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Abstract
Objectives:  We provide a theoretical framework for the mathematical analysis of a cell cycle model described by a delay 
integral equation to get properties on the asymptotic behavior of the solutions.  Methods: We relate the model to the class 
of translation semigroups of operators that are associated with a core operator ϕ and are solutions of equations of the type 
m (t) = φ (mt).  Then by using the theory developed for such class of semigroups we establish results on the existence, 
uniqueness, positivity, compactness and spectral properties of the solution semigroup in order to conclude the asynchro-
nous exponential growth (AEG) property for the model. Findings:  The framework yields an innovative analysis method 
for the model where only conditions on the parameters of its associated core operator are considered. It allows better 
control of the parameters for getting the AEG property and the derivation in an automatic way of characterizations of as-
sociated generator, spectral properties and AEG property only in terms of the core operator ϕ. Indeed the Malthusian 
parameter λ0 is characterized as the only solution of the equation 1)~( =λφr   where )(:~ ⋅⊗= ⋅λ

λ φφ e , coincides with 
the spectral bound of the generator of the solution semigroup and is a dominant eigenvalue of this generator. Application/
Improvements: The provided framework will pave the way for the study of other aspects such as oscillations, bifurcation 
and chaos to get better insights of the dynamics of the model solutions. 

*Author for correspondence

1. Introduction
In this paper we consider a cell cycle model that is based 
on branching processes for its modeling and that uses a 
delay integral equation to describe the process of cellular 
proliferation1–3. The model reads as follows

,),(),()),(,(2),(
~

0 0 τσστστγστξθ ddtnyhytn A
∫ −∫=  (1)
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where n(t, y) denotes the size density of birth rate with 
respect to time t and size y. In (1) it is assumed that the 
mass of any cell does not exceed the value A and that the 
time a cell can spend in the division cycle does not exceed 
the value θ~ . Equation (1) describes the evolution of the 
density n(t, y) with respect to time and size. In this case 

2 2

1 1

( , )
t x

t x
n t x dx dt∫ ∫  is the number of cells with sizes in (x1, 

x2) born in the time interval (t1, t2). In (1) the quantity 
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characterize those of the solution semigroup of (1) and 
this fact makes it possible to only use minimal assump-
tions to get the AEG property.

We recall that the AEG property for a semigroup (T(t))t≥0 
means that there exist λ0> 0 and a projection P of rank one 
and a constant  δ > 0 such that ǁ te 0λ− T(t)  –  P ǁ ≤ M te δ−

, for t> 0. The coefficient λ0 is the so-called Malthusian 
parameter. There therefore exists a vector v such that te 0λ−

T (t) x behaves as c(x)v for t > 0 large enough and for every 
element x of the state space, where c(x) is a constant 
depending on x, and v is independent of x. For the case of 
the model (1) this means that the cell population asymp-
totically stabilizes around a fixed distribution not depending 
on the initial condition. The main result of our analysis is 
given in Theorem 3.5 which shows the AEG property for 
the model (1) by only using sufficient conditions on the 
associated core operator. Contrary to the work in2 through 
the characterization of properties of the solution semi-
group in terms of those of the core operator we have a 
better control on such conditions. In particular only even-
tual norm continuity of the solution semigroup is needed 
instead of its eventual compactness. Furthermore the pro-
posed framework allows us to get that the Malthusian 
parameter is the spectral bound of the generator of the 
solution semigroup and to get a characterization of it in 
terms of ϕ. This is made possible because of the automatic 
derivation of properties of the solution semigroup such as 
spectral ones, positivity and uniform continuity from those 
of the associated core operator.

Notice that the techniques used in this paper could be 
also adapted for models from population dynamics that are 
based on partial differential equations. We intend to do so 
in a separate paper in particular for the cell models consid-
ered in12,13 and also for the epidemic models from14–16.

The remainder of the paper is organized as follows. 
In Section 2 we give some tools from the theory devel-
oped for translation semigroups that we are using for the 
analysis of (1). Section 3 is devoted to the establishment 
of various properties leading to the AEG property for the 
model (1). Section 4 concludes this paper.

