
Indian Journal of Science and Technology, Vol 10(12), DOI: 10.17485/ijst/2017/v10i12/113008, March 2017
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1. Introduction

Packet queuing or buffering takes place when the network
card receives more packets than it can process. The
received packets can then be accessed by applications, by
copying the packets to their workspace.

If there are multiple applications that need to copy
the packets, then the copying of packets must be done
alternately among the applications. A way to speed
up packets copying among the applications is to have
multiple buffers. However, more buffers do not mean
faster copying of packets among the applications. There
is time consumed to create buffers. More buffers mean
more time is needed to create them. Then there is time
constraint to distribute packets to the multiple buffers.
More buffers mean more time is needed to distribute the
packets. Another time constraint is the duration needed
for applications to move from a buffer to another. More
buffers mean more movements. A correct number of
buffers are therefore needed to ensure the minimum time
required for software applications to access the packets.

Based on our literature review, simulation of multiple

buffers for packet distribution has not been done yet. The
current works on buffer optimizations focus only on the
packet transmission, either on the sender side or on the
receiver side.

We would thus to propose mathematical model for
network card multiple buffers optimization. Our model
is to complement the current works that do not consider
application level constraint.

2. �Network Buffering Simulations
Review

A comprehensive study of buffer bloat phenomena
was conducted1. This was motivated by the effects of
having different buffer sizes in router ports. Buffer size
optimization will affect throughput, packet queue length,
and packet drop rate. Optimal buffer size depends on
several factors, which are packet size, transmission size,
number of transmissions, duration of transmission,
transmission frequency, bandwidth, size of TCP receive
window1.

Abstract
Objectives: Current network card buffer optimizations are focusing on optimal configuration of transmission’s sender
with singular buffer. However, there exists receiver-oriented network card module with multiple buffers. In our research,
we mirrored PF_RING, which alters the traditional packet processing that requires copying the packets to application
space. Methods/Statistical Analysis: PF_RING provides buffers for higher layer applications to access packets directly.
Findings: Each buffer’s capacity, transmission size, packet size, number of packets, and number of applications give raise
to the question on the number of buffers required, because it affects the duration of packets read by the applications.
Optimal number of buffers is therefore needed to generate minimum packet reading duration of the applications.
Application/Improvements: We propose mathematical models to represent the simulation of packet buffering in a multi-
buffer receiver’s network card. Our simulation models are used to determine the optimal number of buffers for specific
network transmission with distinct properties, which include transmission size, packet size, and number of packets.

Keywords: Mathematical Model, Multi-Buffer, Network Card, Simulation

Mathematical Models for Network
Card Packet Buffering Simulation

Okta Nurika, Mohd Fadzil Hassan, Nordin Zakaria and Low Tan Jung

Universiti Teknologi PETRONAS, Seri Iskandar, Tronoh - 32610, Perak, Malaysia;
okta.rider@gmail.com, mfadzil_hassan@utp.edu.my,

nordinzakaria@utp.edu.my, lowtanjung@utp.edu.my

Vol 10 (12) | March 2017 | www.indjst.org Indian Journal of Science and Technology2

Mathematical Models for Network Card Packet Buffering Simulation

Different arbitrary buffer sizes and their effects on
throughput and latency were simulated and investigated1.
Bigger buffer size does not necessarily increase the
throughput. The TCP behavior in certain characteristics
may even decrease the throughput and the packet drop
rate could be higher or lower (latency). The optimal buffer
size needs to be determined carefully to achieve good
throughput with low latency.

Mixed Integer Linear Programming (MILP)
framework was built2 to optimize the allocation of logical
buffers to the physical memories (Dynamic Random
Access Memory), where there are multiple core of
processors. The number of logical buffer links allocated
to each physical memory is not allowed to over-capacitate
the physical memory. This method was proven to be able
to distribute the load of logical buffers, such that the
physical memories had less load compared to the static
allocation method. Their buffer allocation optimization
context is different from ours, because our works are on
network card instead of on processors.

Sender oriented buffer allocation optimization in TCP
connection was proposed3. Different TCP connections
need their own size of buffer to fully utilize their
specific bandwidth. Their solution of local optimization
determines the optimal buffer size for an active TCP
connection, while the global optimization works on
multiple TCP connections requiring different size of
buffers. These methods were able to divide the ‘sender
window’ size optimally among single and multiple
connections. Hence, a connection with lower bandwidth
receiver will not be over-allocated, while another
connection with higher bandwidth receiver will not be
under-allocated. Our research work in buffer allocation
optimization will complement their work, because our
work focuses on the receiver side’s buffer with number of
applications constraint, whether it should be one buffer
only (per-flow type) or multiple buffers (round-robin
type) with 6 clusters/buffers at maximum.

