
*Author for correspondence

Indian Journal of Science and Technology, Vol 10(19), DOI: 10.17485/ijst/2017/v10i19/113384, May 2017
ISSN (Print) : 0974-6846 

ISSN (Online) : 0974-5645

Recent Advances in Markov Logic Networks
Romany F. Mansour1 and Samar Hosni2

1Faculty of Science, New Valley - Assiut University, Egypt; romanyf@aun.edu.eg
2Computer and Information Technology College, Northern Border University, KSA; samar_hosni@hotmail.com

Keywords: Evolutionary Algorithms, Fuzzy Logic, Machine Learning, Markov Logic, Soft Computing

Abstract
Objectives: To identify recent progress and areas of application for one technique in soft computing, specifically. This 
technique is known as Markov Logic Networks. Methods/Statistical Analysis: Soft computing combines machine learning 
and fuzzy logic in order to tackle problems that appear to have no definite solution. In doing so, soft computing approaches 
a human style of thought, and lends itself well to data-rich, heterogeneous and fast-changing scenarios. The success of soft 
computing has only fueled to drive for better, more powerful, and faster algorithms. Findings: Soft computing has already 
revolutionized a number of fields, including artificial intelligence, robotics, voice recognition, and areas of biomedicine. It 
has the potential to continue doing so, but this future success depends heavily on making more ambitious soft-computing 
algorithms tractable and scalable to Big Data – sized problems. One promising technique that has come to the forefront 
of soft computing research in recent years is the heavily probabilistic-reasoning-based Markov Logic Network (MLNs). 
MLNs combine the efficiency of the Markov Model with the power of first-order logical reasoning. MLNs have already 
proven themselves adept at such futuristic implementation as smart homes, voice recognition, situations awareness, 
prediction of marine phenomena, and weather assessment. In order to make MLNs more tractable, research has recently 
turned towards normalizing progressively by time-slice to assure convergence, and “lifting” structural motifs from similar, 
already-computed networks. Progressive efforts in these areas should deliver a next-generation of situation awareness in 
“smart” electronics and predictive tools, one more step towards true artificial intelligence. Application/Improvements: 
Soft computing has already revolutionized a number of fields, including artificial intelligence, robotics, voice recognition, 
and areas of biomedicine. It has the potential to continue doing so.

1. Introduction
Soft computing is an area of computer science that aims 
to solve difficult, complex problems that are not tracta-
ble by usual, deterministic computing approaches. Soft 
computing is tolerant of imprecision, partial truth, and 
rough estimates or approximations. Some proponents 
of soft computing argue that it is similar to processes 
employed by the human mind itself. It can also be said 
that soft computing aims to solve sets of problems that are 
NP-complete, or problems that are solvable on the order 
of a natural polynomial function with respect to time. 
This is an important distinction, as problems in Big Data 
and science may often extend to an exponential level of 
complexity of an exact, deterministic or “hard” solution 

is sought1. Soft computing depends upon a collection of 
other areas of computation and mathematical reasoning. 
These include fuzzy logic, machine learning, and proba-
bilistic reasoning2. Often, interdisciplinary and/or cutting 
edge new fields in computation or artificial intelligence 
rely on disciplines that are redundant or at least com-
peting. Soft computing, by contrast, enjoys the unusual 
disposition of depending on a set of complementary sub-
fields3. Fuzzy logic, machine learning, and probabilistic 
reasoning have different strengths and weaknesses, and 
therefore are best applied to different areas of soft comput-
ing. Often, all three are required in a unified framework 
to properly “solve” (i.e. approximate within the required 
precision or above the required level of performance) the 
soft computing problem. 
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It would be incorrect to view soft computing as only 
being able to handle tasks that are less important than 
those that are amenable to deterministic, “hard” comput-
ing solutions. On the contrary, generally soft computing 
aims to solve problems that would be impossible by any 
other method. In fact, soft computing is often viewed 
as approaching conceptual intelligence, or generalized 
intelligence with respect to a particular environment or 
ontological domain4. Examples include intelligent search 
algorithms for the world-wide web, biomedical inference, 
robotics, and smart devices / smart environments. Soft 
computing will become increasingly important in coming 
years in science and engineering. Ultimately, soft comput-
ing may approximate something like the human mind’s 
ability to store and process ambiguous, vague, and non-
categorical information. Already, a Machine-Intelligence 
Quotient (MIQ) metric has been developed5. This metric 
has been used to measure the effectiveness and, equally 
importantly the situation and environmental awareness 
of computer devices and algorithms. Institutes such as the 
Berkeley Initiative on Soft Computing (BISC) have arisen 
in order to advance soft computing and increase its range 
of applications6.