2.  Translation Semigroups of 
Operators

As mentioned above, for the study of the model (1) we are 
mainly interested in setting it under a theoretical frame-
work that is related to the class of translation semigroups 

ξ(τ,σ) denotes the size at age τ of a cell that was born with 
size σ and h(x,y) denotes the conditional density of prob-
ability for the distribution of the size at birth of daughter 

cells if the mother cell has mass y. So 2

1

( , )
x

x
h x y dx∫  is the 

probability for a daughter cell to have size in the interval 
[x1,x2] knowing the mother cell had size y. As it is men-
tioned the derivation of the model is based on branching 
processes. Such processes have been widely used to 
describe dynamics of biological populations4. Equation 
(1) is however to be considered as a delay Volterra equa-
tion where the density n (·, ·) is expressed in terms of the 
history. Results on the existence of solutions of (1) and 
their asymptotic behavior have been given in2 only in a 
direct way. In this paper we aim to provide a mathemati-
cal analysis of the model (1) within a well founded 
theoretical framework for it.

The framework we are proposing is based on the use 
of tools from the theory developed in7-11 for the class of 
translation semigroups that are associated with core oper-
ators ϕ in the sense that they are solutions of equations of 
the type

m(t) = ϕ (mt)  (2)

which are considered on Banach spaces of the form 
Lp((-r, 0), F) where 0 <r ≤∞, F is a Banach space and mt(s) 
:= m(t + s). In this paper we take p = 1 since we are deal-
ing with cells densities.

It is to be noticed that the aforementioned theory 
related to translation semigroups has shown to be very 
useful for the study of models from population dynam-
ics that are formulated in form of integral equations or 
partial differential equation and for the study of delay dif-
ferential equations5–11.

The use of translation semigroups for the study of the 
model (1) has not been done before and the framework 
we are proposing based on translation semigroups allows 
us to derive various properties for the solutions of the 
considered model from those of the associated core oper-
ator. The way we proceed in this sense consists of showing 
that under reasonable assumptions on the parameters of 
the model the core operator ϕ associated with (1) exhib-
its important properties that allow us to easily show that 
the solutions of (1) define a strongly continuous transla-
tion semigroup of bounded linear operators which has 
the asynchronous exponential growth property (AEG). 
Results on this solution semigroup yielding its AEG 
property are indeed derived by simply using properties 
of ϕ. To be more precise we may say that properties on ϕ  
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(Tϕ(t))t≥0 which are solutions of evolution equations of the 
type (2).

We are considering this class of semigroups on the 
Banach space of states

E = L1((-r, 0), F)

where 0 < r < ∞ and F is a Banach space endowed with 
a norm ǁ·ǁF .

The norm on E is given by

0 ( )r F
f f s ds−= ∫

A family of bounded linear operators (T(t))t≥0 on E is 
called a semigroup on E if it satisfies T(0) = I, (where I 
denotes the identity operator on E) and T(t + s) = T(t)T(s) 
(Semigroup property) for t,s ≥ 0. It is called a strongly 
continuous semigroup (or a C0-semigroup) on the space 
E if it furthermore satisfies limt→0+ǁT(t)x–xǁ=0, for all x 
ϵ X. The generator of a semigroup (T(t))t≥0 on X is the 
operator A on E such that Ax := lim t→0+(1/t)(T(t)x-x), for 
every x in its domain D(A) := {x ϵ X, lim t→0+(1/t)(T(t)x-x) 
exists in E}.

The exponential growth bound of the semigroup 
(T(t))t≥0 with generator A is denoted by ω(A) or also by 
ω(T(t)) and is given by ω(A) := lim t→0+(1/t)logǁT(t)ǁ.

On the Banach space E the following result character-
izes the solution semigroup of equation (2) as a translation 
semigroup.

Theorem 2.17

 Let ϕ: E → F be Lipschitz continuous with Lipschitz con-
stant |ϕ|. Then the operator A such that

Aϕ f = f ’, f ϵD(Aϕ) := {f ϵ W1,1((-r,0), F), f(0) = ϕf}
is the generator of a C0-semigroup (Tϕ(t))t≥0 on E that 

satisfies

=)()( sftTφ 0  s  t if   ))((
property)on (Translati       0  s tif            )(

≥++
<++

fstT
stf

φφ

and we have

ǁTϕ(t)f  – Tϕ(t)gǁ≤ M
te φ
ǁf – gǁ,       f,g ϵ E

Furthermore the problem

         
1Find m (( , ), ) (]0, ), )locL r F C F∈ − ∞ ∩ ∞

        such that m(t)=ϕ(mt), t≥0
m0= f

    has a unique solution which is given by

m(t) = f(t)         a.e.  t ϵ (-r,0)
ϕ(Tϕ(t)f)        t ≥ 0

If f ϵD(Aϕ) then we have m(t) = [Tϕ(t)f](0) for all t≥0. 
In the case where F is a Banach lattice and the operator ϕ 
is positive we get that (Tϕ(t))t≥0 is also positive.

