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1.  Introduction

Wind energy is a clean energy, which is in-exhaustive and 
infinite in nature. The total global wind power at the end 
of 2015 was reached to 432.9 GW, reported by GWEC. It 
is a sound alternative to the traditional power generation 
resources. During the last few decades there was an 
accelerated shoot-up in the penetration of wind power 
in to the electrical power system. However the turbulent 
nature of wind generation necessitates the power system 
operators to adopt highly sophisticated forecasting 
methods to anticipate the wind speed accurately. In 
spite of all these many researchers has been focused to 
develop a solid methodology to envision the wind speed 
variations. In1 Boot strap based ELM approach (BELM) 
was proposed to overcome some of drawbacks of NN 
forecasting techniques, like local minima, over training 
and high computational cost and the same was tested on 
Australian wind farm.  A hybrid intelligent algorithm2 was 

proposed to predict intervals of wind power generation 
based on ELM and Particle swarm optimization approach 
and evaluated the performance of proposed approach by 
considering two wind farms in Australia. In3 Proposes 
a probabilistic wind power forecasting method using 
Quantile regression method with the help of Wavelets, 
Firefly algorithm, Fuzzy ARTMAP and Support vector 
machine for wind power forecast. The efficiency of 
proposed hybrid approach is tested on data of wind 
power from the Kent Hill wind farm in New Brunswick, 
Canada. In4, the authors put forward the Levy α-stable 
distribution, to describe the heavy-tailed characteristics 
of the wind power forecast error (WPFE) data. It develops 
statistical, distribution-based description of the WPFE. 
The performance was tested on historical WPFE on the 
wind farms in the Belgian power system. In5 Focuses on 
probabilistic wind power forecasting with consideration 
of geographically distributed information. In this First, 
the original single-valued predictions are corrected by 
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integrating off-site information, later these are upgraded 
to full probabilistic forecasts. The performance of this 
approach was checked with wind farm in Denmark. In6, 
the authors enroot a mixed ARMA model. In this paper 
wind direction is added in to wind speed and wind power 
forecast. Using K-means algorithm wind directions are 
classified, the dummy variables related to wind speed 
are wind directions are used in mixed ARMA model. 
The projected methodology was tested with the data 
retrieved from Denmark off shore site. In7 recommended 
a nonlinear   least square piecewise model to figure out 
the wind power correctly and the performance was tested 
on a small Canadian wind farm. In8, a hybrid approach 
based on neuro – fuzzy wind power prediction system 
was constructed. A wireless sensor network also used to 
measure and transmit the parameters air temperature, 
wind speed, air density and air pressure. In9, the short term 
wind power was forecasted using a new   Imperialistic 
Competitive Algorithm- Neural Network (ICA-NN) 
with the help of data retrieved from SCADA and NWP 
approaches. The schemed technique was tested on a 
model built for summer side wind farm in Prince Edward, 
Canada. The authors10 projects a hybrid strategy consisting 
of nonlinearity dimensionality reduction component by 
auto-encoder network and wind power was forecasted 
with the help of Sparse Bayesian Regression optimized 
by Artificial Bee Colony Optimization. This was tested 
on real data obtained from wind farm in western china. 
In11, a very short term wind power was forecasted with 
the help of Auto Regressive model (AR), Kalman Filter 
(KF) and Neural Network (NN), the results are compared. 
With the help of historical data, forecasting was done for a 
very short period in terms of seconds.

In12, the authors recommended an enhanced 
particle swarm optimization based hybrid approach 
for wind power prediction in short time. They combine 
Persistence method, back propagation neural network 
and the radial basis function neural network. The 
performance was tested on the real data obtained from 
wind energy conversion system located in Taichung coat 
of Taiwan. In13 Realizes a new probabilistic approach for 
probabilistic wind power forecasting based on artificial 
intelligence. The uncertainties due to inaccuracies of the 
numerical weather predictions, the weather stability and 
the deterministic forecasting model. This approach was 
implemented on the two wind farms located in Lasithi 
wind farm and the Klim wind farms. The authors of14 
envisioned the short term wind power by combining 

