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1.  Introduction

Distributed computing emerged from decade to decade in 
the form of cluster, grid and cloud computing, has gained 
more popularity due to its capability to share the resources 
with low cost and more reliability1,2. Cluster computing 
provides access to powerful computers connected by 
high speed networks for fast and reliable execution 
of compute intensive jobs. On the other hand, grid 
computing can be considered as a distributed system with 
non-interactive jobs that engage a large set of files. Grid 
computing 3–5 provides seamless access to resources that 
spans across many virtual organizations. Grids are also 
one of the forms of distributed computing, where virtual 
network of super computers composed with a loosely 
coupled computers stand-in together to perform lengthy 

tasks. Cloud computing is a developing technology that 
provides different kind of services such as infrastructure, 
software and different applications through network6,7. 
Cloud delivers infrastructure, platform and software as 
an on-demand as a pay-per-use service8. The motto of all 
distributed systems is to enhance the throughput and to 
serve large scale computationally intensive applications 
by efficient utilization of distributed resources. For this 
purpose, there is a need to sequence the activities. The 
process of managing the resources and task is known as 
resource scheduling and task scheduling9,10 which is a 
crucial issue in these environments. The research done in 
this field can be broadly classified into independent task 
scheduling11,12  and workflow scheduling13.

Independent task scheduling means tasks have no 
precedence relations with one other, so the tasks can 
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be assigned as per priority list when they become free 
and there is no need to analyze a project digraph before 
allocating the specific task to processors. On the other 
hand, workflows are used to represent the applications 
comprising of various tasks connected on the basis of 
their data dependencies14. The aim of workflow system 
is to support the automated processing of complex and 
large-scale applications by utilizing the storage and 
compute power of underlying distributed infrastructure. 
Workflows are usually modeled as Directed Acyclic 
Graphs (DAG), where nodes correspond to tasks and 
edges represents the data dependency along with data 
transfer cost15,16.

The task scheduling approaches can be further 
classified as heuristic17, metaheuristics18 and hybrid task 
scheduling techniques as shown in Figure 1.  Heuristic task 
scheduling algorithms provide ease to schedule the task 
and deliver the best possible solutions, but it doesn’t assure 
that the result is optimal19,20. However, these methods can 
be used to speed up the process of generating satisfactory 
results and are suitable to solve the simple problems. 
Metaheuristics are capable of handling enormous search 
space to locate optimal solution for task scheduling 
problem within polynomial time21. These algorithms are 
generally used for the complex problems and provide 
both general structure and guidelines for developing a 
heuristic for solving computational problems. Hybrid 
techniques add up the feature of both the heuristic and 
met heuristic and can be further classified as multi-
criteria based optimization techniques22.

Figure 1.    Classifications of meta-heuristics.

The structure of the paper is organized as follows: 
Taxonomy of met heuristics is described in Section 
2. A critical analysis of research work pertaining to 

scheduling of tasks based on Genetic Algorithm (GA) 
Simulated Annealing (SA), particle swam optimization 
and ant colony optimization etc. is carried out in Section 
3. Section 4 concludes the paper and it also provides a 
roadmap for future work.

2.  Taxonomy of Metaheuristics

Metaheuristics are the search based strategies to find the 
near-optimal solution without getting caught in cramped 
areas of the search space. Depending upon the procedure 
adopted for the construction of solution; metaheursitics 
can be classified as local search, constructive, population-
based and hybrid metaheuristics as shown in Figure 1. 
Local search metaheuristics usually start with a feasible 
solution and try to improve the quality of the solution 
with each iteration23. The search terminates as soon as a 
local minimum is attained. Constructive metaheuristics24 
builds solutions from their constituting elements by 
adding the best possible element at each iteration. In order 
to generate better solutions, a local search phase is taken 
into account after the construction phase. Population-
based metaheuristics provides a convenient way for 
finding the near optimal solution by incorporating search 
processes which describe the evolution of a set of points 
in the search space. Hybrid metaheuristics are capable 
of yielding better results for complex combinatorial 
optimization problems by combining the prominent 
features of metaheuristics of different classes25.