The class of translation semigroups associated with 
equations of type (2) was introduced in17 and related 
properties were thoroughly investigated in the works7-11. 
In these works a nice theory related to various properties 
on this class of semigroups was established. Among these 
properties are those related to their positivity, irreduc-
ibility, compactness, asynchronous exponential growth, 
differentiability, existence of equilibriums and their sta-
bility. Next we give some of these results that yield to the 
property of asynchronous exponential growth of such 
semigroups and that are relevant for the analysis of the 
cell cycle model we are considering in this paper. 

We start first of all by introducing corresponding 
notations.

We consider the families of operators C∈λλφ )~(  given by

F for x    ,)(~
∈⊗= ⋅ xex λ

λ φφ

where

( )( ) : ,   for s  Rse x s e xλ λ⋅ ⊗ = ∈

We also need the following operators also extracted 
from ϕ7

ϕ 0 := ϕ : E0:=E → F;
ϕ1 : E1:=L1((-r,0),E0) → E0, (ϕ 1f)(s) = ϕ (f(s)); 
ϕn : En:=L1((-nr,0),E) → En-1, (ϕ nf)(s) = ϕ 1(f(s + ·)),  n ≥ 2;

i.e., (ϕn f)(s)(τ) = ϕ[f(s + τ)], for s ϵ (-(n - 1)r, 0), τ ϵ (-r, 
0) and n ≥ 2.
For each n ≥ 1 the norm on the Banach space En := L1((-nr, 
0),E) is given by

0 ( )
n E

f f s dsnr= ò-

Lemma 2.29 
Let ϕ ϵL(E,F) and assume there exists n ≥ 1 such that the 
following condition is satisfied

(Hϕ,n) 

{

{

{

{ { }c
1 2 n n

c
n

There exists n 1 such that ( ... )f , f U   is

equicontinuous in C([-r,0],F), [U  is the unit ball of C([-r,0],E)] 

≥ ϕ ϕ ϕ ∈  
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Then the semigroup (Tϕ(t))t≥0 is eventually norm 
continuous.

The result of this lemma on the eventual norm 
continuity of the semigroup (Tϕ(t))t≥0will be used to 
show that the spectral bound of the generator Aϕ is 
equal to its growth bound and is a simple pole of Aϕ 
(see Lemma 2.4 below).
Definition 2.37

 The operator ϕ is called of compact type if for each λ 
ϵR there exists n ≥ 1 such that n

λφ
~ is compact (This is 

the case in particular if ϕ is compact).
Lemma 2.47,5

Let F be a Banach lattice and ϕ ϵ L(E,F) be positive and 

of compact type. Assume that λφ~  is irreducible for 
some λ ϵ R. Then we have
i) Σ (Aϕ) = {λ ϵ C such that 1 ϵσ( λφ~ )}; σ(Aϕ) is a pure 
point spectrum and it holds 
Dim (Kernel(λIE-Aϕ)) = dim(Kernel(IF- λφ~ ));

ii)R ( λφ~ ) > 0 and λ→r ( λφ
~

) is continuous, decreasing, 

r( λφ~ ) → 0 as λ→∞,and r( λφ~ )→∞ as λ→-∞;

iii) If furthermore the condition (Hϕ,n) of Lemma 2.2 
is satisfied then there exists a unique solution λ0 of the 
equation r( λφ~ ) = 1; λ0 satisfies  λ0 = s(Aϕ) =ω(Aϕ); λ0 
is a simple pole and a dominant spectral eigenvalue of 
Aϕ.

