
*Author for correspondence

Indian Journal of Science and Technology, Vol 10(28), DOI: 10.17485/ijst/2017/v10i28/103202, July 2017
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Optimized Application Level Checkpoint Based
Load Sharing Model for Heterogeneous Mobile Grid

Computing
Imran Rafique1*, Hina Gul2, Salman Rafique3, Syed Asad Raza Kazmi1, Awais Qasim1 and

Ilyas Fakhir1

1Department of Computer Science, GC University, Lahore – 54000, Pakistan; imran.rafique@gcu.edu.pk,
arkazmi@gcu.edu.pk, awais@gcu.edu.pk, fakhir@gcu.edu.pk

2Department of Computer Science, Kinnaird College for Women, Lahore– 54000, Pakistan;
hina.gul@kinnaird.edu.pk

3Department of Computer of Science and Engineering, University of Engineering and Technology,
Lahore − 54890, Pakistan; 2013mscs24@student.uet.edu.pk

Keywords: Broker, Checkpointing, Control Flow Graph, Data Liveliness, Heterogeneity, Interoperability, Proxy, Web Service

Abstract
Objectives: Recent technical advances have fueled the popularity of mobile grid computing. Mobile devices such as
cellular phones and PDAs are becoming more common due to the diminution in their size and increase of computational
power. In addition, wireless networks are also beginning to fill the environment. With these advances, mobile devices
are becoming available to act as service providers in Grid. But the mobile environment presents a number of challenges.
Analysis: The range of mobile execution platforms now available which introduces the problem of heterogeneity. Heavy
weight checkpoints also provide hindrance to achieve this integration. At present, Grid Computing standards, neither state
any load sharing architecture and model that integrates mobile devices in Grid computing nor does it provide any policy
that hides heterogeneity and overcome memory limitations of mobile devices thus it is still an open research problem.
Findings: Mobile Grid computing solutions must be developed that are lightweight, independent of specific platform and a
load sharing model for mobile grid computing that distributes computational tasks on heterogeneous mobile devices. Our
simulation results show the effectiveness of data optimization techniques for mobile devices, interoperability and proxy
performance in heterogeneous mobile environment. Novelty: We propose a novel layered architecture that adjusts the
data size of checkpoints at the minimum possible level and a load sharing Mobile Proxy algorithm.

1. Introduction

1.1 Grid Computing
Grid computing has become a hot topic in the IT industry,
it provides a bright future for mega processing problems
which are harder to accomplish through clusters and
supercomputers. It influences the existing IT infrastruc-
ture to optimize computer resources, manages the data
and computing workloads. It is because of its cost effec-

tiveness, ability to solve large computational problems
and limitation to current system used for solving large
computational problems, that grid computing has gained
renewed interest.

1.2 Mobile Computing
Other archetype of traditional distributing comput-
ing that is to be concerned with this research is Mobile
computing. It considers mobility, wireless communica-
tion, and portability. Mobile handheld devices (e.g. Smart

Indian Journal of Science and TechnologyVol 10 (28) | July 2017 | www.indjst.org 2

Optimized Application Level Checkpoint Based Load Sharing Model for Heterogeneous Mobile Grid Computing

phones and Personal Digital Assistants) are enriching
our daily lives and are playing vital roles in personal and
business productivity because costs are decreasing and
functionalities in small-sized chips are increasing day by
day. The latest progress in wireless communication tech-
nology and moveable mobile equipments enable a much
number of people to be eligible to access information
services through a shared network transportation system
(e.g., Internet) by using their mobile devices, irrespec-
tive of physical location. Moreover, Mobile environment
is extremely heterogeneous. An overview of hardware,
operating system, and mobile device execution platform
heterogeneity in handheld devices is mentioned in Table
1.

Details of technical specifications of these phones
presented in Table 1 indicate that all are different from
each other. Similarly, all devices also vary in memory
size of RAM. Symbian based devices have more RAM
than Windows based devices. Same is the scenario with
execution platforms. Windows based devices support
.Net Compact framework, while J2ME works well with
Symbian OS.

Although interoperability of mobile device execution
platforms is not a particularly central issue in conven-
tional distributed computing, in mobile computing, it is
measured significant because hiding execution platform
heterogeneity may improve mobile device portabil-
ity by broadening the interoperability1. Thus the mobile
devices can be an active participant of grid comput-
ing. Programming libraries in mobile devices are still
equipped with much functionality and from these can
be benefited. It has been just recently given attention to
integrate these two emerging techniques of mobile and
grid computing. The study of Grid computing literature
reveals a lack of mature standard definitions and mecha-
nisms to address these requirements, leaving the smooth

integration and collaboration of these two technologies
as a challenge. Thus, in order to provide load sharing and
interoperability in an efficient manner, it is required to
hide heterogeneity and complexity of collaboration.