3.  �Meta-Heuristic based Task 
Scheduling

The application of meta-heuristic to solve combinatorial 
optimization problems including task scheduling is 
gaining lot of importance. The main goal is to allow 
compounded moves or to generate next solution for 
local search in an efficient manner. Many researchers are 
actively addressing the metaheuristics based scheduling 
schemes; however, the review in this section is structured 
around the four commonly used metaheuristics as 
outlined below:

3.1 Genetic Algorithm based Scheduling
GA has proved to be a useful meta-heuristics for generating 
high eminence solutions for solving combinatorial 
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optimization problems including task scheduling26. GA 
uses the terminology of real life genetic system of human 
beings. The high level description of GA is as follows: 

1. Create a population of initial solutions 

2. Find the fitness value of each solution 

3. While (Termination condition is not satisfied)

                Select individuals from the population  

                Apply Crossover to these individuals

                Apply Mutation to few individuals elements

                Replace the population with new individuals

End

4. Output the best solution

In conventional GA, initial population is generated 
randomly. To obtain best possible results and to increase 
the convergence pace of the GA, some heuristic approaches 
can be integrated to generate the initial population27. In28, 
authors used Longest Job to Fastest Processor (LJFP) and 
Smallest Job to Fastest Processor (SJFP) as heuristics for 
generation of initial population. In29, Max-Min heuristic 
has been used to generate initial population in30, Best-
Fit and Round-Robin methods are used to select good 
candidate resources for tasks. The role of fitness function 
is to determine the suitability of chromosomes and it 
can be evaluated on make span, energy consumption 
or execution cost. The selection operators like Roulette 
Wheel Strategy, Binary Tournament Selection, Elitism, 
and Rank selection operators have been used by 
researchers to select chromosomes for implication of 
crossover31. The crossover is used to create offspring by 
interchanging the genes between chromosomes. On the 
other hand, the mutation process will change the value of 
randomly selected gene to get the modified gene. Various 
crossover operators (uniform, one-point, two-point) and 
mutation operators like Simple Swap32, Swap and Move30 

have been proposed to create offspring and to get the 
mutant.

In11, authors proposed two GA based algorithms 
as Critical Path Genetic Algorithm (CPGA) and Task 
Duplication Genetic Algorithm (TDGA). CPGA performs 
the rescheduling of critical path nodes to reduce the idle 
time of processors and to manage the load between the 

processors. It also handles the situation when two or more 
scheduling solutions are of same length. On the other 
hand, TDGA is used to overcome the communication 
overhead with the help of task duplication techniques. A 
Modified Genetic Algorithm (MGA)33 which produces 
the initial population with enhanced Max-Min technique 
is presented to get the optimum result in term of make 
span. As compared to standard Max-Min algorithm, the 
average execution time is used for the selection of tasks 
in enhanced Max-Min. The performance exhibited by 
various GA based task scheduling algorithms is presented 
in Table 134–40.

3.2 Simulated Annealing based Scheduling
It is applied to solve optimization problems and is 
typically based on thermodynamic mechanism. In SA, 
the objective function is used to compare the current 
solution with the random neighboring solution41,42. If 
there is improvement in solution then it is accepted 
and sometimes a fraction of inferior solutions are also 
accepted to escape local maxima while searching for 
global optima. The probabilistic selection of accepting 
inferior solutions depends on temperature value, which 
is reduced gradually at each iteration of the algorithm43,44. 
With time, this technique gets the popularity and lot of 
work has been done with this algorithm to schedule the 
tasks. The high level description of SA algorithm is as 
follows: 

1. Generate an initial solution and also set the initial tem-
perature. 

2. While (Termination condition is not satisfied)

Generate another random solution

Evaluate the fitness value of both solutions in terms of energy

If ( difference of fitness values is less than or equal to zero)

Then consider the new solution for next iteration

Else consider the new solution for next gener-
ation with probability based on current 
temperature and fitness value difference 

Update temperature value

End

3.	  Output the best solution
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In45, authors proposed SA based solution for 
scheduling applications in a dynamic multi-cloud system. 
The objective of proposed algorithm is to optimize 
both performance and cost, while taking into account 
the heterogeneity of the virtual machines. A genetic SA 
algorithm for task scheduling in cloud environment is 
presented. In this algorithm, the features of SA with GAs 
are merged to give due consideration to QoS parameters 
for efficient resource allocation and utilization in the 
cloud. The result of GA is made input to SA to get the 
optimum result for resource allocation. Table 2 exhibits 
the performance of various SA based task scheduling 
algorithms46–53.