We recall that a nonnegative operator (resp. semi-
group (T(t))t≥0) on an ordered Banach space X with 
dual space denoted by X* is called irreducible on X if 
for each positive element x of X and for each positive 
element x* of the dual space X* of X there exists n ϵ N 
(resp. t ≥ 0) such that < Tnx; x*>> 0 (resp. <T(t)x,x*>> 
0). [Here an element x is called positive if it is non-
negative (i.e., x ≥ 0) and satisfies x ≠ 0. An operator T 
is called positive if it is nonnegative (i.e., T ≥ 0 and Tx 
is positive for every positive element x).

Based on the previous results the following theo-
rem gives sufficient conditions on the operator ϕ 
yielding to the AEG property of the translation semi-
group (Tϕ(t))t≥0.

Theorem 2.55,7

 Assume that ϕ  ϵL (E, F) is positive and of compact 
type and that the condition (Hϕ, n) of Lemma 2.2 is sat-
isfied. Let ξ be the projection onto the eigen space of 
Aϕ that is associated with the unique solution λ0 = s 

(Aϕ) = ω (Aϕ) of the equation r ( λφ
~

) = 1. Then ξ is positive 
and we have

ǁ te 0λ− Tϕ(t)  – ξ ǁ ≤ M te δ−

for some constants δ > 0, M ≥ 1 and for all t ≥ 0.
More precisely there exist 

0λ
x and *

0λx  two positive 

eigenvectors respectively of 
0

~
λφ and *

0

~
λφ associated with 

the eigenvalue 1 = r(
0

~
λφ ) = r( *

0

~
λφ ) such that <

0λ
x , *

0λx
>= 1 and the projection ξ is given by

0

0
( )( )f C f e xλ

λξ ⋅= ⊗

where
0

0

0

0 0

( s)*

0
*

x , ( e f(s)ds)
C(f ) ,

x , ( e x )

θ λ θ−
λ

λ θ
λ λ

< φ θ >
=

< φ θ θ ⊗ >
∫



 f ϵ E.

The proof of this theorem uses the fact that we can 
write E = Kernel (Aϕ – λ0I) ⊕ Range (Aϕ – λ0I) and that the 
growth bound of the restriction of the semigroup (Tϕ (t)) 

t≥0 to Range (Aϕ – λ0I) is less than λ0 since λ0 is a dominant 
eigen value of Aϕ. Notice that instead of using the eventual 
compactness of the semigroup, its eventual norm conti-
nuity was sufficient to get the AEG property. Also the 
irreducibility of the semigroup was not needed.

3.  Analysis of the Cell Cycle 
Model

We recall that the basic phases of the cell cycle are the 
G1 phase, S or synthesis phase, G2 phase and M or mito-
sis phase. At the M phase a cell divides into two identical 
cells. In equation (1) the quantity n(t,x)dtdx is equal to 
the number of cells with an RNA content between x and 
x+dx which divided in the time interval from t to t+dt. 
As mentioned above the model (1) was derived based 
on a branching process approach to describe the evolu-
tion of the density n(t,x) at the end of mitosis. It is to be 
considered as a refinement of an earlier cell cycle model 
described in18,19 by an equation of the form 

0
( , ) 2 ( , ) ( ( ), )

A
n t x g x u n t x u duθ= −∫ (3)

Contrary to (3), in (1) it is assumed that the time τ 
a daughter cell entering the cell cycle with birth mass x 
spends in the cycle is a random variable with conditional 
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distribution density γ(τ,x) and its mass y when it reen-
ters division is a function ξ(τ,x) of the time it spends in 
the cycle and of its birth mass x2. In (3) the time this cell 
spends in the cycle, and its mass when it reenters division 
are both functions of x only.

The use of translation semigroups for the mathemati-
cal analysis of the model (3) was already done in5 and 
9In the following we are mainly interested in the math-
ematical analysis of the model (1) using the results on 
translation semigroups given in section 1.

Let us first introduce the assumptions on the model 
parameters that were made in2 with the associated formu-
lated biological interpretations.