Packet categorizer/classifier to prioritize packets,
based on the packet type4 was simulated. In this
case, the management packets over the multicast and
unicast packets are prioritized. This categorization and
prioritization were included in link layer. However, the
structure was independent from the link layer itself,
which makes it modular. Besides to have queuing based
on strict

priorities, they also implemented weighted round
robin queuing to prioritize specific traffic types. The

queuing methods are generic, since the packets of same
type can be from different data transmissions.

Hence, their queuing approach4 is packet-oriented,
and not transmission oriented. The existence of
applications that need to access those packets have not
been taken into account. Our research approaches the
optimization in different ways. Instead of single buffer,
we are using multiple buffers and we also consider the
number of applications that need to access the packets.

Furthermore, we include transmission size as a
constraint.

Dynamic programming to optimize the allocation
of buffer size among groups of links connected to the
server was implemented5. The objective was to distribute
the total bandwidth to each link in every group, so that
the throughput can be maximized. Their approach was
applicable for industry production line and computer data
flow. For example the distribution of bandwidth from a
network segment to another network segment. However,
this is different from our buffer allocations optimization.
Our optimization is for buffer inside the network card
and it does not involve multiple sequential links. Instead
it involves multiple buffers with considerations for higher
layer applications, data transmission and packet size.
Moreover, our throughput is determined by the minimum
time required for all applications to finish their access to
the packets inside the buffer buckets.

Dynamic ATM (Asynchronous Transfer Mode)
switch buffer allocation among multiple ports has been
developed6. They hybridized Complete Sharing (CS)
technique to share the whole buffer, so when the traffic
load is between low to medium, it will activate pure CS,
but when the traffic increases, it will behave like either
Partial Sharing (PS) or Complete Partitioning (CP).
This dynamic behavior was optimized by Algorithm for
Pattern Extraction (ALOPEX) based on artificial neural
network. However, they did not specify the actual sizes of
low, medium, and high traffic.

Optimization simulation assumes finite buffer size
but infinite number of buffers6. This makes it suitable for
aggregating traffic, which is a standard focus of a switch.
However this method was only suitable for intermediate
or core switch, but unsuitable for edge switch, because
it focuses on delivering the packets with minimum
packet loss and minimum queue delay. Furthermore,
this method did not take into consideration of the
distribution of packets from the same transmission, and
did not look at the end applications that need to access

Okta Nurika, Mohd Fadzil Hassan, Nordin Zakaria and Low Tan Jung

Vol 10 (12) | March 2017 | www.indjst.org Indian Journal of Science and Technology 3

specific transmission’s packets. Moreover, the infinite
number of buffers assumption may not be applicable to
all types of switches. This is different with our research,
where our research also optimizes the number of buffers.
Another difference is that their work focuses on buffer
size allocation, while ours is on allocation of packets to
multiple buffers.

Dynamic Round-Robin (DRR) packet scheduling
algorithm was modified7. Similar to the previous work6,
it was only applicable for intermediate or core network
devices (switch, router, etc), because its objectives lie on
queuing delay and output burst before forwarding the
packets to the next link. This algorithm managed to reduce
the packet queuing delay and output burst. It works by
optimizing the number of allowed packets to be sent from
each queue. This work7 complements the previous DRR
which was only suitable for long duration transmission.

3. �Network Card Buffering
Simulation

Our network card buffering simulation works according
to the following rules:
•	 It represents PF_RING8 packet buffering that provides

either single buffer (per-flow mode) or round-robin
(2 up to 6 buffers).

•	 Transmission size is taken into account, as it will be
divided by the time constraints when the packets are
finished being copied by the applications.

•	 Packets are distributed evenly to the available buffers,
where every buffer has the same limited capacity e.g.
4096 bytes.

•	 Time constraints include: buffers creation time,
duration for packets distribution, duration for
applications to move from buffer to buffer, and
total duration for all applications to finish accessing
packets.

We show a simple case of two buffers (B1 and B2) filled
with evenly distributed packets, which then be accessed
by three applications (App1, App2, and App3) as depicted
in Figure 1.

t = tp x np
					 (1)

From Figure 1, we present our buffering design, where
every buffer access is considered as one round. Every
buffer access is included in the same round if it occurs to

different buffers at the same time. Therefore, we only have
to calculate the access duration of one buffer to get the
total access duration of all buffers.

Figure 1. Buffering Design.