1.3 Research Objective
The overall goal of this research is to analyze the differ-
ent Application Level Checkpointing mechanisms and
Middleware proposed for Grid Computing and suggest
an efficient load-distribution model for mobile grid com-
puting which will be independent of execution platform.
We extend the idea of a compiler based optimization tech-
niques to adjust the data size of checkpoints to such an
extent that can reside on mobile devices and thus mobile
devices can actively participate in computational tasks.
Our research question is:

“How to provide an application level Checkpointing
for mobile computing environment that integrates mobile
devices in Grid and hides platform heterogeneity”

2. Preliminaries
Different solutions have been proposed to overcome
heterogeneity in grid computing like middleware, web
services based frameworks, and Application Level
Checkpointing2 etc.

Middleware implementations cannot reside on mobile
devices due to memory limitations. Moreover, Literature
shows that the authors have identified basic require-
ments that are needed by mobile devices to be an active
participant of Grid computing. These factors are context
awareness, dynamic environment, resource allocation,
and mobile device execution platforms. Four middle-
ware solutions proposed for Grid computing are Legion2,
Globus2, Gridbus2, and Unicore2. But none of these have
support for context awareness and for dynamic environ-

Table 1. Heterogeneity in mobile computing

NOKIA
3650

NOKIA6630 NOKIA
N90

IPAQ
H3650

DELLL
AXIM

OS Symbian
OS 6.1

Symbian OS
8.0a

Symbian
OS 8.1

Windows
Mobile

Windows
Mobile

Processor 104 MHz 220 MHz 220 MHz 206 MHz 624 MHz
RAM 1.9 MB free

of 4 MB
7 MB free of
10 MB

21 MB
free of 48
MB

32 MB 64 MB

Execution
Platform

JAVA JAVA JAVA .Net CF .Net CF

Indian Journal of Science and Technology 3Vol 10 (28) | July 2017 | www.indjst.org

Imran Rafique, Hina Gul, Salman Rafique, Syed Asad Raza Kazmi, Awais Qasim and Ilyas Fakhir

Table 2. Support for mobile devices in grid middleware

Middleware Description Support for Handheld device requirements
Globus Globus is based on a bottom-up paradigm,

and provides a set of tools for distributed
applications in the form of a toolkit.

•	 No support for context awareness, dynamic envi-
ronment, and mobile device execution platform.

•	 Has support for resource allocation.
Gridbus It is an open source grid software Many

middleware, Globus, Unicore, Alchemi, and
others are used in Gridbus.

•	 No support for context awareness, dynamic envi-
ronment.

•	 Has support for resource allocation, and mobile
device execution platform.

Legion UNICORE (UNIform Interface to
COmputer REsources) middleware Provides
a user interface to integrate grid computing
resources.

•	 No support for context awareness, dynamic envi-
ronment, and mobile device execution platform.

•	 Has support for resource allocation.

Unicore Legion is based on top-down approach;
services are treated as objects and based on
communication paradigms.

•	 No support for context awareness, dynamic envi-
ronment, and mobile device execution platform.

•	 Has support for resource allocation.

Table 3. Checkpointing systems and techniques

Technique Strengths Limitations
Condor First system for migrating threads in

distributed environment
Uses system level Checkpointing.
Transfers huge bulks of data.
Does not hide heterogeneity.

Migthread Migthread distributes threads to different
machines or file systems.
User level stack and heap management
Data conversion only at receiver side.

Limited to C Programs.
No Mechanisms to reduce data size.

Efficient Checkpointing
for Hetero-geneous
Collaborative
Environment

Migrates process to heterogeneous
machines

Uses PVM for process migration.
Only work for C, FORTRON
Encode and Decode data types in machine
independent formats thus execution complexity
class varies.

Mobile MPI Programs in
Computational Grids

Based on portable application level
Checkpointing.
Truly Heterogeneous for MPI Programs.

MPI dependent.
Uses a Pre-compiler for data conversions.
Checkpoint data can be up to 1GB
Over-decomposition sometimes creates a
significant bottleneck.

Portable Checkpointing
for BSP App.

Support execution of BSP parallel
applications on heterogeneous, shared
workstations.
Data types Conversion only at receiver
side.

Dependent on thread communication libraries.
Still restarting application from checkpoint creates
overhead.
Works only for C++ Programs.
No mechanisms for reducing the size of the
checkpoint file.

Automated Application
level Check-pointing
based on Live variable
analysis for MPI
Programs

Enhances idea of Checkpointing
techniques by using data analysis.
The data size is reduced.

