
*Author for correspondence

Indian Journal of Science and Technology, Vol 10(28), DOI: 10.17485/ijst/2017/v10i28/112308, July 2017
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Improving Performance of Distributed Shared
Memory (DSM) on Multiprocessor Framework with

Software Approach
Hemant D. Vasava1,2 and Jagdish M. Rathod2

1School of Engineering, RK University, Rajkot – 360020, Gujarat, India; hemantdvasava@yahoo.co.in
 2BVM Engineering College, Vallabh Vidyanagar, Anand – 388120, Gujarat, India; jmrathod@bvmengineering.ac.in

Keywords: Distributed Shared Memory, Distributed Systems, Granularity, Interprocess Communication, Virtual Address
Space

Abstract
Objectives: To design Distributed Shared Memory (DSM) for the multiprocessor distributed framework using a different
software parametric approach that provides significant performance improvement against convention software
based architectures. Methods/Statistical Analysis: Software distributed shared memory can be architected by using
a different concept of an operating system, by utilizing a programming library and by extending underlying virtual
address space architecture. It incorporates various design options like granularity, consistency model, implementation
level, data organization, algorithms, protocols, etc. We have proposed few software parameter choices and impact
which gives significant performance improvement compared to past designs to manage software distributed shared
memory. This paper also discusses various issues that exist while moving toward software distributed shared memory
implementation. Findings: There are two methodologies by which it is possible to achieve distributed shared memory
design are first in hardware like cache coherence circuits and network interfaces and the second is software. Here the
proposed system architecture makes major impact on programming, performance, design and cost. An algorithm is
designed such a unique manner which resides in memory controller and make efficient global virtual memories. It is using
variable as granularity which are shared that is more flexible for complex data structure and large database. It is defined
using unique identifier which makes its mapping and retrieval more manageable using proposed consistency mechanism.
Application/Improvements: Distributed shared memory optimization is a most important area of improving distributed
system performance. By taking care of good choice on underlying issues and according to system’s design requirement,
it possible to gain advantages of improved architecture which can be more used for various distributed applications where
shared data plays a major role.

1. Introduction
A Distributed Shared Memory (DSM) system sometimes
called a multicomputer system where multiple indepen-
dent process nodes with locally allocated memory are
connected by a general high speed network. A Software
DSM systems can be implemented can be at the operating
system level, or by using a programming library and can
be thought of as expending the underlying virtual address
space architecture that depends upon the requirements.1
When memory is implemented insight operating system,

such systems are transparent, means that the underlying
distributed address space is completely hidden to its users.
However, software distributed shared memory system is
implemented at the programming library or language.
Its language paradigm or libraries are not transparent,
but developers need to program them differently. These
shared memory systems offer a more portable approach
for implementations. A Distributed Shared Memory
(DSM) system uses a shared memory model of a physi-
cally distributed independent memory for Interprocess
Communication (IPC).

Indian Journal of Science and TechnologyVol 10 (28) | July 2017 | www.indjst.org 2

Improving Performance of Distributed Shared Memory (DSM) on Multiprocessor Framework with Software Approach

A shared memory system controls separate, inde-
pendent memory into virtual shared segments which is
distributed amongst all nodes, main memory and distrib-
utes all memory between nodes.2,3 It is required to choose
an appropriate coherence protocol in accordance with a
consistent model that maintains the memory coherence.
Conventionally, all memory programming can create
bottlenecks because of multiple accesses by process in
critical regions in memory address space. This is because
of large amounts of data processing will requires integ-
rity, consistency and stability of the application and data
with system performance. The pre and post development
efforts can be more significant for shared data items and
message communication of distributed programming
to access its operating system kernel, thus increasing
overhead to the system at all levels.2 Figure 1 shows dis-
tributed memory architecture. This implementation of
creating asynchronous application for distributed tasks
which can reduce the performance in bottlenecks and
improve the consistency and scalability in the memory
system.2 The Distributed Shared Memory (DSM) can
operate on a uniform and non uniform memory archi-
tecture that have different access times to processor’s
memory. The core factors like consistency, synchroniza-
tion and coherency are required to consider when going
designing distributed memory architecture for large scale
data processing in a distributed environment. After this
right pre and post development programming efforts and
efficient tuning like memory issues, it is possible to mini-
mize all the bottlenecks in the system.2

Figure 1. Distributed Memory Architecture.

