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1.  Introduction

Packet queuing or buffering takes place when the network 
card receives more packets than it can process. The 
received packets can then be accessed by applications, by 
copying the packets to their workspace. 

If there are multiple applications that need to copy 
the packets, then the copying of packets must be done 
alternately among the applications. A way to speed 
up packets copying among the applications is to have 
multiple buffers. However, more buffers do not mean 
faster copying of packets among the applications. There 
is time consumed to create buffers. More buffers mean 
more time is needed to create them. Then there is time 
constraint to distribute packets to the multiple buffers. 
More buffers mean more time is needed to distribute the 
packets. Another time constraint is the duration needed 
for applications to move from a buffer to another. More 
buffers mean more movements. A correct number of 
buffers are therefore needed to ensure the minimum time 
required for software applications to access the packets. 

Based on our literature review, simulation of multiple 

buffers for packet distribution has not been done yet. The 
current works on buffer optimizations focus only on the 
packet transmission, either on the sender side or on the 
receiver side.

We would thus to propose mathematical model for 
network card multiple buffers optimization. Our model 
is to complement the current works that do not consider 
application level constraint.

2.  �Network Buffering Simulations 
Review

A comprehensive study of buffer bloat phenomena 
was conducted1. This was motivated by the effects of 
having different buffer sizes in router ports. Buffer size 
optimization will affect throughput, packet queue length, 
and packet drop rate. Optimal buffer size depends on 
several factors, which are packet size, transmission size, 
number of transmissions, duration of transmission, 
transmission frequency, bandwidth, size of TCP receive 
window1. 
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Different arbitrary buffer sizes and their effects on 
throughput and latency were simulated and investigated1. 
Bigger buffer size does not necessarily increase the 
throughput. The TCP behavior in certain characteristics 
may even decrease the throughput and the packet drop 
rate could be higher or lower (latency). The optimal buffer 
size needs to be determined carefully to achieve good   
throughput with low latency.

Mixed Integer Linear Programming (MILP) 
framework was built2 to optimize the allocation of logical 
buffers to the physical memories (Dynamic Random 
Access Memory), where there are multiple core of 
processors. The number of logical buffer links allocated 
to each physical memory is not allowed to over-capacitate 
the physical memory. This method was proven to be able 
to distribute the load of logical buffers, such that the 
physical memories had less load compared to the static 
allocation method. Their buffer allocation optimization 
context is different from ours, because our works are on 
network card instead of on processors. 

Sender oriented buffer allocation optimization in TCP 
connection was proposed3. Different TCP connections 
need their own size of buffer to fully utilize their 
specific bandwidth. Their solution of local optimization 
determines the optimal buffer size for an active TCP 
connection, while the global optimization works on 
multiple TCP connections requiring different size of 
buffers. These methods were able to divide the ‘sender 
window’ size optimally among single and multiple 
connections. Hence, a connection with lower bandwidth 
receiver will not be over-allocated, while another 
connection with higher bandwidth receiver will not be 
under-allocated. Our research work in buffer allocation 
optimization will complement their work, because our 
work focuses on the receiver side’s buffer with number of 
applications constraint, whether it should be one buffer 
only (per-flow type) or multiple buffers (round-robin 
type) with 6 clusters/buffers at maximum.

Packet categorizer/classifier to prioritize packets, 
based on the packet type4 was simulated. In this 
case, the management packets over the multicast and 
unicast packets are prioritized. This categorization and 
prioritization were included in link layer. However, the 
structure was independent from the link layer itself, 
which makes it modular. Besides to have queuing based 
on strict 

priorities, they also implemented weighted round 
robin queuing to prioritize specific traffic types. The 

queuing methods are generic, since the packets of same 
type can be from different data transmissions. 

Hence, their queuing approach4 is packet-oriented, 
and not transmission oriented. The existence of 
applications that need to access those packets have not 
been taken into account. Our research approaches the 
optimization in different ways. Instead of single buffer, 
we are using multiple buffers and we also consider the 
number of applications that need to access the packets. 

Furthermore, we include transmission size as a 
constraint. 