Still dependent on thread communication libraries.
Data type conversion both at the sender and
receiver sides.
Application-level coordinated non-blocking
Checkpointing.
Can be used for C/MPI Programs

Indian Journal of Science and TechnologyVol 10 (28) | July 2017 | www.indjst.org 4

Optimized Application Level Checkpoint Based Load Sharing Model for Heterogeneous Mobile Grid Computing

ment and only Gridbus support mobile device execution
platform that is a .Net Compact Framework. Middleware
support for these factors is summarized in Table 2.

Second technique for hiding heterogeneity is
Checkpointing. Various authors worked on this con-
cept3-9. All work relevant to Checkpointing is described in
Table 3 with their strengths and limitations.

A third technique for hiding heterogeneity is web
service based frameworks10. Much work is being done
to expand web services technology to Mobile computing
domain. By doing these limitations of physical locations
will be diminished due to the mobility feature of the
Mobile computing environment. Web services can be an
ideal solution that provides a connection between mobile
and Grid computing and hides heterogeneity too because
web services are strongly interoperable. Both computing
domains will be equally benefited as a result of this inte-
gration. In spite of a lot of enhancement in the Mobile
computing domain, this integration might cause certain
performance overheads. There are two reasons for this
performance degradation.

•	 Resources are consumed by encoding and decod-
ing of messages.

•	 The Message size is increased due to textual for-
mat. It contains data and descriptive tags and
in the case of redundant data structures such
as arrays, it can be up to many folds and it will
create problems in wireless domains because of
limited bandwidth.

3. System Architecture

3.1 Elaboration of Proposed Design
From the literature investigation in the previous section,
it is concluded that Application level Checkpointing must
be independent of communication libraries and execu-
tion platforms, data must be adjusted to the memory size
of handheld devices and there is a need to hide the het-
erogeneity at:

Execution Level
Interoperability of execution platforms

Communication Level
Common set of Protocols

Checkpoint data in an independent format

4. Proposed Architecture
Since mobile devices have certain constraints, due to
which integrating mobile devices into the grid will reduce
efficiency and may create bottlenecks and grid environ-
ment may become engaged in handling these issues rather
than involved in computational tasks. So there should be
varied approach that not only integrate mobile devices
into the grid as service providers, but also overruns these
devices from some of the constraints like heterogeneity
and memory overflow. Keeping this in view, we propose
layered design based on proxy. This proxy acts as a gate-
way between mobile devices and grid environment.

4.1 Why to Add Proxy?
There is a radical improvement in wireless network con-
nections. But there are certain barriers that degrade
performance of wireless network connections to equalize
with that of wired systems.

1. 3G technology provides maximum bandwidth
300~500kbps for downloading and 56~90kbps for
uploading, and these cannot cope with the bandwidth
requirements of wired computing domains.

2. Degradation factors like buildings and landmarks in
wireless connections based radio waves.

3. Mobile devices have smaller memories and slower pro-
cessors.

Eventually, all these factors require that some process-
ing must be done on all data before transferred to mobile
devices using wireless networks.

4.1.1 Layer 1: Service Request and Service
Publicizing
At proxy various components of Grid Middleware and
data optimization are deployed. It has communication
interfaces for wired Grid clients and as well as for mobile
devices too. Communication environment is a merger of
Grid protocols like GRAM, GSI, MDS and of web service

Indian Journal of Science and Technology 5Vol 10 (28) | July 2017 | www.indjst.org

Imran Rafique, Hina Gul, Salman Rafique, Syed Asad Raza Kazmi, Awais Qasim and Ilyas Fakhir

protocols. The main purpose of this layer is to publish
services, request and discovery of services, and getting
request data from client. It is performed in the following
manner.

4.1.1.1 Service Publicizes
This process enables all clients and users to publish and
view details of services and resources and other metadata
information11. A registry (online database) is maintained
for publication, querying a service, and for information
of resources as UDDI registry. When any device wants
to publish its services, it performs publish operation on
registry and sends its web link and resource details as
parameters. After this operation, service is registered.
Then other authorized clients can view this list. Similarly,
the devices can disconnect by invoking de-publish
method.

4.1.1.2 Request and Discovery of Services
Grid clients submit jobs called requests by using GRAM
protocol. A single request may consist of several parallel
executing operations12. Thus a single operation is assigned
to any single devices. Devices or services are searched by
discovery module.

4.1.1.3 Broker
Broker creates a sort of virtual environment on the behalf
of the requesting client. After finding available service,
the request data is transferred from client to broker. It
performs scheduling of jobs. It sends data of scheduled
job to controller for the code optimization module to
reduce data size in order to cope with memory limitations
of mobile devices.