empirical mode decomposition(EMD) and radial basis 
function neural networks (RBFNN). EMD decomposes 
wind power to reduce nonlinear and non-stationary 
characteristics of wind power, and then RBFNN was used 
to predict the wind power.  This procedure was tested on 
the data obtained from Zhejiang Provincial Electric Power 
Test Research Institute. In15 Suggests a hybrid intelligent 
approach by combining wavelet transform (WT), particle 
swarm optimization (PSO) and adaptive-network-
based fuzzy inference system (ANFIS) to forecast wind 
power and as well as electricity prices in short term. The 
effectiveness was tested for fore sighting of wind power in 
Portugal. In16, different forecasting models and the current 
use of wind power forecasting in US electricity markets 
are discussed and suggested to revise the market design to 
better use of advanced wind forecasting techniques. In17, 
the authors have reviewed different statistical methods 
for Wind power forecasting and have given a small brief 
about the Physical methods, Statistical methods and 
Hybrid methods for forecasting of wind. In18, analyses 
the impact of integrating wind power generation on the 
amount of regulation and load following requirements 
needed for California independent system operator. The 
authors have claimed that, the methodology proposed 
can have application in balancing authorities, project 
developments and government organizations to access 
the wind integration to the grid.

In19 reviewed, how the energy balancing with wind 
energy is done in short term. The advancement to 
traditional scheduling methodology used in industries 
was also discussed. However the experience of system 
operator will be critical to future developments. In20, 
with the aid of artificial neural networks and new back 
propagation algorithm wind power was predicted. The 
effectiveness of the algorithm was simulated by collecting 
the data from Tamil Nadu state Electricity board. In21, 
reviewed volumes of papers and presented an overview 
on current advancements in wind power forecasting on 
different time scales. Based on wind speed and wind 
power future development in forecasting was proposed. 
In22, several soft computing techniques for wind power 
prediction have been spoken of. The performance of two 
methods BPNN and RBFNN are accessed by calculating 
mean average percentage error. The real time data was 
collected from a weather station of Ontario, Canada. 
In23, Focuses on long term wind power and wind speeds. 
The GRPE Drpe algorithm was introduced to train the 
recurrent forecast models. The performance was tested 
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with the test data obtained from Roka’s wind park on the 
Greek island of Crete. In24, a short wind power forecasting 
was done by considering meteorological data viz. wind 
speed, wind direction, temperature, relative humidity 
and pressure of atmosphere. The back propagation neural 
network was trained with NWP data and future 24hrs of 
wind power was forecasted using the BPNN. The work 
was sponsored by Yike solar energy generation limited 
corporation of Ningxia power generation group, the 
National Natural Science Foundation of China (NSFC). 
With the help of accurate prediction of wind speed and 
direction25 optimal sitting of wind turbine was done. 
Under the variable conditions of wind speed and load, 
dynamic analysis of PMSG was done efficiently26.

2.  Mathematical Model of ELM

Extreme Learning Machine algorithm is developed over 
Neural Network to trim down the shortcomings of NN 
such as overtraining and local minima. It built with only 
one hidden layer and it is a feed forward neural network. 
It involves randomly initialization of the input weights 
and bias factors27. The calculations are very easy as it 
involves only matrix computations28. Let S be the number 
of input samples fed as the inputs to ELM structure. 
The input samples are organized as 1),( =p

S
pp yx

where 1 2 3,[ , , ....., ]T
p p p p psx x x x x=  and py ϵ tR  with
1 2 3[ , , ,....., ]T

p p p p pty y y y y= . The mathematical model 
of ELM with h number of hidden nodes and A (.) 
activation function, is given as:
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biasing factor of thp hidden node and )( pqp xA γα +⋅ is 
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Y is target matrix given as: T
tyyyyY ],.....,,,[ 321= . 