The distributed shared memory programmings is
well understood and focus the interest in parallel and

distributed architecture systems for reasons of fault tol-
erance, availability, and increasing computational power.
Motivation for shared memory is the recent trend in design
distributed systems using a collection of disk less main
computing servers like workstations and at other data
servers or file server architectures.3 In this framework
the data for executing program has been cached from
the main server or remote node. There can be too kind
of issues here. First is a scheduling decision of where of
execution of program is best left to a higher level policy
making decision. And the second is the task of fetching
in the required program code and data.2 In this paper we
have also discussed our experience of implementing a
software DSM system using granularity based approach.
This is also discussed various designing parameters and
its impact on software distributed shared memory archi-
tecture. Various suitable parameters or design choices
taken into account while designing is considered accord-
ing to granularity. We have presented an implementation
of this model in the context of a Linux operating system.

2. DSM Requirements
In any distributed network system sharing of data will be
an essential requirement. Also the recent trends of tech-
nology advancement of processor configuration, user will
still demand for more performance within parallel run-
ning processes.2 So, it is required to upgrade processor
design to get good performance with the distributed
shared memory environment.4 However, the single pro-
cessor design provides a way to create environment
in that multiple processors run simultaneously to get
good performance at low cost. It is better to run 15 or
more inexpensive processors in parallel rather to design
or buy 15 times faster processor.5-8 This type of design
is required to decrease various overhead in distributed
virtual address space which can be accessed by simulta-
neous parallel running processors.9,10 Solutions to such
parallel and distributed communication is DSM which
required investigating new architecture design by opti-
mizing imbalance between processors and memory
which should be upgradable eventually.11

3. Implementation Level
The level where the Distributed Shared Memory (DSM) is
implemented is one of most important decisions for design-
ing distributed shared memory system because it affects

Indian Journal of Science and Technology 3Vol 10 (28) | July 2017 | www.indjst.org

Hemant D. Vasava and Jagdish M. Rathod

both overall programming and system performance with
its cost.4,12-14 Distributed shared memory shared space is
distributed among local node boundaries. It is required to
execute lookup on each access to find whether requested
data are in local memory or located remotely.2 If it is not
in local memory, then the node must fetch data into local
memory. Here, the system must require executing an
action to preserve and manage coherence view of shared
data items.3 So, both lookup and action can be imple-
ment using software, hardware, and combination of
both. According to this implementation choice design
falls into three group software, hardware, and hybrid
methodology.

The implementation choice usually depends
on requirements and price performance trade-offs.
Software based distributed shared memory implemen-
tation originated during 1980s and is to provide the
shared memory parameters to the developer using vari-
ous factors. Traditionally, it can be architects in user
level, the OS, at run time library routines or using a pro-
gramming language.13 Thus, if the requested data is not
in local memory, then memory controller will retrieve
the data or address of local memory of another node, or
disk of remote node by mapping. Typical representatives
of approach are IVY, Mermaid, Munin, Midway, Tread
Marks, Orca, Linda, Mirage and Clouds. IVY is few ini-
tially proposed software distributed memory solutions
with different design parameters.15-17 This design gener-
ally more flexible in comparison with hardware support
which enable better tailoring of consistency model to the
application characteristics but cannot compete with hard-
ware methodology in terms of cost and performance.18

4. Software DSM Model
There are no of reasons to program DSM for distrib-
uted environment are stated in the past. Like complex
and large data structures can be easily communicated.2
Shared data item becomes a big issue which can easily
managed in software, but not in hardware independent
multiprocessor distributed system. It gives transparent
process to process communication. Shared data programs
are usually smaller and easier to understand. Program
implementation of shared memory is a well understood
problem. Compact program design, easy implementa-
tion and expansion. The distributed shared data memory
can be implemented two different ways one by using

hardware components, which also utilizes software
involvements.4,16 Another is software methodology
which also provide flexibility in organization of shared
data segment in different ways. Like page based method
organization of shared memory into fixed size pages. The
object based or shared variable based approach organi-
zation of the shared data region storing data of variable
sizes. One other commonly described implementation
type that uses a tuple space where the unit is sharing is
a tuple.