3.3 �Particle Swarm Optimization based 
Scheduling

Particle Swarm Optimization (PSO) is a population based 
optimization to search for optimal value of given a given 
problem54–56. PSO is initialized with random solutions 
(group of particles) and then searches for better solutions 
by updating generations. In every iteration, the motion 
of each particle is tracked to determine the best position 
of each particle and for entire swarm. These best position 
values are used to control the movements of the particles 
in next iteration57. The iteration is repeated until a near-
optimal solution is discovered. The high level description 
of PSO algorithm is as follows: 

Table 1.    Performance comparison of task scheduling algorithms based on GA
Sr. 
No

Technique Performance 
Matrix 

Environment/
Simulator

Results

1. 34A variant of GA based on 
load priority

Execution time CloudSim Significant reduction in execution time as compared to 
standard GA

2. 35Priority based GA to opti-
mize the total cost of workflow 

Normalized sched-
ule length

Java Proposed algorithm results in lesser schedules length 
in comparison to standard  GA for all synthetic work-
flows (Montage, Epigemonics, SIPHT, LIGO, Cyber-
Shake)

3. 36Improved Adaptive heuristic 
algorithm (IAHA) based on 
tasks prioritization 

Makespan, 

Load balancing, 
Failure rate of tasks

CloudSim IAHA gives better response for all performance metrics 
in comparison to other traditional GA approaches

4. 33MGA based on Max-Min for 
initial population  generation

Makespan CloudSim The performance in terms of makespan is exhibited as:

MGA <  GA-LCFP < Enhanced Max-Min < IGA (Im-
proved GA)< Improved Max-Min

5. 37GA based on inter-nodes 
load balancing and task span-
ning time 

Makespan, Load 
balancing, Running 
time of jobs

Matlab Better performance in term of total running time of 
jobs and load variance w.r.t Adaptive Genetic Algo-
rithm

Convergence speed of proposed algorithm is not better 
as compared to Adaptive GA due to its consideration 
for other parameters

6. 38GA based decentralized 
model for DAG scheduling 

Schedule length Cluster of 11 
nodes

Proposed approach results in generation of best sched-
ule length instead of Centralized GA and Decentral-
ized non-cooperative GA

7. 39Priority in terms of expected 
completion time is integrated 
into fitness function of pro-
posed GA. 

Convergence speed Cloudsim For the chosen simulation setup, proposed algorithm 
generated optimum computation cost in almost half of 
iterations as compared to Adaptive GA

8. 40GA based scheduler for task 
handling in Hadoop Map 
Reduce

Makespan, Re-
source utilization

Java Proposed approach improves average resource utili-
zation w.r.t. FIFO and delay scheduling policy by 33% 
and 18% 

In terms of makespan, it outperforms FIFO and delay 
scheduling policy by 29% and 15% 
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1. Generate an initial population of particles

2.While (Termination condition is not satisfied)

Apply fitness function to evaluate each particle’s position

Find the best solution of each particle ( if current position of 
particle is 

better then update the best solution)

               Find the best solution of all particles( choose the 
particle according to 

                previous best position)

Make appropriate updates in velocity of each particle

Make appropriate updates in position of each particle

End

3. Output the best solution

In58, authors proposed a PSO based mathematical 
model taking into account make span, communication 
cost and load for scheduling and allocation of tasks among 
cloud resources. The proposed algorithm can improve the 
reliability of system by rescheduling unmapped tasks on 
other available resources. APSO based resource allocation 
and scheduling technique for scientific workflows on 
Infrastructure as a Service (IaaS) clouds is presented59 

considering both the execution cost and deadline 
constraints. In60, authors presented a variant of PSO with 
Adaptive Weighted Sum (AWS) method for reducing 
the make span and flow time of tasks in heterogeneous 
environment. The introduction of an acceleration factor 
in proposed algorithm enhances the search capability at 
global level to overcome the local optima. Table 3 presents 
the performance exhibited by various PSO based task 
scheduling algorithms61–69.