Layer Output: Arrival of service data at proxy and
delivered to the controller.

4.1.2 Layer 2: Data Analysis and Construction of
Control Flow Graph
After getting service data next step is to apply some opti-
mization techniques to reduce checkpoint data and to
overcome limitations of web services. Various compil-
ers based optimization techniques13 are in existence, but
these techniques are not in practice for mobile devices.
The process of data analysis of optimization is called static
analysis. Static analysis is divided into two main catego-
ries. First one is construction of control flow graph. The

second is a data-flow. In Control-flow analysis, hierar-
chical flow of program control is examined within each
fragment of program flow chart. The Data-flow analysis
identifies live and dead data sets for each fragment. The
broker sends data to the controller. Controller divides
data into fragments. Fragmentation is not a trivial case.
There can be multiple possibilities for one program to
fragment it. It depends on the following possibilities:

•	 Locality of two consecutive fragment points is
considered.

•	 Data size of fragment.

Each fragment is assigned a unique id. To assign
this id all instructions are converted into three address
instructions the key instructions are identified that trans-
fer control to another location. These can be:

•	 Function Definitions, Start of Loop, and Switch
cases

Fragment id is added prior to the key instruction and
instructions following this are added in the same fragment
till the arrival of the next key instructions. When next
key instruction is identified, fragment id is incremented.
After the dividing program into fragments a control flow
graph is constructed that depicts the transfer of control
from main fragment to the subsequent fragments.

Layer Output: Control Flow Graph.

4.1.3 Layer 3: Data Liveliness Analysis
In this step live data variables are calculated in all blocks
of CFG. The data-flow analysis identifies live and dead
data sets for each fragment. In live and dead variable
analysis14,15 program CFG is traversed. For each frag-
ment, dead variables and live variable are identified. Any
variable whose values is required in the processing of suc-
cessor fragments are live variables and all those variables
whose values are not required in successor fragments are
dead variables. Then dead variable sets are discarded and
only live data sets are transferred to handheld devices.
Equations used for this process are given below.

in[B] = use[B] U (out[B[- def[B])
out[B] = Us a successor of B in[B]
To address memory constraint data blocks is ana-

lyzed to reduce data size so that light weight checkpoint
is sent16. Thus, the idea of checking liveliness of data has
extended to mobile devices.

Indian Journal of Science and TechnologyVol 10 (28) | July 2017 | www.indjst.org 6

Optimized Application Level Checkpoint Based Load Sharing Model for Heterogeneous Mobile Grid Computing

Layer Output: Live data and dead data sets of all frag-
ments.

4.1.4 Layer 4: Request Distribution and Hiding
Heterogeneity
Service requests consist of independent processes and test-
ing concurrent systems17 is a critical task. Furthermore,
these processes may consist of independent and depen-
dent threads that may execute parallel or sequentially.
Processes are the programs written in any language. At
upper layers, independent and dependent threads in a
process have been identified by constructing a control
flow graph and thread data has also been optimized by
liveliness analysis. Now, at this layer, techniques for hiding
heterogeneity are provided. Since checkpoint data is sent
and received by using XML format and SOAP protocol of
web services. Thus, checkpoint data is encoded in XML
binaries and transferred to the resource provider device18.
This destination device can be equipped with Windows
CE or Windows Mobile supporting .NET Compact
Framework or it can be equipped with Symbian OS with
J2ME execution Platform. Figure 1 shows in XML bina-
ries are decoded according to the underlying platform.
Flow diagram of Proposed Architecture is given in Figure
1. For this purpose, device characteristics like Opesys,
ExePForm, and Arche are retrieved. And XML binaries
are decoded according to the values of these features. For
example, if device characteristics Opesys = Windows CE
and ExePForm = .NET CF and Arche = “”, then binary
data will be accorded the format of .NET CF supportable

by Windows CE. And the data is processed and results are
calculated and sent back to the controller.

Pseudo code is as shown below and this procedure is
to be executed on mobile devices:
Start procedure

if(Opesys = Windows CE && ExePForm = .NET CF
&& Arche=””)

then
decode and execute data to CE.NET;
else if(Opesys = Windows Mobile && ExePForm =

.NET CF && Arche=””)
then
decode and execute data to Mobile.NET;
else if(Opesys = Symbian && ExePForm = J2ME &&

Arche=””)
then
decode and execute data to SymbianJava;
else
break;
end
Layer Output: Hiding heterogeneity of checkpoint

data.

4.1.5 Layer 5: Monitoring and Message Handling
After starting execution of threads, controller monitors
execution and handles messages, and results are sent back
to the controller. After getting results, controller com-
bines these and sends to broker.