In ELM algorithm firstly the input weights α  and 
biases γ  are randomly initialized and Output matrix of 
hidden layer, A is computed. Finally α , γ  and β  are can 
be obtained as 

YAYA −=− βγαβγα
β

),(min),( 		        (4)

This is reflecting to minimizing the cost function 
in the conventional gradient based back – propagation 
learning algorithm.
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For a randomly assigned input weights and biases, 
training an SLFN costs analogues to finding the smallest 
norm least square solution of the above system in (1)and 
can be stated as 

YA+=β 					           (6)

Where +A  is the Moore – Penrose generalized 
inverse of the matrix A and is evaluated from Singular 
value decomposition (SVD) method29-31. The ELM 
is a best answer for shortcomings of traditional NN 
such as over training, local minima and difficulty 
computational procedures. It converges to best results 
with less computations as it involves only simple matrix 
calculations.

3.  Modelling of proposed P-ELM

Many a literature has been thrown light on Persistent 
model of forecasting of wind power or wind speed. It 
assumes that the forecasted value at (t+1)th instant is same 
as it was at tth instant32. 

)()1( tWsptWsp =+ 				          (7)

Where )1( +tWsp  is the wind speed at (t+1)th instant 



Vol 10 (8) | February 2017 | www.indjst.org Indian Journal of Science and Technology4

Short Term Wind Speed Forecasting using Hybrid ELM Approach

and )(tWsp  is the wind speed at tth instant. It is very 
simple way of forecasting and is used as a comparison tool 
over NWP methods. This naive approach is very much 
suitable for very short term and short term time horizon 
forecasts. But it shoots down the accuracy as forecasting 
time horizon increases.

The hitch in the Persistent method is overcome by 
combining ELM with Persistent approach, combinely 
termed as Persistent-Extreme Learning Machine (P-ELM) 
algorithm. This method uses the fast convergence and 
efficient training process of ELM and easy prediction 
nature of Persistent method. The sound features of above 
two methods facilitates the forecasting of wind speed in 
short term very precisely. The mathematical modelling of 
P-ELM is given below.

In P-ELM, let the input samples patterns be 
1
11),( −
=+

S
ppp xx

Where px ϵ SR , T
Sppppp xxxxx ],.......,,[ )1(3,21 −=  and 

T
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The mathematical model of P-ELM with h number of 
hidden nodes and A (.) activation function, is given as:

∑
=

+⋅=
h

P
pqppq xAxF

1

)()( γαβ ,   Sq ,...,1= 	       (8)
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⊗X  is target matrix given as: 
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After randomly initialization of α  and γ , the hidden 
layer output is calculated. γα ,  and β  are obtained with 
the help of following equation.

⊗⊗ −=− XAXA βγαβγα
β

),(min),( 	    (11)

The cost function to be minimized is 
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Finally β  is calculated with the help of Moore – 
Penrose method

⊗+= XAβ 					        (13)

4.  Performance Evaluation

The performance of projected methodology is evaluated 
by forecasting wind speeds for short term periods, up 
to 24 hours. The metrics calculated were Mean Absolute 
Error (MAE) and Root Mean Squared Error (RMSE) to 
measure the accuracy.
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Where actual
pWsp is the actual wind speed, 

forecasted
pWsp  is the wind speed forecasted for the thp

pattern, and S is the number of samples.

5.  Results

The input parameters to the P-ELM structure is considered 
as temperature in oC, Pressure in mbar and wind speed 
in m/s as the speed of wind is strongly dependent on 
temperature and pressure. The output parameters are 
temperature, pressure and wind speed for the next instant. 
The real time data was taken from the Indian Solar 
Resource Data website. The sites under case study are 
Guntur, Vijayawada and Ongole cities, which are located 
in the state of Andhra Pradesh, India. For the short term 
wind speed prediction the data considered during the 
month of 1st January, 2011 to 31st January, 2011 for the 
winter season. The data set contains 24 hours samples per 
day, for 31 days. The total number of patterns are 744, in 
which 521 samples are taken to train the P-ELM structure 
and remaining 223 samples are used for testing purpose. 
For the season of summer from 1st May, 2011 to 31st 
May, 2011 data was considered. Similarly for rainy season, 
1st September, 2011 to 30th September, 2011totally 720 
input patterns, where in which 504 input patterns are for 
training and 216 are used for testing. For the selected three 
locations, in each location the wind speed was forecasted 
for three seasons for the next 24 hours.
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The results of proposed approach are shown from 
Figure 1 to Figure 9. For the three areas Guntur, Vijayawada 
and Ongole, three seasons, winter, summer and spring 
are obtained. The graph is drawn for the wind speed 
predicted values with respect to time up to 223 hours. 
Table 1 summarizes comparison of proposed approach 
with already existing Persistence and ELM methods. The 
proposed hybrid approach proved as the best forecasting 
techniques over the other two. The MAE and RMSE for 
the Guntur area, for the season of January is 2.0091 and 
2.0828 respectively, whereas ELM results in 2.4857 and 
2.3522 respectively. Similarly for the remaining two areas 
Vijayawada and Ongole, MAE and RMSE are calculated 
for three different seasons.
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Short Term Wind Forecast for January