Dynamic programming to optimize the allocation 
of buffer size among groups of links connected to the 
server was implemented5. The objective was to distribute 
the total bandwidth to each link in every group, so that 
the throughput can be maximized. Their approach was 
applicable for industry production line and computer data 
flow. For example the distribution of bandwidth from a 
network segment to another network segment. However, 
this is different from our buffer allocations optimization. 
Our optimization is for buffer inside the network card 
and it does not involve multiple sequential links. Instead 
it involves multiple buffers with considerations for higher 
layer applications, data transmission and packet size. 
Moreover, our throughput is determined by the minimum 
time required for all applications to finish their access to 
the packets inside the buffer buckets. 

Dynamic ATM (Asynchronous Transfer Mode) 
switch buffer allocation among multiple ports has been 
developed6. They hybridized Complete Sharing (CS) 
technique to share the whole buffer, so when the traffic 
load is between low to medium, it will activate pure CS, 
but when the traffic increases, it will behave like either 
Partial Sharing (PS) or Complete Partitioning (CP). 
This dynamic behavior was optimized by Algorithm for 
Pattern Extraction (ALOPEX) based on artificial neural 
network. However, they did not specify the actual sizes of 
low, medium, and high traffic.

Optimization simulation assumes finite buffer size 
but infinite number of buffers6. This makes it suitable for 
aggregating traffic, which is a standard focus of a switch. 
However this method was only suitable for intermediate 
or core switch, but unsuitable for edge switch, because 
it focuses on delivering the packets with minimum 
packet loss and minimum queue delay. Furthermore, 
this method did not take into consideration of the 
distribution of packets from the same transmission, and 
did not look at the end applications that need to access 
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specific transmission’s packets. Moreover, the infinite 
number of buffers assumption may not be applicable to 
all types of switches. This is different with our research, 
where our research also optimizes the number of buffers. 
Another difference is that their work focuses on buffer 
size allocation, while ours is on allocation of packets to 
multiple buffers. 

Dynamic Round-Robin (DRR) packet scheduling 
algorithm was modified7. Similar to the previous work6, 
it was only applicable for intermediate or core network 
devices (switch, router, etc), because its objectives lie on 
queuing delay and output burst before forwarding the 
packets to the next link. This algorithm managed to reduce 
the packet queuing delay and output burst. It works by 
optimizing the number of allowed packets to be sent from 
each queue. This work7 complements the previous DRR 
which was only suitable for long duration transmission.

3.  �Network Card Buffering 
Simulation

Our network card buffering simulation works according 
to the following rules:
•	 It represents PF_RING8 packet buffering that provides 

either single buffer (per-flow mode) or round-robin 
(2 up to 6 buffers).

•	 Transmission size is taken into account, as it will be 
divided by the time constraints when the packets are 
finished being copied by the applications.

•	 Packets are distributed evenly to the available buffers, 
where every buffer has the same limited capacity e.g. 
4096 bytes. 

•	 Time constraints include: buffers creation time, 
duration for packets distribution, duration for 
applications to move from buffer to buffer, and 
total duration for all applications to finish accessing 
packets.

We show a simple case of two buffers (B1 and B2) filled 
with evenly distributed packets, which then be accessed 
by three applications (App1, App2, and App3) as depicted 
in Figure 1.

t = tp x np
					           (1)

From Figure 1, we present our buffering design, where 
every buffer access is considered as one round. Every 
buffer access is included in the same round if it occurs to 

different buffers at the same time. Therefore, we only have 
to calculate the access duration of one buffer to get the 
total access duration of all buffers.

Figure 1.    Buffering Design.

We can calculate the total access time (t) for R1 (Fig.1) 
by multiplying the access time per packet (tp) which is 
10ms with the number of packets (np) inside B1 which is 
4 packets. In this case, the total access time for R1 is 10ms 
x 4 = 40ms.