The assumption considered on the function h is the 
following one

(Hh)

1 2

0

1 2 1 2 1

( ), 0, ( , ) 1, ( , ) ( , )

1support[h( ,x)] [d x,d x], d  (0, ],d 1 d
2

loch L R h h y x dy h x y x h y x
∞

+

•

∈ ≥ = − =

= ∈ = −

∫

This assumption expresses the fact that h(·, x) is the 
density of the conditional distribution of the mass of a 
daughter cell provided that the mass of the mother cell 
is x and that the mass partition to daughter cells may not 
exceed a maximum degree of inequality1,2

On the function γ the following condition is assumed

(Hγ)
1 2

1 20

i i i 1 2 1

( ), 0, ( , ) 1,support[ ( , )] [ ( ), ( )]

( ), 0,  is decreasing,  and lim ( ) 0
locL R x d

C R
τ

γ γ γ τ τ γ σ τ σ τ σ

τ τ τ τ τ τ τ

∞
+

+ →∞

∈ ≥ = ⋅ =∫

∈ > < >

(Hγ) expresses the fact that γ(·,y) is the density of the 
conditional distribution of the cell cycle duration given 
the birth mass of the cell y, that the cell cycle time varies 
only in certain limits and that a minimum cell cycle time 
is required even for cells with large birth mass1,2

Finally on the function ξ the following condition is 
assumed

(Hξ) increasing are ),( and ),( functions  theand ,0),( 2 ⋅⋅≥∈ + τξσξξξ RCloc

This assumption expresses the fact that the mass at 
division of the cell is larger for cells with higher birth 
mass and cells that stay longer in the cycle1,2

In addition to the conditions (Hh), (Hγ) and (Hξ) and 
for the establishment of the AEG property for the model 
(1) the following assumptions were also used in2

)( '
hH )( 2

+
∞∈ RLh loc

)( '
γH )( 2

+
∞∈ RLlocγ

(H*)
1 2 1 2

i i

i i i

There exist constants  a  and a  such that   0 a   a  
and for  i 1,2 the function : d ( ( ), ) is increasing
on , ( )  for , ( ) , ( )  for 

i

i i i iR a a a a
ξ σ ξ τ σ σ

ξ σ σ σ ξ ξ σ σ σ+

< < < ∞
=

> < = < >


It is to be noticed that the analysis of model (1) is 
done in2 using the space of states X:=L1(Δ:={(s,y) : s ϵ 
(-τ2(y), 0), y ϵ I := [A1,A2]}) and using the aforementioned 
assumptions to prove in a direct way that the solutions of 
the model build a semigroup on X that is eventually com-
pact and is irreducible on the set X1 of functions in X that 
vanish when the y component of the variable is outside 
the interval [a1,a2].

Within the mathematical analysis framework we are 
proposing for the model (1) we will only consider the fol-
lowing less restrictive assumptions

(A h)
2((0, ) ),  0h L A h∞∈ ≥

(A γ) L ((0, ) (0, A)),  0∞γ ∈ θ × γ ≥

(A ξ)
ξ is a.e. continuous on [0, θ

~  
]×[0,A]

and is with values in (0,A)

(A ξ
*)

For 0< a < b < A the support of the function 
( , ,x)  h(x, ( ,  )) ( , )  on [(0,A) - (a,b)]  (0, )  (a,b)σ τ ξ τ σ γ τ σ × θ ×



is with Lebesgue measure ≠0

Remark 3.1 
If the assumptions (Hh), (Hγ), (Hξ) and (H*) hold then the 
assumption (A ξ

*) also holds since in this case the set 
{(x,τ,σ): σϵ(a,b), τϵ(τ1(σ), τ2(σ)), xϵ[(0,A) - (a,b)]∩
(d1ξ(τ,σ),d2ξ(τ,σ))} is with measure ≠0 for 0 < a < b < A.

As a logical space of states we consider the Banach 
space

E: =L1 ((-θ
~  
, 0), F)  with  F: =L1 (0, A)

As already mentioned θ
~  
 is the maximal possible time 

spent by a cell during the division cycle and A is the maxi-
mal possible mass of a cell.

Equation (1) can be written in the form of (2) with ϕ: 
E → F given by

0 0
( )( ) 2 ( , ( , )) ( , ) ( , )  

A
f x h x f d d

θ
ξ τ σ γ τ σ τ σ σ τφ = −∫ ∫



[ ] 

[ ] 

] [ 

[ ] 
] [ 

[ ] 

[ ] 
[ ] 

[ ] 

[ ] 
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With this in mind we are now ready to give properties 
of the solution semigroup of the model (1) yielding to its 
AEG property by an application of the results of section 2 
considering properties of the associated core operator ϕ.