Figure 1.   Soft computing is a synthesis of 3 complementary 
disciplines. These 3 disciplines are: Fuzzy Logic (FL), 
Machine Learning (ML) (combining neural networks and 
evolutionary algorithms), and Probabilistic Models (PM).

1.1 Fuzzy Logic
Fuzzy logic is a form of approximated logic that deals 
with partial truths or truths that can be approximated on 
a scale from 0 to 1, rather than a binary either 0 or 17. 
This appears to be particularly useful for linguistic rea-
soning, such as in the case of “hedging”, when words or 
other terms / phrases are qualified by their surrounding 
of words. Individual functions may be generated for each 
type of linguistic variable and used to weight the differ-
ent meanings of the word or phrase in question8. It is not 

because of an inherent limitation in the capabilities of 
more absolute binary logic – based methods, but rather 
because of a more pragmatic limitation to such meth-
ods, that binary logic methods are so useful9. The data 
that scientists and engineers employing soft computing 
techniques generally work with are often of an “organic” 
type; especially of Big Data applications are being imple-
mented. To be more precise, sets of data are often poorly 
organized and thus overlap to a considerable extent. It is 
the ability to deal with unclear boundaries between data-
sets and categories that fuzzy, or non-categorical, logic is 
useful as shown in Figure 1.

1.2 Machine Learning
Machine learning is a branch of artificial intelligence 
researching that has resulted from decades of work on 
pattern recognition and computer science. Machine 
learning focuses on the development of algorithms, or 
fixed sequences of rules implemented over a data space, 
that analyze data and make predictions based on signifi-
cant patterns either discovered from an external template 
(supervised training) or from structures discovered within 
the data itself. Machine learning developed, at least in the 
early phases, in parallel with the field of computational 
statistics, which deals with methods for inferring signifi-
cant parameters in observed data and which also focuses 
on making predictions. Machine learning methods seek 
to optimize the parameters of the particular model for the 
task of successful predictions (many parameters may be 
used for this optimization task, including but not limited 
to the accuracy of predictions, the specificity, the sensitiv-
ity, or the area under the receiver-operator curve which 
balances specificity with sensitivity)10. Because of the use-
fulness of machine learning in finding important patterns 
in datasets and using them for the task of making addi-
tional predictions, machine learning is essential for data 
mining and other Big Data tasks, although it is important 
to keep the distinction between machine learning and 
these fields. 

Applications of machine learning are nearly as 
diverse as the source of data generated by science and 
engineering, as well as humanities, disciplines. Machine 
learning is important wherever computers are intended 
to act with some degree of independence, i.e. without 
being specifically programmed for the exact task and 
dataset in question. Machine learning has recently led 
to a number of potentially paradigm-shifting technolo-
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gies, although for the most part these technologies are 
not yet fully implemented and their potential has yet to 
be fully realized. These fields include self-driving cars11, 
speech recognition12, understanding of human neural cir-
cuits13,14, robotics15, and topics in Bioinformatics that are 
too numerous to list in the present study. 

1.3 Probabilistic Reasoning
Probabilistic reasoning, often confused with fuzzy logic, 
deals with the modeling of a systems from example inputs 
in order to infer a most likely output or conclusion sce-
nario. Like fuzzy logic, probabilistic reasoning seeks to 
“escape” from the mold of purely static or binary logical 
conditions, and instead allow a more graded spectrum of 
weights for modeling relationships between variables and 
ultimately generating an output. 

Unlike fuzzy logic, probabilistic reasoning deals with 
rational propositions upon the dataset16. These may be of 
a linguistic or similar human-level set of relationships. 
Whereas fuzzy logic aims to exploit the overlap between 
sets of data, probabilistic reasoning aims to exploit the 
information inherent in uncertain relationships between 
data objects. Thus, probabilistic reasoning aims to “save” 
deductive logic by providing logical inferences where 
uncertain logic relationships exist. It is often said that the 
human brain works using probabilistic reasoning. One 
important limitation of probabilistic-reasoning based 
approaches is that they are difficult to render tractable, 
although advances towards this end have been made in 
recent years17.