We can calculate the total access time (t) for R1 (Fig.1)
by multiplying the access time per packet (tp) which is
10ms with the number of packets (np) inside B1 which is
4 packets. In this case, the total access time for R1 is 10ms
x 4 = 40ms.

Since there are four rounds and the total access
time for each round is the same, because there are same
number of packets in each buffer, thus the total access
time for all rounds (T) can be generated by multiplying
total access time per round (t) by the number of rounds
(r) as depicted below.

rtT ×= 					 (2)

therefore in the example, the T = 40ms x 4 = 160ms.
The next time constraints to be added are the buffers

creation duration (db), packets distribution duration (dp),
and duration to switch applications from buffer to buffer
(da). The equations are mentioned next.

db = tb x nb

					 (3)

dp = (tp x np) x nb
				 (4)

da = ∑
Napp

1

ts x ns					 (5)

The symbols in Eq. 3, 4, and 5 are explained as follows:
db: total duration to create buffers
tb: duration to create one buffer
nb: number of buffers
dp: total duration to distribute packets
tp: duration to distribute one packet
np: number of packets
da: duration to switch applications from buffer to

buffer

Vol 10 (12) | March 2017 | www.indjst.org Indian Journal of Science and Technology4

Mathematical Models for Network Card Packet Buffering Simulation

Napp: number of applications
ts: duration to move application from one buffer to

another
ns: number of buffer switching of an application.

The value of ns is always nb – 1, because it represents the
movements an application makes from its existing buffer
to the rest of the buffers. For example, if there are 6 buffers,
then an application has to make 5 movements, which are
from its existing buffer to the rest of buffers (5 buffers).

Specifically, number of packets in each buffer (np) is
calculated by the below equation:

np = 







p
s

/ nb 					 (6)

The descriptions of symbols in Eq. 6 are below:
s: transmission size
p: packet size

Since the capacity of each buffer is limited, thus all
buffers will be cleared and refilled until the transmission
completes. The frequency of refilling buffers (f) is
calculated so that we can get the (T) value for the whole
transmission (Wt). The equation for (f) is below:

f = s / (b x nb)
					 (7)

b: buffer capacity
Hence, the (Wt) value can be generated as follows:

Wt = fT × 					 (8)

Finally, the total transmission duration (D) is derived
by Eq. 9:

D = db + (dp x f) + (da x f) + Wt
		 (9)

In the next section, we present a mathematical model
to represent simulation of applications’ total access times
to read the packets in buffers. We create our mathematical
model based on the number of buffers in the network
card. In our case, we take the architecture from [8] that
can provide 1 up to 6 buffers. Our model’s objective is to
find the number of buffering rounds (r) by Eq. 2.

3.1 �Buffering Model for Network Card with
1 Buffer

A network card with 1 buffer only allows 1 application
to access the respective buffer. With multiple buffers,
therefore they will access the buffer alternately one after

another. It means that the number of rounds (r) equals
the number of applications (Napp). The total access time
(T) for all applications to finish reading the buffer is
calculated by Eq. 10.

T = (tP x np) x Napp
	 			 (10)

3.2 �Buffering Model for Network Card with
2 Buffers

In the buffering model with 2 buffers, the mechanism of
reading packets is done in round robin procedure, where
every application accesses every buffer alternately. Within
1 round, there can only be 2 applications that access
the packets in the 2 buffers. Therefore, if there are more
than 2 applications, the applications will access different
buffers alternately in every round until all the applications
have read all buffers. The mechanism of buffering with 2
buffers is shown in the Table 1 below.

Table 1. Process of Reading Packets in 2 Buffers System
2 Buffers and 1 Application
1st Round (R1): App1.read(B1: P1…P4)
2nd Round (R2): App1.read(B2: P5…P8)
r = 2.
2 Buffers and 2 Applications
1st Round (R1): App1.read(B1: P1…P4)
App2.read(B2: P5…P8)
2nd Round (R2): App1.read(B2: P5…P8)
App2.read(B1: P1…P4)
r = 2.
2 Buffers and 3 Applications
1st Round (R1): App1.read(B1: P1…P4)
 App2.read(B2: P5…P8)
2nd Round (R2): App1.read(B2: P5…P8)
 App2.read(B1: P1…P4)
3rd Round (R3): App3.read(B1: P1…P4)
4th Round (R4): App3.read(B2: P5…P8)
r = 4.
2 Buffers and 4 Applications
1st Round (R1): App1.read(B1: P1…P4)
 App2.read(B2: P5…P8)
2nd Round (R2): App1.read(B2: P5…P8)
 App2.read(B1: P1…P4)
3rd Round (R3): App3.read(B1: P1…P4)
 App4.read(B2: P5…P8)
4th Round (R4): App3.read(B2: P5…P8)
 App4.read(B1: P1…P4)
r = 4.
2 Buffers and 5 Applications
1st Round (R1): App1.read(B1: P1…P4)
 App2.read(B2: P5…P8)
2nd Round (R2): App1.read(B2: P5…P8)
 App2.read(B1: P1…P4)
3rd Round (R3): App3.read(B1: P1…P4)
 App4.read(B2: P5…P8)
4th Round (R4): App3.read(B2: P5…P8)
 App4.read(B1: P1…P4)
5th Round (R5): App5.read(B1: P1…P4)
6th Round (R6): App5.read(B2: P5…P8)
r = 6.