5. Achieving Methods and
Implementation
From the usual ways of architecting DSM system like
hardware as cache coherence configuration and network
interfaces and based on application , software distributed
shared memory systems can be implemented in program-
ming library, at the operating system level or at underlying
memory architect can be used to achieve the goal with
different software parameters.19,20 Implementation at the
operating system level will remain transparent to pro-
grammer that means distributed shared memory will
remain completely hidden to its user but system can
take benefits of design. Here, software distributed shared
memory systems implemented as language or library level
are not completely transparent and hidden to program-
mers usually they have to do programming separately.
But advantage is that these kinds of systems are more
portable and easy updatable software approach to DSM
system design.

The DSM systems implementation of virtual shared
memory model of independent physically distributed
memory system. If we consider one of its design param-
eter granularity, then by using three ways it is possible to
design a software DSM like page based method that use
the system’s virtual address space, shared variable method
which utilize programming routines to share and access
shared variables and object based approach which access
shared data through object oriented concepts.21 It also
involves various other implementation choices depend
upon its design requirements which includes distributed
shared memory algorithms, level of implementation like
in hardware, software or hybrid, critical region semantics,
semantics of replication level, naming scheme specifica-
tion has to be used to access remotely located shared data,
replication location for optimization, system consistency

Indian Journal of Science and TechnologyVol 10 (28) | July 2017 | www.indjst.org 4

Improving Performance of Distributed Shared Memory (DSM) on Multiprocessor Framework with Software Approach

model, the granularity of shared data, remote access and
caching/replication control of hardware or software, dis-
tributed shared memory controlled by virtual memory
management software, OS or language run time system
etc.2 According to design choices and issues memory can
be implemented.22 Here, subsequently our distributed
shared memory system design considerations systems
are explained in brief with its advantages over conven-
tional designs which provide another methodology to
implement DSM that provide significant performance
improvement. However the design choice may vary
according to system design requirement and perfor-
mance, cost and scaling parameters.

5.1 Algorithm Architecture
An algorithm for implementing Distributed Shared
Memory (DSM) is the most significant part of the
architecture. Conceptually, these algorithms make
extension of the local virtual address spaces to extend
multiple host machine connected by a Local Area
Network (LAN), and many of them can be integrated in
virtual memory systems. The distributed shared memory
implementation algorithm deal, with two basic issues first
is static and dynamic allocation of shared data across dis-
tributed network system to minimize its latency.2 Another
is to preservation of coherence view of shared data when
designer minimize coherence management overhead.
There are two strategies can be used to manage shared
data which are migration and replication.23 In migra-
tion implementation methodology only one copy of a
data exists at time in the system while in replication mul-
tiple copies of similar data item reside at different local
memories. So, to decrease memory coherence overhead,
developer more prefer this method when sequential con-
sistency of writing sharing is prevalent.5,19,24

There is basically four algorithms client server;
migration read replication, full replication based on
migration and replication.2 Each having a different
methodology to manage distributed shared data. Here
distributed shared memory algorithm will manage
all memory management activity through memory
controller using some protocol. If requested data not
available in local memory, then request go to memory
controller that will check look up to serve requests for
remotely located data. Multiple processes can read and
write simultaneously to share data. If it is required to
update the system to improve system then it will
be easily manageable.