Figure 1.    Winter Season: Actual wind speed (blue line), 
Forecasted (Black line) vs. Time (hours) for Guntur region. 
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Short Term Wind Forecast for May

Figure 2.    Summer Season: Actual wind speed (blue line), 
Forecasted (Black line) vs. Time (hours) for Guntur region. 
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Short Term Wind Forecast for October

Figure 3.    Rainy Season: Actual wind speed (blue line), 
Forecasted (Black line) vs. Time (hours) for Guntur region. 
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Figure 4.    Winter Season: Actual wind speed (blue line), 
Forecasted (Black line) vs. Time (hours) for Ongole region. 
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Figure 5.    Summer Season: Actual wind speed (blue line), 
Forecasted (Black line) vs. Time (hours) for Ongole region. 
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Short Term Wind Forecast for October

Figure 6.    Rainy Season: Actual wind speed (blue line), 
Forecasted (Black line) vs. Time (hours) for Ongole region. 
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Short Term Wind Forecast for January

Figure 7.    Winter Season: Actual wind speed (blue line), 
Forecasted (Black line) vs. Time (hours) for Vijayawada 
region. 

Figure 8.    Summer Season: Actual wind speed (blue line), 
Forecasted (Black line) vs. Time (hours) for Vijayawada 
region. 
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Figure 9.    Rainy Season: Actual wind speed (blue line), 
Forecasted (Black line) vs. Time (hours) for Vijayawada 
region. 
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Table 1.    Comparison of Results
ELM PERSISTANCE P-ELM

Winter Winter Winter
MAE RMSE MAE RMSE MAE RMSE

Guntur 2.4857 2.3522 2.9712 2.205 2.0091 2.0828
Vijayawada 2.4412 2.1249 2.9666 2.1921 2.2035 2.0654
Ongole 2.8754 2.711 2.4794 2.7735 2.2575 2.388

Summer Summer Summer
Guntur 2.6248 2.514 2.6855 2.9434 2.2388 2.3877
Vijayawada 2.7114 2.897 2.8717 2.8847 2.2165 2.4121
Ongole 3.012 3.475 2.7501 2.923 2.2394 2.4666

Rainy Rainy Rainy
Guntur 2.8501 2.3547 2.3541 2.4264 2.1061 2.123
Vijayawada 2.9742 2.4721 2.3224 2.4565 2.1194 2.1212
Ongole 2.9754 2.9881 2.4701 2.5942 2.2022 2.2742
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The time taken for the computation process is around 
16.0190 seconds with MATLAB 2013a version and PC 
of 2GB RAM. Hence the proposed approach accuracy is 
very high with less computational time. This approach is 
very much suitable for real time forecasting.

6.  Conclusion

In the present work, a novel hybrid forecasting approach 
was proposed for short term forecasting of wind speed in 
Guntur, Vijayawada and Ongole cities in three different 
seasons. The proposed method is based on the combination 
of Persistence and Extreme Learning Machine algorithm. 
The values of MAE and RMSE results show that P-ELM 
outperforms over the other two algorithms, with the 
acceptable computational time. Hence the proposed 
approach can be used for real time applications also.
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