Okta Nurika, Mohd Fadzil Hassan, Nordin Zakaria and Low Tan Jung

Vol 10 (12) | March 2017 | www.indjst.org Indian Journal of Science and Technology 5

3.3 �Buffering Model for Network Card with
3 Buffers

In the case of buffering model having 3 buffers, the
process of reading packets is also accomplished in round
robin mechanism, with every single round consisting of
3 buffers, accommodating maximum 3 applications that
access different buffer alternately. The round will reoccur
until all applications have read the 3 buffers. The procedure
of buffering with 3 buffers is depicted in Table 2.

Table 2. Process of Reading Packets in 3 Buffers System
3 Buffers and 1 Application
1st Round (R1): App1.read(B1: P1…P4)
2nd Round (R2): App1.read(B2: P5…P8)
3rd Round (R3): App1.read(B3: P9…P12)
r = 3.
3 Buffers and 2 Applications
1st Round (R1): App1.read(B1: P1…P4)
 App2.read(B2: P5…P8)
2nd Round (R2): App1.read(B2: P5…P8)
 App2.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12)
4th Round (R4): App2.read(B3: P9…P12)
r = 4
3 Buffers and 3 Applications
1st Round (R1): App1.read(B1: P1…P4)
 App2.read(B2: P5…P8)
 App3.read(B3: P9…P12)
2nd Round (R2): App1.read(B2: P5…P8)
 App2.read(B3: P9…P12)
 App3.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12)
 App2.read(B1: P1…P4)
 App3.read(B2: P5…P8)
r = 3
3 Buffers and 4 Applications
1st Round (R1): App1.read(B1: P1…P4)
 App2.read(B2: P5…P8)
 App3.read(B3: P9…P12)
2nd Round (R2): App1.read(B2: P5…P8)
 App2.read(B3: P9…P12)
 App3.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12)
 App2.read(B1: P1…P4)
 App3.read(B2: P5…P8)
4th Round (R4): App4.read(B1: P1…P4)
5th Round (R5): App4.read(B2: P5…P8)
6th Round (R6): App4.read(B3: P9…P12)
r = 6.
3 Buffers and 5 Applications
1st Round (R1): App1.read(B1: P1…P4)
 App2.read(B2: P5…P8)
 App3.read(B3: P9…P12)
2nd Round (R2): App1.read(B2: P5…P8)
 App2.read(B3: P9…P12)
 App3.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12)
 App2.read(B1: P1…P4)
 App3.read(B2: P5…P8)
4th Round (R4): App4.read(B1: P1…P4)
 App5.read(B2: P5…P8)
5th Round (R5): App4.read(B2: P5…P8)
 App5.read(B1: P1…P4)
6th Round (R6): App4.read(B3: P9…P12)
7th Round (R7): App5.read(B3: P9…P12)
r = 7.

Table 3. Process of Reading Packets in 4 Buffers System
4 Buffers and 1 Application
1st Round (R1): App1.read(B1: P1…P4)
2nd Round (R2): App1.read(B2: P5…P8)
3rd Round (R3): App1.read(B3: P9…P12)
4th Round (R4): App1.read(B4: P13…P16)
r = 4
4 Buffers and 2 Applications
1st Round (R1): App1.read(B1: P1…P4)
	 App2.read(B2: P5…P8)
2nd Round (R2): App1.read(B2: P5…P8)
	 App2.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12)