5.2 Data Organization
To work distributed system efficiently it is required to
organize and manage data using proper conditions. Any
process can share large amount of shared variables and
data structures which are utilize by more than one node
in the environment.2 So, it is required to decide changes
from paging on the network to how to maintain a poten-
tially distributed, replicated data items consisting of the
shared variables and data structures. Granularity is one
of the parameters are the size of data unit that exists
in distributed systems.2 This is a very important deci-
sion which makes another big impact on distributed
system design. Based on granularity parameter data can be
organized using shared variables and data structure, pages
or by objects as the unit for data transfer. All granular-
ity design having its own advantages and disadvantages. A
distributed shared memory using shared variable is to let
the applications or developer decide as to which variables
are to be shared in an environment and memory control-
ler will manage a database of the shared variables and
data structures in the distributed framework.2 By using a
memory controller the developer to explicitly declare
data variables are to be shared globally in the applica-
tion2. It removes the issues of thrasing and false sharing
issues. All process of different independent machine can
access shared variables and data structures by requesting
through memory controller.

5.3 Memory Controller
Memory controller mapping and manage virtual memory
used by different processes to communicate via shared
variables to each other. It will make interprocess com-
munication via global virtual address space. Mapped
shared data or memory tuning between the environment
of remotely located shared data and process’s own local
memory. Some programs or as divide file into variable
size chunks and copy them into virtual address space so
that can be available in a process’s address space. After
that process can read/write remote contents with ordinary
memory access. This permits fast access of shared content.
Figure 2 shows the memory mapping mechanism done by
different process.

Here, memory controller will plays major role insight
distributed system. It will dynamically manages all the
activities of distributed memory system like managing
indexing/mapping memory segment or shared data items,
handle requests from processors, converting instruc-

Indian Journal of Science and Technology 5Vol 10 (28) | July 2017 | www.indjst.org

Hemant D. Vasava and Jagdish M. Rathod

tion format sets, locking mechanism, retrieving data and
location from remote memories, scheduling and creates
virtual global address space.

Figure 2. Illustration Distributed Shared Memory Mapping.

5.4 Naming Scheme Specification
In a distributed shared memory systems if the pro-
cess wishing to access remotely located data then it
required knowing on which system data resides and fetch
it from remote node. System will take the help of memory
controller to manage the shared memory system activity.
So, all shared data is visible to the memory controller, it
is also managing lookup or indexing. The memory con-
troller has required using unique naming mechanism to
avoid any conflicts while shared data items are distributed
over remote location. And possible solution is to assign
a logical global naming. The memory manager at each
machine performs the conversion of the logical address
to provide the location of the data segment on a remote
node. But this approach is not being useful if the gran-
ularity units of shared data items are less than a page.2
Memory controller plays an important role between local
and remote node to access requires shared data. So, first
process will use data items from its own local memory.
If required data items are not in local memory then
requested transfer to the memory controller. Memory
controller satisfies the request by mapping mechanism
and to respond to requests made. Shared data items hav-
ing unique global identification that is registered with
memory controller. All process wishing to access shared
data items use the same identifier.

5.5 Consistency Model
Today’s modern high speed processor executes
operations in a different order than specified in past
literature to increase execution speed and decrease

idle waiting time. This program instruction execution
order often categories in to different types. In this kind
of shared memory system the execution is in the correct
order if the result same as one in which the instruction
were executed in program order. Such kind of system
design known as sequential.

Here, distributed shared memory model utilizing
sequential consistency order which ensures no memory
operation execution begins until all the previous opera-
tion have been completed. Figure 3(a) and (b) shows
sequential consistency implementation among differ-
ent process. In a distributed system an efficient, ordered
effective broadcast mechanism, shared variables could be
grouped together on one or more variable, and operations
of shared variable require to be broadcasted and all nodes
have to require seeing the similar order of memory point-
ers.

(a)

(b)
Figure 3. (a) and (b) Sequential Operation Exexution.

5.6 Protocol Mechanism
A Distributed system needs communication between
multiple nodes insight system. In this proposed
architecture internet domain sockets implemented to
make connections between processes on different nodes
which are connected by a high speed network. Machines
are connected via local area network. In this write invalidate
protocol write access to the shared data item will invalidation
of all replication excluding one before the write begins.
Invalidated replicated data units are not accessible through
any node of system. So, the major drawback of writing the

Indian Journal of Science and TechnologyVol 10 (28) | July 2017 | www.indjst.org 6

Improving Performance of Distributed Shared Memory (DSM) on Multiprocessor Framework with Software Approach

invalidate protocol implementation is that invalidation
require to send each node whether they have used shared
data or not. It is better suitable for programs where several
updates held during multiple reads, as well as when an
application exhibits in which high degree per node locality
of reference. However, sometimes this write invalidate
protocol is inefficient when no of nodes frequently access
data items, because an updated data will require to be
copied back to many processes on nodes immediately
after every invalidation occurs. No of distributed memory
systems have used to write invalidate protocol like IVY
which support strict consistency model, Clouds that have
used release consistency model and many more in the past.

