup, syndication of
load among the processors as well as scheduling over-
head. There are plenty of algorithms that are influenced
by the theory of minimum distance characteristic.
Minimum distance is the character which guarantees
the minimization of the communication in distributing
subtasks and gathering narrow outcomes. A scheduling
algorithm works using this property for instance Minimum
Distance Scheduling (MDS) reduces over-head as well as
confirms the optimum achievable speedup, however, at
the cost of idle unconnected node(s). The Dynamic Task
Scheduling (DTS) Algorithm is an extension of MDS
algorithm. In this algorithm, the adjacency matrix of the
network is used to satisfy the minimum distance property.
A one in the matrix indicates a link between two nodes
whereas a zero indicates there is no link between nodes.
For load balancing, the MDS algorithm determines the
value of Ideal Load (IL) at various stages of the load (task
generation). The IL is figured out by summing the load of
every processor in the network separated by the amount
of processors obtainable in the network. The processors
having a load value greater than the IL are considered as
overloaded processors. Similarly, processors having lesser
load than the value of IL are termed as under loaded
processors. In other words the overloaded (donors) and
under loaded (acceptors) processors are identified based
on a threshold value known as IL. Each donor processor,
during balancing, selects tasks for migration to the
various connected and under loaded processors (i.e. the
processors having a one in the adjacency matrix) and
thus maintaining minimum distance. Mostly any load
balancing algorithm considers the overall load on the
network. However, in this algorithm the load is mapped
through various stages of the task structure.

The proposed Dynamic Task Scheduling (DTS)
Algorithm is dynamic in the logic that no previous grasp
of the load is expected. Decision of migration is taken on
the fly based on the current system utilization. Adequate
number of nodes with multiple paths are available that

Zaki Ahmad Khan, Jamshed Siddiqui and Mahfooz Alam

Vol 10 (25) | July 2017 | www.indjst.org Indian Journal of Science and Technology 3

may be considered as donor and acceptor nodes. Section
of nodes for task migration is challenging and instantly
moods the communication cost. To be able to decrease
the communication cost, the proposed scheme selects
directly connected nodes at first step for the purpose
of task migration. Though multi-hope section gives
minimum load imbalance and results minimum value of
LIF but with greater communication overhead. Therefore,
the Dynamic Task Scheduling (DTS) scheduling identifies
highly imbalance nodes irrespective of their connectivity.
After identification it searches those paths between these
nodes which require only a single intermediate node
that could be involved for task migration. The other
nodes though are imbalance, however, are not taken into
consideration for task migration. This technique assists
to manage the communication cost as well as over-head
on the scheduler. In order to render simulation, the tasks
are generated incrementally at various stages of task
structure. Each stage represents a particular state of the
task structure which consists of finite number of tasks.

The Load Imbalance Factor to zth stage, represented
as LIFz,
LIFz = [{Lz (Pi)} Max - (IL) z] / (IL)z (1)

Where,
(IL)z = [Lz (P0) + Lz (P1) +…+ Lz (PN-1)] / N, (2)

A pseudo code of the algorithm is shown in Table 2.

Algorithm: DTS
Proposed Algorithm ()
/* Theprocessor i with processor j. Assume the level of
connectivity is given (multiple level)*/
Int connected (inti, int j, int level) /* returns true if
processors i, j are connected */
{
If (level = = 1)
Returnadj [i] [j];
For (int k = 0; k <no_proc; k++)
 {
If (k = = i || k = = j) continue;
If (connected (i, k, level-1) = = 1 && connected (k, j,
level-1) = = 1)
 {
 Return 1;
 }
 }
Return 0;
End of procedure

Table 2. The Pseudo Code of Proposed Dynamic
Scheduling Algorithm

4. Simulations and Analysis of
Results

To draw general the effectiveness of the Dynamic Task
Scheduling (DTS), the simulation operate includes
numerous kinds of load as well as mapping these
on the cube networks for instance Hypercube (HC),
Folded Hypercube (FC) and Cross Cube (CQ). The
approximation of LIF is received for several amounts of
tasks and the task migration from one node to another
node is the form of packets namely one, four and eight.
The DTS and Minimum Distance property are directly
connected processors for migration.