 App2.read(B4: P13…P16)
4th Round (R4): App1.read(B4: P13…P16)
	 App2.read(B3: P9…P12)
r = 4.
4 Buffers and 3 Applications
1st Round (R1): App1.read(B1: P1…P4)
 App2.read(B2: P5…P8)
 App3.read(B3: P9…P12)
2nd Round (R2): App1.read(B2: P5…P8)
 App2.read(B3: P9…P12)
 App3.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12)
 App2.read(B1: P1…P4)
 App3.read(B2: P5…P8)
4th Round (R4): App1.read(B4: P13…P16)
5th Round (R5): App2.read(B4: P13…P16)
6th Round (R6): App3.read(B4: P13…P16)
r = 6.
4 Buffers and 4 Applications
1st Round (R1): App1.read(B1: P1…P4)
 App2.read(B2: P5…P8)
 App3.read(B3: P9…P12)
 App4.read(B4: P13…P16)
2nd Round (R2): App1.read(B2: P5…P8)
 App2.read(B3: P9…P12)
 App3.read(B4: P13…P16)
 App4.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12)
 App2.read(B4: P13…P16)
 App3.read(B1: P1…P4)
 App4.read(B2: P5…P8)
4th Round (R4): App1.read(B4: P13…P16)
 App2.read(B1: P1…P4)
 App3.read(B2: P5…P8)
	 App4.read(B3: P9…P12)
r = 4.
4 Buffers and 5 Applications
1st Round (R1): App1.read(B1: P1…P4)
 App2.read(B2: P5…P8)
 App3.read(B3: P9…P12)
 App4.read(B4: P13…P16)
2nd Round (R2): App1.read(B2: P5…P8)
 App2.read(B3: P9…P12)
 App3.read(B4: P13…P16)
 App4.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12)
 App2.read(B4: P13…P16)
 App3.read(B1: P1…P4)
 App4.read(B2: P5…P8)
4th Round (R4): App1.read(B4: P13…P16)
 App2.read(B1: P1…P4)
 App3.read(B2: P5…P8)
 App4.read(B3: P9…P12)
5th Round (R5): App5.read(B1: P1…P4)
6th Round (R6): App5.read(B2: P5…P8)
7th Round (R7): App5.read(B3: P9…P12)
8th Round (R8): App5.read(B4: P13…P16)
r = 8.

Vol 10 (12) | March 2017 | www.indjst.org Indian Journal of Science and Technology6

Mathematical Models for Network Card Packet Buffering Simulation

3.4 �Buffering Model for Network Card with
4 Buffers

The round robin process with 4 buffers serve maximum
4 applications in one round of packet reading. In the case
of more than 4 applications, therefore the round repeats
until all applications have read the entire buffers. The
mechanism of this process is in Table 3.

3.5 �Buffering Model for Network Card with
5 Buffers

In round robin with 5 buffers, maximum 5 applications
can be accommodated in one round of packet reading/
access, while in the case with more than 5 applications
participating, the round reruns until all applications have
read all buffers alternately. The processes of this round
robin are listed in Table 4.

3.6 �Buffering Model for Network Card with
6 Buffers

In the round robin packet buffering with 6 buffers, 6
applications are allowed to read/access every different
buffer within one single round. Extra round(s) will be
required if there are more than 6 applications needing to
read/access the 6 buffers; in every round, the applications
read/access different buffer alternately until they have
finished reading all buffers. The procedures are listed in
Table 5.

Table 4. Process of Reading Packets in 5 Buffers System
5 Buffers and 1 Application
 1st Round (R1): App1.read(B1: P1…P4)
2nd Round (R2): App1.read(B2: P5…P8)
3rd Round (R3): App1.read(B3: P9…P12)
4th Round (R4): App1.read(B4: P13…P16)
5th Round (R5): App1.read(B5: P17…P20)
r = 5.
5 Buffers and 2 Applications
1st Round (R1): App1.read(B1: P1…P4)
 App2.read(B2: P5…P8)
2nd Round (R2): App1.read(B2: P5…P8)
 App2.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12)
 App2.read(B4: P13…P16)
4th Round (R4): App1.read(B4: P13…P16)
 App2.read(B3: P9…P12)
5th Round (R5): App1.read(B5: P17…P20)
6th Round (R6): App2.read(B5: P17…P20)
r = 6.
5 Buffers and 3 Applications
1st Round (R1): App1.read(B1: P1…P4)
 App2.read(B2: P5…P8)
	 App3.read(B3: P9…P12)