Table 2.    Performance comparison of task scheduling algorithms based on SA
Sr. 
No

Technique Performance 
Matrix 

Environment/
Simulator

Results

1. 46Mutation Based SA based on tradi-
tional SA, mutation with one change 
and a modified MCT heuristic

Makespan Matlab Reduction in Makespan of proposed tech-
nique is around 18 and 3 units in compari-
son to      Min-Min and RGSGCS

2. 47SA based tasks scheduling for grid 
environment

Makespan Java Makespan reduction in proposed algo-
rithm is about 34% in comparison to 
on-line mode

3. 48SA approach for scheduling 
customer’s job in cloud satisfying 
various QoS parameters

Cost, Execution 
time

Not mentioned Minimum makespan and cost in compari-
son to GA and a mapping algorithm

4. 49Incorporating SA with discrete 
PSO to improve quality of solutions 
for grid scheduling problem

Cost Not mentioned The impact of communication cost on total 
cost is minimum in  proposed approach 

5. 50Genetic SA algorithm for sched-
uling tasks in Cloud based on their 
QoS requirements 

Convergence 
speed, Schedule 
length

Not mentioned  Sim-
ulation setup consist 
of eight nodes with 
20 tasks of different 
QoS requirements

The simulation results show that the algo-
rithm efficiently completes resource search 
(in 743 iterations) and  schedules tasks 

6. 51SA based dynamic load balancing 
in grid

Execution Time Java Proposed algorithm yields near optimal 
solution in reasonable time

7. 52Resource prediction based SA for 
scheduling jobs on heterogeneous  
grids

Response Time, 
Cost (Computa-
tional & Commu-
nication)

SchedSim Proposed approach generates low response 
time and cost as compared to Low-
est[AES], Route[ARL], Round-Robin on 
32-node cluster and 512-node grid

8. 53Proposed mimetic algorithm uses 
SA for local search while scheduling 
tasks in distributed environment

Makespan, Com-
munication cost, 
Resource utiliza-
tion

Not mentioned Better results than GA and TS for perfor-
mance metrics with varying tasks, popula-
tion size, iterations
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3.4 �Ant Colony Optimization based 
Scheduling

In ACO algorithms, artificial ants move through a 
solution space by making decision based on the artificial 
pheromones and heuristic information16,70. With their 

movements, ants construct a solution to a problem which 
is later on evaluated using a fitness function. 71The ants 
also update the pheromone trail which is further used by 
them in future to control the movement in search space. 
The high level description of ACO algorithm is as follows:

Table 3.    Performance comparison of task scheduling algorithms based on PSO
Sr. 
No

Technique Performance 
Matrix 

Environment/
Simulator

Results

1. 61Discrete Symbolic Organ-
ism Search algorithm for task 
scheduling in cloud  

Makespan Cloudsim Makespan improves in proposed algorithm with increase in 
search space

Makespan reduces by 3.8 to 25.5% in comparison to com-
bined SA and PSO approach

2. 62Load Balancing Mutation PSO 
for Task Scheduling in cloud

Makespan 
Roundtrip 
Time 

CloudSim Result of Round trip time is: Standard PSO > Mutation PSO 
> Random > Proposed > Longest Cloudlet Fastest Processor 
heuristics

Result of execution time is:  Standard PSO > Mutation PSO 
> Random > Longest Cloudlet Fastest Processor heuristics > 
Proposed

3. 63Integer PSO based task sched-
uling in cloud environment

Makespan Not mentioned With reference to No. of Tasks: Cost  improvement 5% to 
6.5% and   Makespan Improvement 11% to   15 %

With reference to No. of VMs: Cost  improvement 5% to 
31% and Makespan Improvement  10% to 35%

4. 64Workflow scheduling in cloud 
using improved PSO

Speedup ratio, 
Makespan, 
Load balanc-
ing rate

Matlab In comparison to GA, the overall speed is improved by 3.8%.

Makespan reduction is 6.25% and 4.18% in comparison to 
GA and standard PSO

Results pertaining to load balancing rate is: GA< Standard 
PSO< Proposed PSO 

5. 65Workflow scheduling in cloud 
using PSO considering both 
computation and communica-
tion cost

Cost Not mentioned Cost incurred in proposed algorithm is 3 times lower than 
‘Best Resource Selection’ (BRS) algorithm while processing a 
data set of 1024MB

The convergence for simulated applications in proposed PSO 
is achieved in 20 to 30 iterations

6. 66Improved Binary PSO for  
scheduling tasks in green cloud

Execution 
time

Java Proposed algorithm outperforms Sequential Scheduling 
approach with varying tasks and VMs