Step # 01: Controller class gets separate blocks of con-
trol flow graph that are arranged in an array data structure

Figure 1. Proposed architecture.

Indian Journal of Science and Technology 7Vol 10 (28) | July 2017 | www.indjst.org

Imran Rafique, Hina Gul, Salman Rafique, Syed Asad Raza Kazmi, Awais Qasim and Ilyas Fakhir

namely ControllGraphLiveDataArrayList. For each block,
controller searches for free mobile devices and on success,
it assigns a separate block to separate device and wait for
results.

 Step # 02: In MobileProxy class, every mobile device
that is assigned to perform any task by Controller Class
gets the data of request and initiate threads and starts pro-
cessing in a method namely SubmitControllGraphLiveDat
aSegment(ControllGraphLiveDataSegment).

Step # 03: Mobile Device class gets results of each
segment from all devices and maintains a hash table of
results, on getting results from all devices it sends all
results back to Controller class.

The controller checks status of devices, whether these
are still living and executing operations. If any device dis-
connects, controller at once search for any other device
offering services, otherwise it will wait for devices busy in
execution to be freed.

Layer Output: Status of devices is checked.
An algorithm that sums up whole steps as mentioned

in all levels and describes overall working of Mobile Proxy
is as shown below and this procedure is to be executed on
Mobile devices:

Optimized Control Flow Graph (Application level
Checkpointing) based MobileProxy Algorithm for the
Proposed System

classController
{
staticvoid MainRequestController(Request)
{
ControllGraphLiveDataArrayList = GetControllGrap

hLiveData(Request);
int Counter=0;
while (Counter <= ControllGraphLiveDataArrayList.

Length)
{
MobileProxy.SubmitControllGraphLiveDataSegment

(ControllGraphLiveDataArrayList[Counter]);
Counter++;
}
MainSegmentResult = Compute(ControllGraphLive

DataArrayList.Data);
CompiledResponse = MobileProxy.GetCompiledRes

ult(MainSegmentResult);
// To Orignal Source
SubmitFinalResponse(CompiledResponse);
}
 }

classMobileProxy
{
staticvoid SubmitControllGraphLiveDataSegment(C

ontrollGraphLiveDataSegment)
{
MobileDevice=LocateMobileDevice(ControllGraphL

iveDataSegment.Specs);
Thread ProcessSegment =newThread(MobileDevice.

ProcessControllGraphLiveDataSegment);
ProcessSegment.Start();
}
static Result GetCompiledResult(MainSegment)
{
R e s u l t = M o b i l e D e v i c e .

GetCompiledResult(MainSegment);
return Result;
}
}
classMobileDevice
{
staticHashtable ObjHashtable=newHashtable();
staticvoid ProcessControllGraphLiveDataSegment()
{
ControllGraphLiveDataArrayList = GetControllGrap

hLiveData(ControllGraphLiveDataSegment);
MainRequestController();
if(ControllGraphLiveDataArrayList.Length>0)
Controller.MainRequestController(ControllGraphLi

veDataArrayList);
Result=ComputeResult(ControllGraphLiveDataSeg

ment);
ObjHashtable[ControllGraphLiveDataSegment.

Identifier]=Result;
}
static Result GetCompiledResult(MainSegment)
{
while(WaitforAllControllGraphLiveDataSegmentThr

eads());
Return (ComputeFinalResult(ObjHashtable));
}
}

5. System Evaluation
In this section, the simulation setup and performance
analysis of the proposed design is described. Different
issues that may have a positive and negative impact on
the overall performance of the proposed system are

Indian Journal of Science and TechnologyVol 10 (28) | July 2017 | www.indjst.org 8

Optimized Application Level Checkpoint Based Load Sharing Model for Heterogeneous Mobile Grid Computing

considered and evaluated. The proposed design is to be
evaluated for three main factors that are:

1. Reduction in data size as a result of optimization tech-
niques

2. Mobile Proxy overhead in terms of load, delay, through-
put, and proxy CPU utilization of mobile devices.

3. Interoperability overhead while distributing .net CF
code to J2ME and while running on the same plat-
form.

Each of the above mentioned three performance mea-
sures is discussed in the subsequent sections, one by one
along with their simulation setups and evaluated results.

5.1 Analysis of Code Optimization
Technique
The data optimization procedure is to be executed on
Mobile Proxy for reduction in data size that is to be trans-
ferred on mobile devices. It is estimated that as a result of
this procedure data size is reduced so the data overhead
will be low, but at the same time some time factor will
be involved as compared to a traditional Grid environ-
ment where there is no need for making process data light
weight.