Since there are four rounds and the total access 
time for each round is the same, because there are same 
number of packets in each buffer, thus the total access 
time for all rounds (T) can be generated by multiplying 
total access time per round (t) by the number of rounds 
(r) as depicted below.  

rtT ×= 					           (2)

therefore in the example, the T = 40ms x 4 = 160ms.
The next time constraints to be added are the buffers 

creation duration (db), packets distribution duration (dp), 
and duration to switch applications from buffer to buffer 
(da). The equations are mentioned next.

db = tb x nb

					           (3)

dp = (tp x np)  x nb
				          (4)

da = ∑
Napp

1

ts x ns					           (5)

The symbols in Eq. 3, 4, and 5 are explained as follows:
db: total duration to create buffers
tb: duration to create one buffer 
nb: number of buffers
dp: total duration to distribute packets
tp: duration to distribute one packet
np: number of packets
da: duration to switch applications from buffer to 

buffer
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Napp: number of applications
ts: duration to move application from one buffer to 

another
ns: number of buffer switching of an application. 

The value of ns is always nb – 1, because it represents the 
movements an application makes from its existing buffer 
to the rest of the buffers. For example, if there are 6 buffers, 
then an application has to make 5 movements, which are 
from its existing buffer to the rest of buffers (5 buffers). 

Specifically, number of packets in each buffer (np) is 
calculated by the below equation:

np = 







p
s

/ nb 					           (6)

The descriptions of symbols in Eq. 6 are below:
s: transmission size
p: packet size

Since the capacity of each buffer is limited, thus all 
buffers will be cleared and refilled until the transmission 
completes. The frequency of refilling buffers (f) is 
calculated so that we can get the (T) value for the whole 
transmission (Wt). The equation for (f) is below:

f = s / (b x nb)
					           (7)

b: buffer capacity
Hence, the (Wt) value can be generated as follows:

Wt = fT × 					           (8)

Finally, the total transmission duration (D) is derived 
by Eq. 9:

D = db + (dp x f) + (da x f) + Wt
		        (9)

In the next section, we present a mathematical model 
to represent simulation of applications’ total access times 
to read the packets in buffers. We create our mathematical 
model based on the number of buffers in the network 
card. In our case, we take the architecture from [8] that 
can provide 1 up to 6 buffers. Our model’s objective is to 
find the number of buffering rounds (r) by Eq. 2.

3.1 �Buffering Model for Network Card with 
1 Buffer

A network card with 1 buffer only allows 1 application 
to access the respective buffer. With multiple buffers, 
therefore they will access the buffer alternately one after 

another. It means that the number of rounds (r) equals 
the number of applications (Napp). The total access time 
(T) for all applications to finish reading the buffer is 
calculated by Eq. 10.

T = (tP x np) x Napp
	  			      (10)

3.2 �Buffering Model for Network Card with 
2 Buffers

In the buffering model with 2 buffers, the mechanism of 
reading packets is done in round robin procedure, where 
every application accesses every buffer alternately. Within 
1 round, there can only be 2 applications that access 
the packets in the 2 buffers. Therefore, if there are more 
than 2 applications, the applications will access different 
buffers alternately in every round until all the applications 
have read all buffers. The mechanism of buffering with 2 
buffers is shown in the Table 1 below.

Table 1.    Process of Reading Packets in 2 Buffers System
2 Buffers and 1 Application
1st Round (R1): App1.read(B1: P1…P4)
2nd Round (R2): App1.read(B2: P5…P8)
r = 2.
2 Buffers and 2 Applications
1st Round (R1): App1.read(B1: P1…P4)
App2.read(B2: P5…P8)
2nd Round (R2): App1.read(B2: P5…P8)
App2.read(B1: P1…P4)
r = 2.
2 Buffers and 3 Applications
1st Round (R1): App1.read(B1: P1…P4) 
                          App2.read(B2: P5…P8)
2nd Round (R2): App1.read(B2: P5…P8)
                          App2.read(B1: P1…P4)
3rd Round (R3): App3.read(B1: P1…P4)
4th Round (R4): App3.read(B2: P5…P8)
r = 4.
2 Buffers and 4 Applications
1st Round (R1): App1.read(B1: P1…P4) 
                          App2.read(B2: P5…P8)
2nd Round (R2): App1.read(B2: P5…P8)
                          App2.read(B1: P1…P4)
3rd Round (R3): App3.read(B1: P1…P4) 
                          App4.read(B2: P5…P8)
4th Round (R4): App3.read(B2: P5…P8)
                          App4.read(B1: P1…P4)
r = 4.
2 Buffers and 5 Applications
1st Round (R1): App1.read(B1: P1…P4) 
                          App2.read(B2: P5…P8)
2nd Round (R2): App1.read(B2: P5…P8)
                          App2.read(B1: P1…P4)
3rd Round (R3): App3.read(B1: P1…P4) 
                          App4.read(B2: P5…P8)
4th Round (R4): App3.read(B2: P5…P8)
                          App4.read(B1: P1…P4)
5th Round (R5): App5.read(B1: P1…P4)
6th Round (R6): App5.read(B2: P5…P8)
r = 6.
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3.3 �Buffering Model for Network Card with 
3 Buffers