7. 67PSO approach for optimizing 
task scheduling at user and 
system level in cloud

Execution 
time, Cost

CloudSim Execution time and cost are better as compared to sequential 
algorithm

8. 68 PSO with max-min ACO for 
optimizing schedules in cloud 

Convergence 
speed

Not mentioned Hybrid PSO converges quickly as compared to PSO

9. 57Task Scheduling problem 
is reduced to task-resource 
assignment graph and then 
implemented using PSO

Conver-
gence speed, 
Makespan

C-Program-
ming

Proposed algorithm reduces makespan by 9%  as that of GA

Faster than GA by 1.5 times Best solution is generated in 
almost half iterations (17) in comparison to GA (37)

10. 69Grid task scheduling based on 
advanced no velocity PSO

Makespan GridSim Proposed algorithm yields better result as compared to ACO
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1.Assign the initial pheromone values and set best solution 
as null

2.While (Termination condition is not satisfied)

Each ant builds a probabilistic solution based on pheromone 
trails and heuristic information.

Evaluate the solution of each ant using a fitness function

Update the best solution, if the fitness value of any ant pro-
vides better solution than existing best solution

Update all pheromone values

End

3. Output the best solution

In72, authors proposed an ACO algorithm for 
scheduling jobs in the grid taking into account both the 
make span and system load. In73, authors proposed a 
solution for job scheduling problem in grid based on the 
concept of lazy ant. Lazy ants are the mutated version of 
active ants and persist till the fitter lazy ants are generated 
in the subsequent iterations. Not only, they reduces 
the time complexity of the algorithm but also generate 
the better solutions for given objectives. In74, a cost 
effective and deadline constrained scheduling algorithm 
for enhancing their liability of workflow execution is 
proposed. An ACO system based on three heuristics 
(two for generating feasible schedule and third one for 
enhancing the reliability of the system) is developed 
to minimize the constraints violation and to improve 

the reliability of schedules. The performance exhibited 
by various ACO based task scheduling algorithms is 
presented in Table 475–83.

3.5 Hybrid Metaheuristics based Scheduling
Hybrid Metaheuristic cracks a constraint satisfaction 
problem with combination of heuristic or metaheuristic 
task scheduling algorithms84,85. Hybridization of 
metaheuristics can be implemented by including the 
components from one metaheuristic into another one86. 
On the other hand, it may be implemented in the form of 
various heuristics/metaheuristics exchanging information 
with one another. The research work of various authors in 
the field of task scheduling based on hybrid heuristics can 
be summarized as:

In87, authors proposed an algorithm exploiting the 
merits of PSO and ACO. In this algorithm, the initial 
pheromone is generated through PSO and search 
for best solution is carried out using Max-Min Ant 
Colony Algorithm. The proposed algorithm resulted 
in better results in terms of cost management and load 
management. In88, authors combined the merits of 
Cuckoo Search (to perform local search) and ACO to 
perform the scheduling of jobs in cloud environment, 
with an objective to reduce the total execution time. A 
hybrid algorithm based on HEFT and GA is proposed 
to yield better performance under dynamically changing 
heterogeneous computational environment for variable 
workload89. The performance exhibited by various hybrid 
task scheduling algorithms is presented in Table 590–98.

Table 4.    Performance comparison of task scheduling algorithms based on ACO
S. 
No

Technique Performance 
Matrix 

Environment/
Simulator

Results

1. 75Load Sharing ACO for scheduling 
of meta-tasks in grid

Waiting time, 
Response time

Matlab Proposed algorithm exhibits lesser waiting and re-
sponse time as compared to min-min and max-min

Results are not affected due to different job arrivals 
timings

2. 76ACO based task scheduling in 
cloud environment

Makespan CloudSim Scheduling policy based on  ACO Better than Default 
Policy

3. 77Self Adaptive ACO for task sched-
uling in cloud 

Makespan, 
Load balancing

CloudSim Result related to makespan is: SAACO <  PACO < 
min-min 

Result related to load balancing is: SAACO > PACO > 
min-min 

4. 78Task distribution based on selec-
tion of best cloud in the federation 
using Load Balancing ACO

Makespan, 
Scheduling 
time

BioNimbuZ Despite, taking more time in making scheduling deci-
sion it yields schedule with lesser makespan
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Table 5.    Performance comparison of hybrid task scheduling algorithms
Sr. 
No