5.1.1 Data Size Overhead
Original data size that is transferred is comprised of fol-
lowing parts:

Ds = Denv + Dtdata + N(Ddes) + Datt

Denv = Envelop size
Dtdata = Total data
Ddes = Data description
Datt = Attributes of underlying platform
N = Total no. of operations
But due to code optimization, dead data is eliminated,

thus total data size is reduced and data overhead is less:
Ds = Denv + (Dtdata-Ddead)+ N(Ddes) + Datt

Denv = Envelop size
Dtdata = Total data
Ddes = Data description
Datt = Attributes of underlying platform
N = Total no. of operations
Ddead = Dead data variables

5.1.2 Simulation Results for Code Optimization
Simulations for code optimization are carried in Project
Analyzer and Code Visual to Flowchart tools by using five
different real time applications that involve simple arith-
metic, control transfer, audio data, database access, and
live streaming video applications.

Data optimization involves three steps:

1. Construction of Control Flow Graph
2. Identification of independent and dependent threads
3. Identification of Live data

Construction of Control Flow Graph
For this purpose CFGs are constructed for source

codes of all applications by using Code Visual to Flowchart
tool.
Identification of threads

By using Project Analyzer tool independent and
dependent threads or blocks of CFG are identified.
Identification of Live data

In this step live data variables are calculated in all
blocks of CFG. Equations used for this process are given
in layer 3. For the simulations of this research, after the
construction of Control Flow Graph and identifica-
tion of independent and dependent blocks, we selected
two blocks from all code samples in which one thread is
dependent on its predecessor and gets data from it. Each
block along with their live and dead code is given below.
From the entire given sample codes, number of live and
dead variables are calculated and the percentage of data
reduction is given in Table 4 and Figure 2 and it is clearly
depicted that there is a significant reduction of data size
of the message.

Table 4. Code optimization results
Name of
application

Lines of
code

Data
size

Opt.
Data
size

Reduc-
tion in
size

% age
of live
data

Arithmetic 5 4 2 50% 50%
Control
transfer

10 6 5 17% 83%

Audio Data 15 4 1 75% 25%
Database
access

20 15 3 80% 205

Live
streaming
Video Data

25 17 8 53% 47%

Indian Journal of Science and Technology 9Vol 10 (28) | July 2017 | www.indjst.org

Imran Rafique, Hina Gul, Salman Rafique, Syed Asad Raza Kazmi, Awais Qasim and Ilyas Fakhir

0
5

10
15
20

No. of
Variables

5 10 15 20 25
Lines of Code

Data Liveliness Analysis

Original
Optimized

Figure 2. Graphical representation of optimization.

5.2 Analysis of Proxy Performance
A proxy, in this research, is a server or workstation or
router as wireless access point which provides additional
data and code functionality and it is deployed at the
border of wireless network and internet, and is used to
perform data liveliness analysis and encoding and decod-
ing of data into XML binaries for all requests that arrives
from Grid environment. A control flow graph of source
code is constructed at the proxy and live and dead code
is identified by using code optimization algorithm. After
that dead code is eliminated and the index is attached
with all live variables and all live data of independent
threads is encoded in XML format and distributed in a
mobile environment. Similarly, all threads return their
results at proxy in XML format and proxy decoded it to
get the original data format. By performing data analy-
sis and code optimization, there is a significant reduction
in message size, however, some delay factor is estimated
in doing all this processing as compared to any distrib-
uted environment (wired or wireless) where proxy is not
implemented.

5.2.1 Time Complexity Evaluation
Without proxy, there are only three factors that add value
to time complexity.

T = Tcom + Tres + Tmrg

Tcom = Communication time
Tres = Response time
Tmrg = Combining results time
While, with the addition of proxy data analysis and

code optimization also adds values to determine time
complexity. In this way total time of processing in Mobile
Grid environment is also increased.

T = Tcom + Tres + Tmrg + Tcfg+ Tdla+ Tend

Tcom =Communication time
Tres =Response time
Tmrg =Combining results time
Tcfg = CFG construction time
Tdla =Data liveliness analysis time
Tend = Time involved in Encoding and decoding into

XML format
To measure delay, throughput, and load on the Mobile

Grid environment with and without proxy, all simula-
tions are carried out in Optimum Network Performance
(OPNet) simulator.

Two scenarios create one of which has proxy and
another is without proxy. A brief description of project
scenarios is as follows:

1. An IP32-Cloud object represents a Grid environment.
2. An Access Point (Proxy) with wireless LAN configu-

rations in Table 5 that gets a request from Grid and
distribute to all mobile devices.

Table 5. WLAN settings

Characteristics Value
Data rate 11 Mbps
Physical Characteristics Direct Sequence
Access Point access Enabled

Applications Config object and Profile Config object
were configured for three types of mobile services with
following settings in Table 6.