In the case of buffering model having 3 buffers, the 
process of reading packets is also accomplished in round 
robin mechanism, with every single round consisting of 
3 buffers, accommodating maximum 3 applications that 
access different buffer alternately. The round will reoccur 
until all applications have read the 3 buffers. The procedure 
of buffering with 3 buffers is depicted in Table 2.

Table 2.    Process of Reading Packets in 3 Buffers System
3 Buffers and 1 Application
1st Round (R1): App1.read(B1: P1…P4) 
2nd Round (R2): App1.read(B2: P5…P8)
3rd Round (R3): App1.read(B3: P9…P12)
r = 3.
3 Buffers and 2 Applications
1st Round (R1): App1.read(B1: P1…P4) 
                          App2.read(B2: P5…P8)
2nd Round (R2): App1.read(B2: P5…P8)
                          App2.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12)
4th Round (R4): App2.read(B3: P9…P12)
r = 4
3 Buffers and 3 Applications
1st Round (R1): App1.read(B1: P1…P4) 
                          App2.read(B2: P5…P8)
                          App3.read(B3: P9…P12)
2nd Round (R2): App1.read(B2: P5…P8)
                          App2.read(B3: P9…P12)
                          App3.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12) 
                          App2.read(B1: P1…P4)
                          App3.read(B2: P5…P8)
r = 3
3 Buffers and 4 Applications
1st Round (R1): App1.read(B1: P1…P4) 
                          App2.read(B2: P5…P8)
                          App3.read(B3: P9…P12)
2nd Round (R2): App1.read(B2: P5…P8)
                          App2.read(B3: P9…P12)
                          App3.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12) 
                          App2.read(B1: P1…P4)
                          App3.read(B2: P5…P8)
4th Round (R4): App4.read(B1: P1…P4) 
5th Round (R5): App4.read(B2: P5…P8)
6th Round (R6): App4.read(B3: P9…P12) 
r = 6. 
3 Buffers and 5 Applications
1st Round (R1): App1.read(B1: P1…P4) 
                          App2.read(B2: P5…P8)
                          App3.read(B3: P9…P12)
2nd Round (R2): App1.read(B2: P5…P8)
                          App2.read(B3: P9…P12)
                          App3.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12) 
                          App2.read(B1: P1…P4)
                          App3.read(B2: P5…P8)
4th Round (R4): App4.read(B1: P1…P4) 
                          App5.read(B2: P5…P8)
5th Round (R5): App4.read(B2: P5…P8) 
                          App5.read(B1: P1…P4)
6th Round (R6): App4.read(B3: P9…P12) 
7th Round (R7): App5.read(B3: P9…P12) 
r = 7.    

Table 3.    Process of Reading Packets in 4 Buffers System 
4 Buffers and 1 Application
1st Round (R1): App1.read(B1: P1…P4) 
2nd Round (R2): App1.read(B2: P5…P8)
3rd Round (R3): App1.read(B3: P9…P12)
4th Round (R4): App1.read(B4: P13…P16)
r = 4
4 Buffers and 2 Applications
1st Round (R1): App1.read(B1: P1…P4) 
	         App2.read(B2: P5…P8)
2nd Round (R2): App1.read(B2: P5…P8) 
	         App2.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12) 
              