The operators λφ
~

associated with ϕ are as follows.

),0(  ,    ,)(),()()(~
0

AxFfdfxkfexf
A

∈∈=⊗= ∫⋅ σσσφφ λ
λ

λ

Where

0
( , ) 2 ( , ( , )) ( , ) ,    , (0, ).k x e h x d x A

q
lt

l s x t s g t s t s-= Îò


Proposition 3.2
Assume that (A h), (A γ) and (A ξ) are satisfied. Then the 
operator ϕ is in L(E, F) and is of compact type.

Proof
First the operator ϕ defines a bounded linear operator 
from E into F since for f ϵ E we have
ǁϕfǁF≤  2Aǁhǁ∞ǁγǁ∞ǁfǁ. Now since the kernel kλ is 

bounded on (0, A) 2 we get that the operator λφ~ is weakly 

compact. The weak compactness of λφ~ and the fact that 
the Banach space F has the Dunford-Pettis property allow 
us to conclude that 2~

λφ  is compact on F. So, the operator 
ϕ is of compact type.

Proposition 3.3
 Assume that (A h), (A γ), (A ξ) and (A ξ

*) are satisfied. 
Then for λϵR the operator λφ~ is positive and irreducible 

on F and r ( λφ~ ) is positive and a simple pole of λφ~  associ-
ated with an eigen function of F which is almost 
everywhere positive. Furthermore the results of Lemma 
2.4 also hold for the core operator ϕ of the model.

Proof
 For λϵR the operator λφ~ is given by the kernel kλ(x,σ) 
that by assumption(A ξ

*) satisfies
∫ ∫S S '

0 > )dxd(x,k σσλ , for each subset S of [0, 

A] such that S and S’:=[0;A]-S are both with Lebesgue 
measure >0. Therefore20 λφ~  is irreducible with spectral 

radius r( λφ~ ) > 0 and r( λφ~ ) is a simple pole of λφ~  associ-
ated with a positive eigen function. The remaining of the 
proof is now a direct consequence of Lemma 2.4.

The following proposition assures that the solution 
semigroup of the model (1) is exactly the translation 
semigroup that is associated with the core operator ϕ.

Proposition 3.4
Let (A h), (A γ) and (A ξ) be satisfied. Then the operator 
Aϕ on E such that Aϕf := f ’ with the domain D(Aϕ) ={f ϵ 
E, f abs. continuous, f ’ ϵ E and f(0) = ϕf} is the generator 
of the C0-semigroup of translation (Tϕ(t))t≥0 on E that is 
associated with the core operator ϕ. Furthermore (Tϕ(t))t≥0  
is eventually norm continuous and for f ϵ E the solution of 
(1) such that n0= f is given by
n(t, ·) = (Tϕ(t)f),  t ≥ 0.

Proof
To show the eventual norm continuity of (Tϕ (t))t≥0 we 

use Lemma 2.2 and show that the assumption (Hϕ,n) of 
this lemma is satisfied for n = 2. More precisely we show 
that {ϕ1ºϕ2f, f ϵ

c
2U } is equicontinuous in C ([-θ

~  
, 0], F) 

where 
c
2U  is the unit ball of the space C ([-2θ

~  
,0],E).

Let fϵ c
2U , xϵ(0, A) and α,α’ϵ [-θ

~  
,0]. We have

),(21 xf αφφ    ∫ ∫ −=
A

ddfxh
0

~

0 2  ),)((),()),(,(2
θ στσταφστγστξ

10 0

0 0

0

( , , ) [ ( )]( )( )  

( , , ) [ ( )]( )  

( , ', ) [ ( ')]( ) '    ( ': - )

A

A

A

x f d d

x f d d

x f d d

θ

θ

α

α θ

τ σ ϕ α τ σ τ σ

τ σ ϕ α τ σ τ σ

α τ σ ϕ τ σ τ σ τ α τ
−

= Γ + ⋅ −

= Γ −

= Γ − =

∫ ∫
∫ ∫
∫ ∫







where Γ(x,τ,σ) := 2h(x,ξ(τ,σ))γ(τ,σ).
This fact yields in an easy way that {ϕ1 ϕ2f, f ϵ

c
2U } is 

equicontinuous in C ([-θ
~  
, 0]), F).