2nd Round (R2): App1.read(B2: P5…P8)
 App2.read(B3: P9…P12)
 App3.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12)
 App2.read(B1: P1…P4)
 App3.read(B2: P5…P8)
4th Round (R4): App1.read(B4: P13…P16)
 App2.read(B5: P17…P20)
5th Round (R5): App1.read(B5: P17…P20)
 App2.read(B4: P13…P16)
6th Round (R6): App3.read(B4: P13…P16)
7th Round (R7): App3.read(B5: P17…P20)
r = 7.
5 Buffers and 4 Applications
1st Round (R1): App1.read(B1: P1…P4)
 App2.read(B2: P5…P8)
 App3.read(B3: P9…P12)
 App4.read(B4: P13…P16)
2nd Round (R2): App1.read(B2: P5…P8)
 App2.read(B3: P9…P12)
 App3.read(B4: P13…P16)
 App4.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12)
 App2.read(B4: P13…P16)
	 App3.read(B1: P1…P4)
	 App4.read(B2: P5…P8)
4th Round (R4): App1.read(B4: P13…P16)
 App2.read(B1: P1…P4)
	 App3.read(B2: P5…P8)
 App4.read(B3: P9…P12)
5th Round (R5): App1.read(B5: P17…P20)
6th Round (R6): App2.read(B5: P17…P20)
7th Round (R7): App3.read(B5: P17…P20)
8th Round (R8): App4.read(B5: P17…P20)
r = 8.
5 Buffers and 5 Applications
1st Round (R1): App1.read(B1: P1…P4)
 App2.read(B2: P5…P8)
	 App3.read(B3: P9…P12)
	 App4.read(B4: P13…P16)
 App5.read(B5: P17…P20)
2nd Round (R2): App1.read(B2: P5…P8)
 App2.read(B3: P9…P12)
 App3.read(B4: P13…P16)
 App4.read(B5: P17…P20)
	 App5.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12)
 App2.read(B4: P13…P16)
 App3.read(B5: P17…P20)
 App4.read(B1: P1…P4)
 App5.read(B2: P5…P8)
4th Round (R4): App1.read(B4: P13…P16)
 App2.read(B5: P17…P20)
 App3.read(B1: P1…P4)
 App4.read(B2: P5…P8)
 App5.read(B3: P9…P12)
5th Round (R5): App1.read(B5: P17…P20)
 App2.read(B1: P1…P4)
 App3.read(B2: P5…P8)
 App4.read(B3: P9…P12)
 App5.read(B4: P13…P16)
r = 5.

Okta Nurika, Mohd Fadzil Hassan, Nordin Zakaria and Low Tan Jung

Vol 10 (12) | March 2017 | www.indjst.org Indian Journal of Science and Technology 7

3.7 �Continuation of Number of Applications
and Buffers Combination

The previous combinations of number of applications,
buffers, and rounds were limited to 5 applications. But
if proceed to higher number of applications, we will
get the following results. In each column of number of
buffers, the numbers consecutively represent number of
applications and number of rounds (r) required.

Table 6. Relation of Number of Applications and
Number of Rounds Required
2 Buffers 3 Buffers 4 Buffers 5 Buffers 6 Buffers
1: 2 1: 3 1: 4 1: 5 1: 6
2: 2 2: 4 2: 4 2: 6 2: 6
3: 4 3: 3 3: 6 3: 7 3: 6
4: 4 4: 6 4: 4 4: 8 4: 8
5: 6 5: 7 5: 8 5: 5 5: 10
6: 6 6: 6 6: 8 6: 10 6: 6
7: 8 7: 9 7: 10 7: 11 7: 12
8: 8 8: 10 8: 8 8: 12 8: 12
9: 10 9: 9 9: 12 9: 13 9: 12
10: 10 10: 10 10: 12 10: 10 10: 14
11: 12 11: 12 11: 14 11: 15 11: 16
12: 12 12: 12 12: 12 12: 16 12: 12
13: 14 13: 15 13: 16 13: 17 13: 18
14: 14 14: 16 14: 16 14: 18 14: 18
15: 16 15: 15 15: 18 15: 15 15: 18