5.7 Advantages and Disadvantages
This software based distributed shared memory system
having various advantages as below:

•	 Provides large virtual memory space
•	 Well expansion with increase in process nodes
•	 Underlying message communication between

nodes will remain invisible outside.
•	 Complex structure and large database support
•	 Generally cheaper than using a multiprocessor

system
•	 More portable because of common interfaces
•	 Protect its developer from sending and receiving

primitives

It also gives few disadvantages like becomes slower
to access in comparison with non distributed shared
memory and it is requiring additional concurrency
control mechanism against concurrent accesses towards
shared data.

6. Conclusion and Future Work
A distributed system can be implemented using vari-
ous distributed model where shared memory plays
major role in architecture. In this research paper we have
described a new way of architecture using software
parameters of shared memory system design. So, shared
memory implementing requires the careful evolution of
several design issues such as interaction with shared
data by node, data organization, consistency model and
algorithm, protocols, scheduling etc. It requires com-
plex aspects in core architecture and close association
between virtual address management and mechanism

that make distributed shared memory possible. Latency
plays an important role while shopping the protocol. This
implementation uses sequential consistency which is the
strongest consistency model that is practicable when there
is delay in communication over network. The motivation
for this design was to implement using shared variable
and data structure, its DSM algorithm, memory controller
concept and specific issues, kernel programming, inter-
process communication and protocol involved. These
goals have been largely met to get improved performance
and reliability.

Future work can be done to improve algorithm and
memory controller activities, respectively to design issues
that will add more benefits to distribute shared memory
management. It can manage more no of processors simul-
taneously, increased execution speed and also provide
security. More effort can be added to increase the con-
sistency mechanism of system to make the design more
reliable against the failure.

7. References
1. Sinha KP. Distributed Operating Systems Concepts and

Design; 2009. p. 1–90.
2. Vasava HD, Rathod JM. A Survey of Software based

Distributed Shared Memory implementation methodologies
for Multiprocessor Environments. International Journal
of Innovative Research in Science Engineering and
Technology. 2013 Jul; 2(7):3055–60.

3. Tanenbaum SA, Steen MV. Distributed Systems Principles
and Paradigms. 2nd Edition. PHI Learning; 2011. p. 1–705.

4. Naeem A, Jantsch A, Lu Z. Scalability analysis of memory
consistency models in NoC based distributed shared
memory SoCs. IEEE transaction on computer aided design
of integrated circuits and systems. 2013 May; 32(5):760–73.

5. Jin X, Guan N, Lv M, Deng Q. Improving the Performance
of Shared Memory Communication in Impulse C. IEEE
Embedded Systems LETTERS. 2010 Sep; 2(3):49–52.
Crossref

6. Choi I, Zhao M, Yang X, Yeung D. Experience with
Improving Distributed Shared Cache Performance on
Tileras Tile Processor IEEE Computer Architecture. 2011
Dec; 10(2):45–8.