With all the properties established so far we get the 
following result on the AEG property of the cell cycle 
model (1).

Theorem 3.5 
Assume that (A h), (A γ), (A ξ) and (A ξ

*) are satisfied. 
Let λ0 be the unique solution of the equation r( λφ~ ) = 1 
and let μ ϵL1(0,A) (resp. μ*ϵL∞(0,A)) be a nonnegative 
function that is non identically 0 such that μ is an eigen 
function of 

0

~
λφ  (resp. of *~

λφ ) associated with the eigen 
value 1 and < μ,μ*>= 1. Then for any f ϵ E such that f ≥ 
0 and the support of f is nonempty, there exists a unique 
solution n(·,·) of (1) such that n0 = f on (-θ

~  
,0) and there 

exists a constant C(f) > 0 which only depends on f  
such that

n(t, x) = C(f) exp(λ0t)μ(x) + o[exp(λ0t)],    t ≥ 0 (4)
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Proof 
It is a direct consequence of Propositions 3.2-3.4 and of 
Theorem 2.5.

Remark 3.6 
The function μ in Theorem 3.5 is solution of the following 
equation

),0(   ,)(),()),(,(2)(
0

~

0
0 Axddxhex

A
∈= ∫ ∫ −θ τλ στσµστγστξµ (5)

Also the function μ* in Theorem 3.5 is solution of the 
following equation

0* *

0 0
( ) 2 ( , ( , )) ( , ) ( ) ,    (0, )

A
y e h x y y x d dx y A

θ λ τµ ξ τ γ τ µ τ−= ∈∫ ∫


(6)

Any other solution of (5) (resp. of (6)) is a multiple of 
μ (resp. of μ*).

The constant C(f) in (4) is given by

C(f)= 0

0

( )*

0
*

, ( ( ) )

, ( )

se f s ds

e

q
l q

l q

m q

m q q m

-< f >

< f Ä >
ò



=
0

0

( )*

0 0 0 0

*

0 0 0

( ) ( , ( , )) ( , ) ( , )

( ) ( , ( , )) ( , ) ( )

A A s

A A

x e h x f s dsd d dx

x e h x d d dx

θ τ λ τ

θ λ τ

µ ξ τ σ γ τ σ σ σ τ

µ ξ τ σ γ τ σ µ σ σ τ

− − −∫ ∫ ∫ ∫
∫ ∫ ∫





4. Conclusion
In this paper we showed that the theory developed for 
translation semigroups provides a strong mathematical 
framework for the analysis of the cell cycle model formu-
lated by equation (1). This is a cell population model with 
unequal division where cells transit through the cell cycle 
with variability in intermitotic times. The equation of this 
model which relies on a branching process approach to 
describe the mechanisms of the evolution in cell popu-
lations is to be considered as a delay integral equation. 
The analysis of this model using translation semigroups 
theory has not been considered before and the provided 
framework allows a better control of key factors related to 
such an analysis.

The focus of the provided framework was on relating 
the analysis of the model to the study of properties of its 
associated core operator ϕ in order to get concise biologi-
cal insights about evolution in cell populations. Under 
assumptions related to the core operator ϕ the framework 

allowed us to conclude that the cell population asymp-
totically shows an exponential growth and to give a 
characterization of associated Malthusian parameter in 
terms of ϕ. Contrary to many analysis methods, the 
framework allows us therefore to better guide such analy-
sis using minimal assumptions. No assumptions on the 
semigroup are made, but instead only assumption on the 
core operator or on the derived operators λφ~ from ϕ. 
Indeed it is the characterization of the solution semigroup 
in terms of the core operator ϕ that allowed us to dig 
deeply in the analysis process to find out the sufficient 
properties that yield such conclusion about the asymp-
totic behavior.

Notice that translation semigroups tools have shown 
to be very useful for the study of various models from 
population dynamics. In separate papers that are in 
preparation we are interested in the application of such 
translation semigroups tools to the mathematical analy-
sis of dynamics of other multidimensional models from 
cell population and epidemiology that are based on a 
partial differential equations approach for the modeling 
of the dynamics of associated population densities. 
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