Once MDS algorithm is executed on the cube based
network the task are slated with simply haphazard task
structures. The mapping of task is conducted at numerous
stages of task structures demonstrated in the shape
provided in Figure 1. It demonstrates that values of LIF
initially start minimizing with the rise in variety of tasks.
Even so, at many more tasks the scheduler unable to map
the task efficiently and hence LIF value becomes higher.

Figure 1. MDS Algorithm on Cube Based Network.

It is observed that the proposed algorithm producing
similar results in cube based networks. The time varies on
MDS and Other Scheduling Scheme on HC, FHC and CQ
networks. The time is continuously reducing and become
one at one thousand tasks. However, MDS Scheme shows
the lesser balancing time. This trend is depicted in Figure
2.

Vol 10 (25) | July 2017 | www.indjst.org Indian Journal of Science and Technology4

Dynamic Scheduling Algorithm for Variants of Hypercube Interconnection Networks

Figure 2. Time Graph of MDS Algorithm on Cube
Based Networks.

When comparing the simulation results it is observed
that the proposed Dynamic Task Scheduling (DTS)
algorithm producing similar results in cube based
networks. At higher levels of task structures the LIF is
increasing as well as tasks are not mapped efficiently.
When the numbers of tasks are increasing then initial
value of LIF is lesser as well as reducing. This trend is
depicted in Figure 3.

Figure 3. Proposed the Dynamic Task Scheduling
Algorithm on Cube Based Networks.

The performance results indicate the behavior of
balancing time of DTS algorithm Time verses Load
(Figure 4). It is observed from the curves that there is
regular pattern in the balancing time with load. The
tendencies of the tasks are irregular; consequently, the
balancing instance differs on DTS on the cube network.
The total execution time of DTS first begins minimizing
with the rise in number of tasks. The time is continuously
reducing and become one at one thousand tasks. However,
DTS Scheme shows the lesser balancing time.

Figure 4. Time Graph of DTS Proposed Dynamic
scheduling on Cube Based Networks.

The comparison made from the graphs based on
various simulation results, it may be concluded that DTS
scheme is performing well on FHC network considering
the factor of LIF and its balancing time. The scheduling
scheme is giving better results for FHC in comparison
to other tested networks for different types of loads.
Therefore, this can be concluded that DTS scheme and
FHC network is the better organization. The organization
is found to be performing better particularly for
unpredictable load.

The overall performance of the DTS Scheme is highly
dependent on the connectivity of the various processors
accessible in the network. Nevertheless, the algorithm
allows for the tasks to offered processors in the network
if these are linked directly as well as partially to indirectly
linked nodes the network whether they are connected
directly and partially to indirectly connected nodes. The
DTS scheme is better, degree of balancing is higher and

Zaki Ahmad Khan, Jamshed Siddiqui and Mahfooz Alam

Vol 10 (25) | July 2017 | www.indjst.org Indian Journal of Science and Technology 5

the network utilization is efficient and is ideally suited for
linear multiprocessor networks.

5. Conclusions

We proposed a new scheduling algorithm and applied
on various cube type multi processor interconnection
networks in terms of load imbalance left after a balancing
action and precious time. The efficiency of the DTS
algorithm is really based on the connection of the several
processors included in the network. Even so, the algorithm
permits tasks to the offered nodes in the network whether
these are linked instantly and also partially to in a round
about way linked processors. From the comparison
created on the graphs depending on numerous simulation
results, it may be concluded that DTS algorithm is
carrying out nicely from MDS algorithm in terms of LIF
on cube multiprocessor interconnection networks. The
DTS algorithm is more effective, the degree of balancing
is greater and the network usage is economical.