        App2.read(B4: P13…P16)
4th Round (R4): App1.read(B4: P13…P16) 
	         App2.read(B3: P9…P12)
r = 4.
4 Buffers and 3 Applications
1st Round (R1): App1.read(B1: P1…P4) 
                          App2.read(B2: P5…P8)
                          App3.read(B3: P9…P12)
2nd Round (R2): App1.read(B2: P5…P8)
                          App2.read(B3: P9…P12)
                          App3.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12) 
                          App2.read(B1: P1…P4)
                          App3.read(B2: P5…P8)
4th Round (R4): App1.read(B4: P13…P16)
5th Round (R5): App2.read(B4: P13…P16)
6th Round (R6): App3.read(B4: P13…P16)
r = 6.
4 Buffers and 4 Applications
1st Round (R1): App1.read(B1: P1…P4) 
                          App2.read(B2: P5…P8)
                          App3.read(B3: P9…P12)
                          App4.read(B4: P13…P16)
2nd Round (R2): App1.read(B2: P5…P8)
                          App2.read(B3: P9…P12)
                          App3.read(B4: P13…P16)
                          App4.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12) 
                          App2.read(B4: P13…P16)
                          App3.read(B1: P1…P4)
                          App4.read(B2: P5…P8)
4th Round (R4): App1.read(B4: P13…P16) 
                          App2.read(B1: P1…P4)
                          App3.read(B2: P5…P8)
	         App4.read(B3: P9…P12)
r = 4.   
4 Buffers and 5 Applications
1st Round (R1): App1.read(B1: P1…P4) 
                          App2.read(B2: P5…P8)
                          App3.read(B3: P9…P12)
          App4.read(B4: P13…P16)
2nd Round (R2): App1.read(B2: P5…P8)
                          App2.read(B3: P9…P12)
                          App3.read(B4: P13…P16)
                          App4.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12) 
                          App2.read(B4: P13…P16)
                          App3.read(B1: P1…P4)
                          App4.read(B2: P5…P8)
4th Round (R4): App1.read(B4: P13…P16) 
                          App2.read(B1: P1…P4)
                          App3.read(B2: P5…P8)
                          App4.read(B3: P9…P12)
5th Round (R5): App5.read(B1: P1…P4) 
6th Round (R6): App5.read(B2: P5…P8) 
7th Round (R7): App5.read(B3: P9…P12) 
8th Round (R8): App5.read(B4: P13…P16) 
r = 8.   
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3.4 �Buffering Model for Network Card with 
4 Buffers

The round robin process with 4 buffers serve maximum 
4 applications in one round of packet reading. In the case 
of more than 4 applications, therefore the round repeats 
until all applications have read the entire buffers. The 
mechanism of this process is in Table 3.

3.5 �Buffering Model for Network Card with 
5 Buffers

In round robin with 5 buffers, maximum 5 applications 
can be accommodated in one round of packet reading/
access, while in the case with more than 5 applications 
participating, the round reruns until all applications have 
read all buffers alternately. The processes of this round 
robin are listed in Table 4.

3.6 �Buffering Model for Network Card with 
6 Buffers

In the round robin packet buffering with 6 buffers, 6 
applications are allowed to read/access every different 
buffer within one single round. Extra round(s) will be 
required if there are more than 6 applications needing to 
read/access the 6 buffers; in every round, the applications 
read/access different buffer alternately until they have 
finished reading all buffers. The procedures are listed in 
Table 5.

Table 4.    Process of Reading Packets in 5 Buffers System 
5 Buffers and 1 Application
 1st Round (R1): App1.read(B1: P1…P4) 
2nd Round (R2): App1.read(B2: P5…P8)
3rd Round (R3): App1.read(B3: P9…P12)
4th Round (R4): App1.read(B4: P13…P16)
5th Round (R5): App1.read(B5: P17…P20)
r = 5.
5 Buffers and 2 Applications
1st Round (R1): App1.read(B1: P1…P4) 
                          App2.read(B2: P5…P8)
2nd Round (R2): App1.read(B2: P5…P8) 
                          App2.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12) 
                          App2.read(B4: P13…P16)
4th Round (R4): App1.read(B4: P13…P16) 
                          App2.read(B3: P9…P12) 
5th Round (R5): App1.read(B5: P17…P20)
6th Round (R6): App2.read(B5: P17…P20)
r = 6.
5 Buffers and 3 Applications
1st Round (R1): App1.read(B1: P1…P4) 
                          App2.read(B2: P5…P8)
	         App3.read(B3: P9…P12)