7. Ibrahim KZ, Hofmeyr S, Lancu C. The Case for Partitioning
Virtual Machines on Multicore Architectures. IEEE
Transactions on Parallel and Distributed Systems. 2014
Oct; 25(10):2683–96. Crossref

8. Yu Z, Xiao R, You K. A 16-Core Processor with Shared
Memory and Message-Passing Communications. 2014 Apr;
61(4):1081–94.

https://doi.org/10.1109/LES.2010.2048010
https://doi.org/10.1109/TPDS.2013.242

Indian Journal of Science and Technology 7Vol 10 (28) | July 2017 | www.indjst.org

Hemant D. Vasava and Jagdish M. Rathod

9. Vasava HD, Rathod JM. Software based Distributed Shared
Memory (DSM) model using shared variables between
Multiprocessors. In Proceeding of IEEE International
Conference on Communication and Signal Processing;
2015. p. 1431–5. Crossref

10. Gopal B, Beg R, Kumar P. Memory Management Techniques
for Paging on Distributed Shared Memory Framework.
International Journal of Computer Science and Information
Technology. 2010 Apr; 2(2):141–53. Crossref

11. Dhruv S, Mehta, Iye VS. Study and Implementation of
Distributed Shared Memory. NIT: Nagpur; 2004-2005.

12. Seidmann T. Distributed Shared Memory in Modern
Operating Systems. University of Technology in Bratislava;
2004.

13. Kshemkalyani A, Singhal M. Distributed Computing:
Principles Algorithms and Systems. Cambridge University
Press; 2011 Mar. p. 1–756.

14. Penurkar MK, Sugandhi R. OPDSM: A Combinational Page
based and Object based DSM Model. International Journal
of Computer Applications. 2010 Feb; 1(6):1–5. Crossref

15. Castanie L, Mion C, Bruno L. Distributed Shared
Memory for Roaming Large Volumes. IEEE Transactions
on Visualization and Computer Graphics. 2006 Oct;
12(5):1299–306. Crossref

16. Navratil PA, Childs H, Fussell SD. Exploring the Spectrum of
Dynamic Scheduling Algorithms for Scalable Distributed-
Memory Ray Tracing. Transactions on Visualization and
Computer Graphics; 2013. p. 1–14. PMid:23831285

17. Marongiu A, Benini L. An Open MP Compiler for Efficient
Use of Distributed Scratchpad Memory in MPSoCs. IEEE
Transactions on Computers. 2012 Feb; 61(2):222–36.
Crossref

18. Lee M, Ahn M, Kim EJ. Fast Secure Communications
in Shared Memory Multiprocessor Systems. IEEE
Transactions on Parallel and Distributed Systems. 2011
Oct; 22(10):1714–21. Crossref

19. Krzyzanowski P. Distributed Shared Memory and
Consistency Model. Rutgear University; 2009. p. 1–10.

20. Dash A, Demsky B. Integrating Caching and Prefetching
Mechanisms in a Distributed Transactional Memory. IEEE
Transactions on Parallel and Distributed Systems. 2011
Aug; 22(8):1284–98. Crossref

21. Shi Q, Khan O. Toward Holistic Soft-Error-Resilient
Shared-Memory Multicores. IEEE Computer Society Press.
Los Alamitos, USA. 2013 Oct; 46(10):56–64. Crossref

22. Tumeo A, Villa O, Chavarria-miranda DG. Aho-corasick
stirng matching on shared and distributed memory parallel
architecture. IEEE Transaction on Parallel and Distributed
Systems. 2012 Mar; 23(3):436–43. Crossref

23. Apostolakis A, Gizopoulos D, Psarakis M, Pachalis A.
Software based Self Testing of Symetric Shared Memory
Multiprocessors. IEEE Transactions on Computers. 2009
Dec; 58(12):1682–94. Crossref

24. Diaz J, Caro CM, Nino A. A Survey of Parallel Programming
Models and Tools in the Multi and Many-Core Era. IEEE
Transactions on Parallel and Dist Systems. 2012 Aug;
23(8):1369–86. Crossref

https://doi.org/10.1109/ICCSP.2015.7322749
https://doi.org/10.5121/ijcsit.2010.2212
https://doi.org/10.5120/150-271
https://doi.org/10.1109/TVCG.2006.135
https://doi.org/10.1109/TC.2010.199
https://doi.org/10.1109/TPDS.2011.131
https://doi.org/10.1109/TPDS.2011.23
https://doi.org/10.1109/MC.2013.262
https://doi.org/10.1109/TPDS.2011.181
https://doi.org/10.1109/TC.2009.118
https://doi.org/10.1109/TPDS.2011.308