Table 5. Process of Reading Packets in 6 Buffers System
6 Buffers and 1 Application
1st Round (R1): App1.read(B1: P1…P4)
2nd Round (R2): App1.read(B2: P5…P8)
3rd Round (R3): App1.read(B3: P9…P12)
4th Round (R4): App1.read(B4: P13…P16)
5th Round (R5): App1.read(B5: P17…P20)
6th Round (R6): App1.read(B6: P21…P24)
r = 6.
6 Buffers and 2 Applications
1st Round (R1): App1.read(B1: P1…P4)
 App2.read(B2: P5…P8)
2nd Round (R2): App1.read(B2: P5…P8)
 App2.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12)
 App2.read(B4: P13…P16)
4th Round (R4): App1.read(B4: P13…P16)
 App2.read(B3: P9…P12)
5th Round (R5): App1.read(B5: P17…P20)
	 App2.read(B6: P21…P24)
6th Round (R6): App1.read(B6: P21…P24)
 App2.read(B5: P17…P20)
r = 6.
6 Buffers and 3 Applications
1st Round (R1): App1.read(B1: P1…P4)
 App2.read(B2: P5…P8)
 App3.read(B3: P9…P12)
2nd Round (R2): App1.read(B2: P5…P8)
 App2.read(B3: P9…P12)
 App3.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12)
 App2.read(B1: P1…P4)
 App3.read(B2: P5…P8)
3rd Round (R3): App1.read(B3: P9…P12)
 App2.read(B1: P1…P4)
 App3.read(B2: P5…P8)
4th Round (R4): App1.read(B4: P13…P16)
 App2.read(B5: P17…P20)
 App3.read(B6: P21…P24)
5th Round (R5): App1.read(B5: P17…P20)
 App2.read(B6: P21…P24)
 App3.read(B4: P13…P16)
6th Round (R6): App1.read(B6: P21…P24)
 App2.read(B4: P13…P16)
 App3.read(B5: P17…P20)
r = 6.
6 Buffers and 4 Applications
1st Round (R1): App1.read(B1: P1…P4)
 App2.read(B2: P5…P8)
 App3.read(B3: P9…P12)
 App4.read(B4: P13…P16)
2nd Round (R2): App1.read(B2: P5…P8)
 App2.read(B3: P9…P12)
 App3.read(B4: P13…P16)
 App4.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12)
 App2.read(B4: P13…P16)
 App3.read(B1: P1…P4)
 App4.read(B2: P5…P8)
4th Round (R4): App1.read(B4: P13…P16)
 App2.read(B1: P1…P4)
 App3.read(B2: P5…P8)
 App4.read(B3: P9…P12)
5th Round (R5): App1.read(B5: P17…P20)
 App2.read(B6: P21…P24)
6th Round (R6): App1.read(B6: P21…P24)
 App2.read(B5: P17…P20)
7th Round (R7): App3.read(B5: P17…P20)
 App4.read(B6: P21…P24)
8th Round (R8): App3.read(B6: P21…P24)
 App4.read(B5: P17…P20)

r = 8.
6 Buffers and 5 Applications
1st Round (R1): App1.read(B1: P1…P4)
 App2.read(B2: P5…P8)
	 App3.read(B3: P9…P12)
 App4.read(B4: P13…P16)
	 App5.read(B5: P17…P20)
2nd Round (R2): App1.read(B2: P5…P8)
 App2.read(B3: P9…P12)
 App3.read(B4: P13…P16)
 App4.read(B5: P17…P20)
 App5.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12)
 App2.read(B4: P13…P16)
 App3.read(B5: P17…P20)
 App4.read(B1: P1…P4)
 App5.read(B2: P5…P8)
4th Round (R4): App1.read(B4: P13…P16)
 App2.read(B5: P17…P20)
 App3.read(B1: P1…P4)
 App4.read(B2: P5…P8)
	 App5.read(B3: P9…P12)
5th Round (R5): App1.read(B5: P17…P20)
 App2.read(B1: P1…P4)
 App3.read(B2: P5…P8)
 App4.read(B3: P9…P12)
	 App5.read(B4: P13…P16)
6th Round (R6): App1.read(B6: P21…P24)
7th Round (R7): App2.read(B6: P21…P24)
8th Round (R8): App3.read(B6: P21…P24)
9th Round (R9): App4.read(B6: P21…P24)
10th Round (R10): App5.read(B6: P21…P24)
r = 10.

Vol 10 (12) | March 2017 | www.indjst.org Indian Journal of Science and Technology8

Mathematical Models for Network Card Packet Buffering Simulation

In Table 6 above, we can take an example from the
fifth entry of the first column that states ‘5: 6’. It means
that for 2 buffers with 5 applications, there will be 6
rounds required. It can be compared with the fifth entry
in third column that mentions ‘5: 8’, which means that for
4 buffers with 5 applications, 8 rounds are required.

4. �Mathematical Models of
Buffering Rounds

From the previous section of buffering simulation and
Table 6, we can generate mathematical models for each
number of buffers. The models will generate the required
number of buffering rounds (r) as described below.

For 2 buffers:





+
=

1Napp
Napp

r
if Napp mod 2 = 0

otherwise
		 (11)

For 3 buffers:





+
=

2Napp
Napp

r
if Napp mod 3 = 0

otherwise 		 (12)

For 4 buffers:









+
+=

3

2

Napp
Napp
Napp

r

if Napp mod 4 = 0

if Napp mod 2 = 0

otherwise

		 (13)

For 5 buffers:





+
=

4Napp
Napp

r
if Napp mod 5 = 0

otherwise 		 (14)

For 6 buffers:











+
+
+

=

5

4

3

Napp
Napp
Napp
Napp

r

if Napp mod 6 = 0
if Napp mod 3 = 0
if Napp mod 2 = 0
otherwise

		 (15)

5. Example Case

This section describes a buffering example. The
transmission size (s), buffer capacity (b), and packet size
(p) are assumed in a way that there are 8 packets (np)
in the transmission and f = 1. Furthermore, there are 3
applications (Napp), and the time required to read a
packet is 10ms (tp). The buffering illustrations are for 2
sample compared solutions. One with 2 buffers (B1 and

B2) and another with 3 buffers (B1, B2, and B3). They are
depicted in Figure 2 and Figure 3.