2nd Round (R2): App1.read(B2: P5…P8)
                          App2.read(B3: P9…P12)
                          App3.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12) 
                          App2.read(B1: P1…P4)
                          App3.read(B2: P5…P8)
4th Round (R4): App1.read(B4: P13…P16) 
                          App2.read(B5: P17…P20)
5th Round (R5): App1.read(B5: P17…P20) 
                          App2.read(B4: P13…P16)
6th Round (R6): App3.read(B4: P13…P16) 
7th Round (R7): App3.read(B5: P17…P20) 
r = 7.
5 Buffers and 4 Applications
1st Round (R1): App1.read(B1: P1…P4) 
                          App2.read(B2: P5…P8)
                          App3.read(B3: P9…P12)
                          App4.read(B4: P13…P16)
2nd Round (R2): App1.read(B2: P5…P8)
                          App2.read(B3: P9…P12)
                          App3.read(B4: P13…P16)
                          App4.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12) 
                          App2.read(B4: P13…P16)
	         App3.read(B1: P1…P4)
	         App4.read(B2: P5…P8)
4th Round (R4): App1.read(B4: P13…P16) 
                          App2.read(B1: P1…P4)
	         App3.read(B2: P5…P8)
                          App4.read(B3: P9…P12)
5th Round (R5): App1.read(B5: P17…P20) 
6th Round (R6): App2.read(B5: P17…P20) 
7th Round (R7): App3.read(B5: P17…P20) 
8th Round (R8): App4.read(B5: P17…P20) 
r = 8.
5 Buffers and 5 Applications
1st Round (R1): App1.read(B1: P1…P4) 
                           App2.read(B2: P5…P8)
	          App3.read(B3: P9…P12)
	          App4.read(B4: P13…P16)
                           App5.read(B5: P17…P20) 
2nd Round (R2): App1.read(B2: P5…P8) 
                           App2.read(B3: P9…P12)
                           App3.read(B4: P13…P16)
                           App4.read(B5: P17…P20)
	          App5.read(B1: P1…P4) 
3rd Round (R3): App1.read(B3: P9…P12) 
                           App2.read(B4: P13…P16)
                           App3.read(B5: P17…P20)
                           App4.read(B1: P1…P4)
                           App5.read(B2: P5…P8) 
4th Round (R4): App1.read(B4: P13…P16) 
                           App2.read(B5: P17…P20)
                           App3.read(B1: P1…P4)
                           App4.read(B2: P5…P8)
                           App5.read(B3: P9…P12) 
5th Round (R5): App1.read(B5: P17…P20) 
                           App2.read(B1: P1…P4)
                           App3.read(B2: P5…P8)
                           App4.read(B3: P9…P12)
                           App5.read(B4: P13…P16)
r = 5.
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3.7 �Continuation of Number of Applications 
and Buffers Combination

The previous combinations of number of applications, 
buffers, and rounds were limited to 5 applications. But 
if proceed to higher number of applications, we will 
get the following results. In each column of number of 
buffers, the numbers consecutively represent number of 
applications and number of rounds (r) required.

Table 6.    Relation of Number of Applications and 
Number of Rounds Required
2 Buffers 3 Buffers 4 Buffers 5 Buffers 6 Buffers
1: 2 1: 3 1: 4 1: 5 1: 6
2: 2 2: 4 2: 4 2: 6 2: 6
3: 4 3: 3 3: 6 3: 7 3: 6
4: 4 4: 6 4: 4 4: 8 4: 8
5: 6 5: 7 5: 8 5: 5 5: 10
6: 6 6: 6 6: 8 6: 10 6: 6
7: 8 7: 9 7: 10 7: 11 7: 12
8: 8 8: 10 8: 8 8: 12 8: 12
9: 10 9: 9 9: 12 9: 13 9: 12
10: 10 10: 10 10: 12 10: 10 10: 14
11: 12 11: 12 11: 14 11: 15 11: 16
12: 12 12: 12 12: 12 12: 16 12: 12
13: 14 13: 15 13: 16 13: 17 13: 18
14: 14 14: 16 14: 16 14: 18 14: 18
15: 16 15: 15 15: 18 15: 15 15: 18