Technique Performance 
Matrix 

Environment/
Simulator

Results

1. 90Optimal solution generated by 
GA is used as initial pheromone of 
ACO while solving task scheduling 
in cloud

Convergence 
speed, Task 
execution time

Cloud Sim GA-ACO finds optimal solution faster (28 iterations, 
98%) and better than GA (50 iterations, 63%) and 
ACO (50 iterations, 95%).  Task execution time is: 
GA-ACO (70) < ACO (100) < GA (120)

2. 91GA with gravitational emulation 
local search (GELS) for job schedul-
ing on grids

Makespan, Miss 
ratio

Java Result pertaining to makespan and miss ratio is: Pro-
posed < Global searching SA < GELS < GA

3. 92Hybrid of Min-Min and Max-Min 
for grid task scheduling 

Makespan, Av-
erage resource 
utilization

Grid Sim Selective performs better than Min-Min, Max-Min

4. 93Merger of Best-Fit and Round Rob-
in methods with GA for workflow 
scheduling in cloud

Makespan, 
Load balancing, 
Speedup ratio

Not men-
tioned

Makespan reduction in proposed is by 19.2 % in 
LAGA and 34.4 % with NGA

Load balancing in proposed is better by 19.2 % in 
LAGA and 34.4 % with NGA. Speed up ratio in pro-
posed is better by 18.2 % in LAGA and 33.8 % with 
NGA

5. 94Merits of ACO and Artificial Bee 
Colony (ABC) algorithm are com-
bined for task scheduling in cloud 

Execution Time Cloud Sim Proposed hybrid algorithm shows execution time 
improvement by 19% over FCFS, 11% over ABC and  
9% over ACO

6. 95Dynamic fusion of GA and ACO  
for cloud workflow scheduling

Energy Con-
sumption, 
Makespan, Exe-
cute Generation

As compared to standard GA, proposed hybrid does a 
lot of energy saving with little increase in makespan

7. 96Proposed algorithm integrates ACO 
with GA to solve task scheduling 
problem with multi-QoS constraints. 
To generate the initial pheromone 
efficiently for ACO, GA is invoked

Load balancing, 
Execution time 

Cloud Sim Compared with GA and ACO, resource utilization of 
proposed algorithm is increased by 28% and 24.1%

Reduction in execution time for tasks under proposed 
hybrid is significant as compared to  GA or ACO

5. 79Two-way ants mechanism for 
scheduling workflow in cloud 
computing 

Scheduling 
Time

CloudSim Proposed ACO has better scheduling time as com-
pared to traditional ACO

6. 80ACO for cloud task scheduling 
considering load among the nodes

Makespan, 
Degree of 
imbalance

CloudSim Under task variation from 100 to 500, proposed solu-
tion  generates lesser values for makespan and degree 
of imbalance w.r.t. basic ACO and FCFS

7. 81ACO based cloud task scheduling Makespan, 
Average degree 
of imbalance 
(DI) 

Cloudsim Result related to makespan is: ACO (700)< RR (1000) 
< FCFS (1050)

Result related to DI is: FCFS (3.7) >RR (3.6) > ACO 
(2.7)

8. 82Assignment of tasks to grid re-
sources using ACO

Load balancing Java ACO improvement over RR in terms of load deviation 
ranges from 4.83% to 73.5%.

9. 83Multi-objective optimization 
scheduling based on ACO in cloud

Makespan, 
Cost, Deadline 
violation rate

CloudSim Proposed algorithm improves makespan by 56.6% 
w.r.t. FCFS in 

Cost reduced from 7% to 23% compared to other 
methods. Deadline violation rate is reduced by 34% 
compared to FCFS 
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4.  Summary and Conclusion

In this paper, an attempt has been made to highlight 
the importance of metaheuristics in solving the task 
scheduling problem for distributed environment. An 
outline of the most commonly used metaheuristics has 
been presented followed by a comparative analysis of each 
such metaheuristic related to task scheduling. The survey 
also includes the close examination of the performance 
of hybrid metaheuristics. An extensive review of recent 
proposals for scheduling techniques reveals that a lot more 
dimension are yet to be explored in terms of datacenter 
cost, virtual machine migration, energy consumption and 
Service-Level Agreement etc.
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