Table 6. Application settings

Application Processes Value
Database Processes Heavy
FTP Processes Heavy
Web Processes Heavy

Total 15 Mobiles devices all of which 60% of their
CPU cycles to Grid Processes. From all these devices,
5 devices provide database services, 5 devices support
FTP services, and 5 devices support web services. These
devices are configured to send and receive requests for
their supporting processes.
Proxy Implementation

In one scenario, proxy is also implemented between
Grid environment and Access Point. This performs
data analysis and code optimization for all messages of

Indian Journal of Science and TechnologyVol 10 (28) | July 2017 | www.indjst.org 10

Optimized Application Level Checkpoint Based Load Sharing Model for Heterogeneous Mobile Grid Computing

Database, FTP and Web processes. All data from grid
arrives at this proxy, after processing all data is passed to
the Access Point from where it is distributed. The second
scenario is without the proxy.

5.2.2 Simulation Results of Proxy Performance
Proxy Behavior

Proxy distributes load as shown in Figure 3 in both
scenarios equally, but it works, in case of proxy, little bit
more but does not create the delay factor.
Proxy CPU Utilization

While analyzing proxy CPU utilization in Figure 4,
it is observed that proxy is actively involved in doing all
processing of data analysis and code optimization.

Mobile Device Behavior
Mobile devices are also analyzed for four parameters.
1. Delay
2. Load
3. Throughput

Both scenarios are analyzed for one hour. In scenario
01 with Mobile Proxy, there is little bit delay but it can
be ignored. But load on mobile devices is lower due to
smaller message sizes. And throughput is same in both
cases as shown in Figure 5-7.

5.3 Analysis of Interoperability
In this section, it is evaluated that executing .NET CF
code on J2ME and .NET CF and then execution time are

Figure 3. Proxy load.

Figure 4. Proxy CPU utilization.

Indian Journal of Science and Technology 11Vol 10 (28) | July 2017 | www.indjst.org

Imran Rafique, Hina Gul, Salman Rafique, Syed Asad Raza Kazmi, Awais Qasim and Ilyas Fakhir

compared. For this purpose, we use micro-benchmarks.
These are simple programs (such as loops) that targets
sole functionality. We choose a set of micro-benchmarks
for carrying out the evaluation; Devices used for these
tests have the following specifications:

1. JAVA Platform
•	 Symbian OS, 10 MB of Memory, and 220 MHz

Processor

2. .Net CF Platform

•	 T-Mobile MDA II Pocket PC

5.3.1 Simulation Results of Interoperability

Table 7. Micro-bench marks details

Micro-benchmarks J2ME .NET CF

Bm1 MemReadLatency 141 122

Bm2 Method Calling 203 330

Bm3 Apawm Thread 31 61

Figure 5. MobilePC delay.

Figure 6. MobilePC load.

Figure 7. MobilePC throughput.

Indian Journal of Science and TechnologyVol 10 (28) | July 2017 | www.indjst.org 12

Optimized Application Level Checkpoint Based Load Sharing Model for Heterogeneous Mobile Grid Computing

Bm4 StringCompare 328 217

Bm5 CopyArray 328 389

Bm6 InitArray 250 166

Bm7 SumArray 16 15

Table 7 shows execution of all micro-benchmarks, it is
significantly from the results that interoperability has no
negative impact because some micro-benchmarks works
better on .Net CF and some works well on J2ME. Slighter
variations are due to the result of internal algorithms of
both execution platforms. Same results are represented in
the graph Figure 8.

0
100
200
300
400

Time (ms)

bm1 bm3 bm5 bm7

Micro-BenchMarks

Interoperability Overhead Measure

JAVA Platform
.Net CF Platform

Figure 8. Performance of interoperability.

6. Conclusion
In this research, we have shown a novel light weight check-
point data distribution design and algorithm which also
hides heterogeneity is proposed and its performance has
been evaluated. Furthermore, the concept of application
level checkpointing is enhanced for mobile devices in tra-
ditional Grid Computing solutions. While an important
factor, an interoperability of .Net Compact Framework
and J2ME has been fully addressed in this research.

The Simulation results show that interoperability is
possible and source code written on one platform can
be executed on the destination platform with ignorable
execution time differences. Proposed design overruns
previous solutions in many perspectives such that opti-
mization techniques reduce data size significantly so
that checkpoints can reside on mobile devices without
creating bottlenecks such as memory overflow and degra-
dation in performance. Performance of proxy introduced
in the proposed algorithm, is tested through simula-
tions and results show that no significant degradation is

observed in a wireless environment as compared to tradi-
tional infrastructures that are without the proxy. It is also
shown from the simulation results that mobile devices can
actively participate in Grid Computing if some prepro-
cessing is done at checkpoint data on the proxy. Moreover
the algorithm proposed is independent of process migra-
tion libraries.