Table 5.    Process of Reading Packets in 6 Buffers System
6 Buffers and 1 Application
1st Round (R1): App1.read(B1: P1…P4) 
2nd Round (R2): App1.read(B2: P5…P8)
3rd Round (R3): App1.read(B3: P9…P12)
4th Round (R4): App1.read(B4: P13…P16)
5th Round (R5): App1.read(B5: P17…P20)
6th Round (R6): App1.read(B6: P21…P24)
r = 6.
6 Buffers and 2 Applications
1st Round (R1): App1.read(B1: P1…P4) 
                          App2.read(B2: P5…P8)
2nd Round (R2): App1.read(B2: P5…P8) 
                           App2.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12) 
                          App2.read(B4: P13…P16)
4th Round (R4): App1.read(B4: P13…P16) 
                          App2.read(B3: P9…P12)
5th Round (R5): App1.read(B5: P17…P20) 
	         App2.read(B6: P21…P24)
6th Round (R6): App1.read(B6: P21…P24) 
                          App2.read(B5: P17…P20)
r = 6.   
6 Buffers and 3 Applications
1st Round (R1): App1.read(B1: P1…P4) 
                          App2.read(B2: P5…P8)
                          App3.read(B3: P9…P12)
2nd Round (R2): App1.read(B2: P5…P8)
                          App2.read(B3: P9…P12)
                          App3.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12) 
                          App2.read(B1: P1…P4)
                          App3.read(B2: P5…P8)
3rd Round (R3): App1.read(B3: P9…P12) 
                          App2.read(B1: P1…P4)
                          App3.read(B2: P5…P8)
4th Round (R4): App1.read(B4: P13…P16) 
                          App2.read(B5: P17…P20)
                          App3.read(B6: P21…P24)
5th Round (R5): App1.read(B5: P17…P20) 
                          App2.read(B6: P21…P24)
                          App3.read(B4: P13…P16)
6th Round (R6): App1.read(B6: P21…P24) 
                          App2.read(B4: P13…P16)
                          App3.read(B5: P17…P20)
r = 6.
6 Buffers and 4 Applications
1st Round (R1): App1.read(B1: P1…P4) 
                          App2.read(B2: P5…P8)
                          App3.read(B3: P9…P12)
                          App4.read(B4: P13…P16)
2nd Round (R2): App1.read(B2: P5…P8)
                          App2.read(B3: P9…P12)
                          App3.read(B4: P13…P16)
                          App4.read(B1: P1…P4)
3rd Round (R3): App1.read(B3: P9…P12) 
                          App2.read(B4: P13…P16)
                          App3.read(B1: P1…P4)
                          App4.read(B2: P5…P8)
4th Round (R4): App1.read(B4: P13…P16) 
                          App2.read(B1: P1…P4)
                          App3.read(B2: P5…P8)
                          App4.read(B3: P9…P12)
5th Round (R5): App1.read(B5: P17…P20) 
                          App2.read(B6: P21…P24)
6th Round (R6): App1.read(B6: P21…P24) 
                          App2.read(B5: P17…P20)
7th Round (R7): App3.read(B5: P17…P20) 
                          App4.read(B6: P21…P24)
8th Round (R8): App3.read(B6: P21…P24) 
                          App4.read(B5: P17…P20)

r = 8. 
6 Buffers and 5 Applications
1st Round (R1): App1.read(B1: P1…P4) 
                          App2.read(B2: P5…P8)
	         App3.read(B3: P9…P12)
                          App4.read(B4: P13…P16)
	         App5.read(B5: P17…P20) 
2nd Round (R2): App1.read(B2: P5…P8) 
                           App2.read(B3: P9…P12)
                           App3.read(B4: P13…P16)
                           App4.read(B5: P17…P20)
                           App5.read(B1: P1…P4) 
3rd Round (R3):  App1.read(B3: P9…P12) 
                           App2.read(B4: P13…P16)
                           App3.read(B5: P17…P20)
                           App4.read(B1: P1…P4)
                           App5.read(B2: P5…P8) 
4th Round (R4):  App1.read(B4: P13…P16) 
                           App2.read(B5: P17…P20)
                           App3.read(B1: P1…P4)
                           App4.read(B2: P5…P8)
	          App5.read(B3: P9…P12) 
5th Round (R5):  App1.read(B5: P17…P20) 
                           App2.read(B1: P1…P4)
                           App3.read(B2: P5…P8)
                           App4.read(B3: P9…P12)
	          App5.read(B4: P13…P16)
6th Round (R6): App1.read(B6: P21…P24) 
7th Round (R7): App2.read(B6: P21…P24)
8th Round (R8): App3.read(B6: P21…P24)
9th Round (R9): App4.read(B6: P21…P24)
10th Round (R10): App5.read(B6: P21…P24)
r = 10. 
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Mathematical Models for Network Card Packet Buffering Simulation