6. References
1. Khan ZA, Siddiqui J, Samad A. A novel multiprocessor ar-

chitecture for massively parallel system. Proceeding of the
2014 IEEE International Conference on Parallel, Distrib-
uted and Grid Computing (PDGC), India. 2014; p.68–73.
Crossref

2. Dodonov E, MelloRFd. A novel approach for distributed
application scheduling based on prediction of communi-
cation events. Future Generation Computer Systems. 2010;
26(3): 740–52. https://doi.org/10.1016/j.future.2009.05.004

3. Umarani GS, Uma VM, Shanthi AP, Siromoney A. Task
Scheduling Model. Indian Journal of Science and Technol-
ogy. 2015; 8(S7):33–42. Crossref

4. Kang Q, He H, Song H. Task assignment in heterogeneous
computing systems using an effective iterated greedy al-
gorithm. The Journal of Systems and Software. 2011;
84(2):985–92. Crossref

5. Shanmugasundaram M, Kumar R, Mallikarjun KH. Ap-
proaches for transient fault tolerance in multiprocessor-

A State of Art. Indian Journal of Science and Technology.
2015; 8(15): 1–9. Crossref

6. Rajak N, Dixit A, Rajak R. Classification of list task schedul-
ing algorithms: A short review paper. Journal of Industrial
and Intelligent Information. 2014; 2(4): 320–23. Crossref

7. Preve N. Balanced Job scheduling based on ant algorithm
for grid network. International Journal of Grid and High
Performance Computing. 2010; 2(1): 34–50. Crossref

8. Samad A, Siddiqui J, Khan ZA. Task allocation on linearly
extensible multiprocessor system. International Journal of
Applied Information Systems. 2016; 10(5):1–5. Crossref

9. Martelli F, Bonuccelli MA. Minimum message waiting time
scheduling in distributed systems. IEEE Transactions on
Parallel and Distributed Systems. 2013; 24(9):1797–1806.
Crossref

10. Alam M, Kumar A. A comparative study of interconnection
network. International Journal of Computer Applications.
2015; 127(4):37–43.

11. Saad Y, Schultz MH. Topological properties of hypercubes.
IEEE Trans. Computer. 1988; 37(7):867–72. Crossref

12. Amway ElA, Latifi S. Properties and performance of folded
hypercubes. IEEE Transactions on Parallel and Distributed
Systems. 1991;2(1):31–42. Crossref

13. Efe K. The crossed cube architecture for parallel compu-
tation. IEEE Transactions on Parallel and Distributed Sys-
tems. 1992; 3(5): 513–24. Crossref

14. Adhikari N, Tripathy CR. Star crossed cube: an alternative
to star graph. Turkish Journal of Electrical Engineering and
Computer Sciences. 2014; 22(3):719–34. Crossref

15. Samad A, Siddiqui J, Khan ZA. Properties and performance
of cube-based multiprocessor architectures. International
journal of applied evolutionary computation. 2016; 7 (1):
67–82. Crossref

16. Tandjaoui D, Doudou M. FH-MaC. A Multi-Channel hy-
brid MaC protocol for wireless mesh networks. Interna-
tional Journal of Grid and High Performance Computing.
2009; 1(4):40–56. Crossref

17. Khan ZA, Siddiqui J, Samad A. A novel task scheduling
algorithm for parallel system. Proceedings of 3rd Interna-
tional Conference on Computing for Sustainable Global
Development, INDIACom. India, 2016;p. 3983–86.

18. Bokhari MU, Alam M, Hasan F. Performance analysis of
dynamic load balancing algorithm for multiprocessor in-
terconnection network. Perspectives in Science. 2016;
8:564–66. Crossref

https://doi.org/10.1109/pdgc.2014.7030791
https://doi.org/10.1016/j.future.2009.05.004
https://doi.org/10.17485/ijst/2015/v8iS7/63120
https://doi.org/10.1016/j.jss.2011.01.051
https://doi.org/10.17485/ijst/2015/v8i15/55793
https://doi.org/10.12720/jiii.2.4.320-323
https://doi.org/10.4018/jghpc.2010092803
https://doi.org/10.5120/ijais2016451480
https://doi.org/10.1109/TPDS.2012.284
https://doi.org/10.1109/12.2234
https://doi.org/10.1109/71.80187
https://doi.org/10.1109/71.159036
https://doi.org/10.3906/elk-1202-44
https://doi.org/10.4018/IJAEC.2016010105
https://doi.org/10.4018/jghpc.2009070804
https://doi.org/10.1016/j.pisc.2016.06.021