Figure 2. Buffering Illustration of Solution with 2 Buffers.

B1

P1

P2

P3

B2

P4

P5

P6

B3

P7

P8

Figure 3. Buffering Illustration of Solution with 3 Buffers.

In Figure 2 and Figure 3, the 8 packets (P1 until P8)
are distributed among the buffers. Next in Table 7 below is
the procedural calculation of total transmission duration
(D) for both solutions. The mathematical models in
section 4 are referred to find the number of rounds (r)
accordingly.

Table 7. Comparison of 2 Different Solutions
Steps Solution A (nb = 2) Solution B (nb = 3)
T = t x r (10ms x 4) x 4 =

160ms
(10ms x 3) x 3 =
90ms

db = tb x nb 40ms x 2 = 80ms 40ms x 3 = 120ms
dp = (tp x np) x nb (10ms x 4) x 2 =

80ms
(10ms x 3) x 3 =
90ms

da = ∑
Napp

1
ts x ns ∑

3

1
20ms x (2-1)

= 60ms

∑
3

1
20ms x (3-1) =

120ms
D = db + (dp x f)
+ (da x f) + Wt

80 + (80 x 1) + (60
x 1) + (160 x 1) =
380ms

120 + (90 x 1) + (120
x 1) + (90 x 1) =
420ms

From the comparison above, solution A is the better
one since it takes lesser time (D) to complete the receiving
of data transmission. Therefore, we conclude that more

Okta Nurika, Mohd Fadzil Hassan, Nordin Zakaria and Low Tan Jung

Vol 10 (12) | March 2017 | www.indjst.org Indian Journal of Science and Technology 9

buffers are not necessarily the better solution. The optimal
number of buffers mainly depends on the transmission
size, packet size, number of packets, buffer capacity, and
the number of applications.

6. Conclusion

Our mathematical models reflect the buffering process
in network card with multiple buffers and multiple
applications. These models can be useful for network
card optimization setting, when the transmission
characteristics are known.

Since our models use generic parameters, we expect
them to be expandable with additional properties of
network card buffers.

7. References
1.	 Gijsbers B, Akkoorath DD. Performance Simulation of Buf-

fer Bloat in Routers. Technical Report. Faculty of Science,
Universiteit van Amsterdam; 2011 Mar.

2.	 Odendahl M, Goens A, Leupers R, Ascheid G, Ries B,
Vocking B, Henriksson T. Optimized Buffer Allocation in
Multicore Platforms. Proc. Conference on Design, Automa-
tion and Test in Europe (DATE). 2014 Mar.p. 1–6. Crossref

3.	 Cohen A, Cohen R. A Dynamic Approach for Efficient TCP
Buffer Allocation. IEEE Transactions on Computers. 2002
Mar; 51(3): 303–12. Crossref

4.	 Quintana AA, Casilari E, Lopez JH. An Integrated OM-
NeT++ Implementation of 802.11. Proc. International
ICST Conference on Simulation Tools and Techniques (SI-
MUTools 2012), 2012 Mar.

5.	 Hasama M, Song Y, Ito T, Matsuno S. Optimization of Buf-
fer-size Allocation Using Dynamic Programming. Inter-
national Journal of Systems Applications, Engineering and
Development. 2011; 5(4): 461–68.

6.	 Pandya AS, Sen E, Hsu S. Buffer Allocation Optimization
in ATM Switching Networks Using ALOPEX Algorithm.
Neurocomputing. 1999 Feb; 24(1-3): 1–11. Crossref

7.	 He Y, Gao L, Liu GK, Liu YZ. A Dynamic Round-Robin
Packet Scheduling Algorithm. Applied Mechanics and Ma-
terials. 2013 Aug; 347-350: 2203–07. Crossref

8.	 NTOP. PF_RING User Guide: Linux High Speed Packet
Capture. 2012.

https://doi.org/10.7873/date.2014.337
https://doi.org/10.1109/12.990128
https://doi.org/10.1016/S0925-2312%2898%2900088-5
https://doi.org/10.4028/www.scientific.net/AMM.347-350.2203