7. Future Directions
Many enhancements can be proposed in respect to future
work of this research. But the most significant is that there
must be separate client and server side toolkits for the
proposed layered architecture.

8. References
1. Antonio P.J, Balaji P. A data-oriented profiler to assist in data

partitioning and distribution for heterogeneous memory in
HPC, Parallel Computing. 2016 Jan; 51:46−55. Crossref.

2. Greg B. Application-level checkpointing for shared mem-
ory programs, ACM SIGARCH Computer Architecture
News. 2004 Dec; 32(5):235−47. Crossref.

3. Nuria L. Resilient MPI applications using an application-
level checkpointing framework and ULFM, The Journal of
Supercomputing. 2016 Jan; p. 1−14.

4. Iván C. Achieving checkpointing global consistency through
a hybrid compile time and runtime protocol, Procedia
Computer Science. 2013 Dec; 18:169−78. Crossref.

5. The Physiology of the Grid. Data accessed: 02.07.2016.
http://www.globus.org/alliance/publications/papers/ogsa.
pdf.

6. Yunfei D, Tang Y, Xie X. A new parallel re-computing code
design methodology for fast failure recovery, Computers
and Electrical Engineering. 2013 May; 39(4):1095−13.
Crossref.

7. Righi D.A, Rodrigo. Observing the impact of multiple met-
rics and runtime adaptations on BSP process rescheduling,
Parallel Processing Letters. 2010 June; 20(02):123−44.
Crossref.

8. Vazhkudai, Sudharshan S. Constructing collaborative desktop
storage caches for large scientific datasets, ACM Transactions
on Storage (TOS). 2006 Aug; 2(3):221−54. Crossref.

9. Bastian S, Brauer J, Kowalewski S. Application of static
analysis for state-space reduction to the microcontroller
binary code, Science of Computer Programming. 2011
Feb;76(2):100−18. Crossref.

10. Dieter F, Bussler C. The web service modeling framework
WSMF, Electronic Commerce Research and Applications.
2002; 1(2):113−37. Crossref.

https://doi.org/10.1016/j.parco.2015.10.006
https://doi.org/10.1145/1037947.1024421
https://doi.org/10.1016/j.procs.2013.05.180
https://doi.org/10.1016/j.compeleceng.2013.01.010
https://doi.org/10.1142/S0129626410000107
https://doi.org/10.1145/1168910.1168911
https://doi.org/10.1016/j.scico.2010.03.006
https://doi.org/10.1016/S1567-4223%2802%2900015-7

Indian Journal of Science and Technology 13Vol 10 (28) | July 2017 | www.indjst.org

Imran Rafique, Hina Gul, Salman Rafique, Syed Asad Raza Kazmi, Awais Qasim and Ilyas Fakhir

11. Peter M.A. Data publication with the structural biology
data grid supports live analysis, Nature Communications.
2016.

12. Gang Z. Large-scale, high-resolution agricultural systems
modeling using a hybrid approach combining grid comput-
ing and parallel processing, Environmental Modelling and
Software. 2013 Mar; 41:231−38. Crossref.

13. Toma, Ioan. Discovery in grid and web services environ-
ments: A survey and evaluation, Multiagent and Grid
Systems. 2007 Aug; 3(3):341−52. Crossref.

14. Baldwin, Douglas, Sayward F. Heuristics for determining
equivalence of program mutations. Georgia Institute of
Technology School of Information and Computer Science,
1979.

15. Pu liu. Mobile code enabled web and grid services,
Publication Company ProQuest, 2006.

16. Kaur, Shubhinder, Kaur G. Weight based task assignment
model to tolerate faults in heterogeneous distributed sys-
tems, International Journal of Computer Applications.
2015 Sep; 125(9):25−28. Crossref.

17. Fakhir, Ilyas. Concurrency in intuitionistic linear-time
μ-calculus: a case study of manufacturing system, Indian
Journal of Science and Technology. 2016 Feb; 9(6):1−7.
Crossref.

18. Rathore, Neeraj, Chana I. Load balancing and job migra-
tion techniques in grid: A survey of recent trends, Wireless
Personal Communications. 2014 Dec; 79(3):2089−125.
Crossref.

https://doi.org/10.1016/j.envsoft.2012.08.007
https://doi.org/10.3233/MGS-2007-3306
https://doi.org/10.5120/ijca2015905627
https://doi.org/10.17485/ijst/2016/v9i6/82655
https://doi.org/10.1007/s11277-014-1975-9