In Table 6 above, we can take an example from the 
fifth entry of the first column that states ‘5: 6’. It means 
that for 2 buffers with 5 applications, there will be 6 
rounds required. It can be compared with the fifth entry 
in third column that mentions ‘5: 8’, which means that for 
4 buffers with 5 applications, 8 rounds are required.

4.  �Mathematical Models of 
Buffering Rounds 

From the previous section of buffering simulation and 
Table 6, we can generate mathematical models for each 
number of buffers. The models will generate the required 
number of buffering rounds (r) as described below. 

For 2 buffers: 





+
=

1Napp
Napp

r
if Napp mod 2 = 0

otherwise
		     (11)

For 3 buffers:





+
=

2Napp
Napp

r
if Napp mod 3 = 0

otherwise 		    (12)

For 4 buffers:









+
+=

3

2

Napp
Napp
Napp

r

if Napp mod 4 = 0

if Napp mod 2 = 0

otherwise

		    (13)

For 5 buffers:





+
=

4Napp
Napp

r
if Napp mod 5 = 0

otherwise 		     (14)

For 6 buffers:











+
+
+

=

5

4

3

Napp
Napp
Napp
Napp

r

if Napp mod 6 = 0
if Napp mod 3 = 0
if Napp mod 2 = 0
otherwise

		    (15)

5.  Example Case

This section describes a buffering example. The 
transmission size (s), buffer capacity (b), and packet size 
(p) are assumed in a way that there are 8 packets (np) 
in the transmission and f = 1. Furthermore, there are 3 
applications (Napp), and the time required to read a 
packet is 10ms (tp). The buffering illustrations are for 2 
sample compared solutions. One with 2 buffers (B1 and 

B2) and another with 3 buffers (B1, B2, and B3). They are 
depicted in Figure 2 and Figure 3.

Figure 2.    Buffering Illustration of Solution with 2 Buffers.

B1

P1

P2

P3

B2

P4

P5

P6

B3

P7

P8

Figure 3.    Buffering Illustration of Solution with 3 Buffers.

In Figure 2 and Figure 3, the 8 packets (P1 until P8) 
are distributed among the buffers. Next in Table 7 below is 
the procedural calculation of total transmission duration 
(D) for both solutions. The mathematical models in 
section 4 are referred to find the number of rounds (r) 
accordingly. 

Table 7.    Comparison of 2 Different Solutions
Steps Solution A (nb = 2) Solution B (nb = 3)
T = t x r (10ms x 4) x 4 = 

160ms
(10ms x 3) x 3 = 
90ms

db = tb x nb 40ms x 2 = 80ms 40ms x 3 = 120ms
dp = (tp x np)  x nb (10ms x 4) x 2 = 

80ms
(10ms x 3) x 3 = 
90ms

da = ∑
Napp

1
ts x ns ∑

3

1
20ms x (2-1) 

= 60ms

∑
3

1
20ms x (3-1) = 

120ms
D = db + (dp x f) 
+ (da x f) + Wt

80 + (80 x 1) + (60 
x 1) + (160 x 1) = 
380ms          

120 + (90 x 1) + (120 
x 1) + (90 x 1) = 
420ms

From the comparison above, solution A is the better 
one since it takes lesser time (D) to complete the receiving 
of data transmission. Therefore, we conclude that more 
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buffers are not necessarily the better solution. The optimal 
number of buffers mainly depends on the transmission 
size, packet size, number of packets, buffer capacity, and 
the number of applications.

6.  Conclusion

Our mathematical models reflect the buffering process 
in network card with multiple buffers and multiple 
applications. These models can be useful for network 
card optimization setting, when the transmission 
characteristics are known.

Since our models use generic parameters, we expect 
them to be expandable with additional properties of 
network card buffers.
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