1.4 Chaos Theory
Although generally not considered as a primary area of 
research for soft computing techniques, chaos theory 
does deal with phenomena that are often associated 
with the datasets or more specifically imperfections 
and “noise” in the datasets, that soft computing is often 
applied to. Chaos theory deals with the study of systems 
for which the outcomes are highly-sensitive to the initial 
conditions18. In particular, chaos theory deals with such 
systems when they are not amenable to analysis and mod-
eling by usual, deterministic methods19. Despite the fact 
that such systems lead to extremely complex mathemati-
cal and computational problems, they can often be the 
result of simple inputs. For instance, a billiard ball table is 
likely to have a very different state depending on whether 
a ball is struck at one angle or an angle very slightly differ-

ent. Another example is the double-pendulum example, 
wherein two lengths of a rod are attached by a socket 
joint. The arc traced by the end of the second problem can 
be described as a chaotic phenomenon.

Although many chaotic phenomena are difficult to 
model or approximate, underlying parameters may be 
inferred whose change over the same time course may be 
easier to comprehend, e.g. to visualize. A first recurrence 
map, also known as a Poincare map (named after  Henri 
Poincare) is the path traced by such underlying param-
eters or state space of the systems for one full course of 
activity, until they return to their original values (hence 
“recurrence”). It can be proved that a Poincare map pre-
serves a number of properties and characteristics of the 
original data space. For example, a Poincare map of the 
orbit of stars in a galaxy can be used to infer the forces of 
gravitational pull between the stars and the mass center of 
the galaxy, and hence the formula for an ellipse. 

1.5 Soft Computing and NP-Completeness
As indicated, soft computing is the use of inexact or approx-
imate solutions to tackle challenging problems that would 
otherwise be intractable. To be specific, soft computing 
is able to render problems solvable in an NP-complete 
operational order o complexity. NP-complete means 
that these problems can be solved in a timeframe equal 
to the output of some polynomial function of the time. 
Often, especially with “organic” data increasingly being 
generated by fields in the life sciences and engineering, 
the order of operation for solving the problem is closer to 
an exponential function. This is a natural consequence of 
the situation wherein each solutions paths are constantly 
diverging, and all resulting candidate solutions much be 
checked against one another to verify which is optimal. A 
deterministic method would be required to explore the 
entire state space of solutions, and thus after each itera-
tion of solutions, a new iteration would be based on the 
previous number of existing solutions.

By contrast, with soft computing, approximation 
allows for entire branches of solutions to be abandoned 
or collapsed into other, similar lines of problem-solving. 
This ability to “blur the lines” between paths of solving, or 
applying “fuzzy logic”, allows for great improvements in 
speed and practicality of the methods. Complex systems 
requiring the use of soft computing include problems in 
biology, medical sciences, social science, and data analyt-
ics. Most of the avenues for allowing approximation rely 
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in one way or another upon the use of inductive, rather 
than deductive, reasoning. Inductive reasoning is the 
process of logical deduction using likelihood estimation 
rather than absolute proofs. Because inductive reasoning 
is based on estimations of likelihood, it allows a clear path 
for moving from general statements to individual case 
scenarios and hence is often founded more concretely 
in statistical rigor than pure deductively-reasoned state-
ments.

1.6 Specific Aims
The specific aim of the present study is to identify recent 
progress and areas of application for one technique in 
soft computing, specifically. This technique is known as 
Markov Logic Networks (MLNs). Markov Models encap-
sulate a set of states, each tied to the other with a specific 
probability for transitioning. Thus, at any new time 
instance t+1 following t, the probability of the next state 
can be approximated exactly with the transition probabil-
ity. Each such state (referred to as a hidden state), also has 
its own set of emissions probabilities, or probabilities for 
producing an external, observed phenomenon. Thus, the 
observations can be used to optimize a concise, compact 
formulation for transition probabilities among a collec-
tion of hidden states, accompanied each by emissions 
probabilities for observed states. Markov logic networks 
are Markov Models that use logical functions or relation-
ships (often containing some form of machine-learning 
or probabilistic-reasoning – based model) to generate 
transition and emissions probabilities. Most commonly, 
MLNs employ first-order logic or general logical proposi-
tions involving objects and their relationships (otherwise 
known as “worlds”, given the origin of first-order logic in 
summarizing declarative linguistic statements containing 
familiar grammatical objects and syntax). The “world” of 
objects and their relationships are boiled down to under-
lying or causative objects (the grammatical “subjects”), 
observed or resulting objects (the grammatical “objects”), 
a set of probabilities for transitioning from each subject 
to the other, and a set of probabilities for each subject to 
generate “action” or invoke a relationship with respect to 
each object. 

2. Methods
Articles referring to Markov Logic Networks were 
searched for using peer-reviewed article databases, 

including Web of Science and Google Scholar. For the ini-
tial round of searching, only articles within the last 5 years 
(since 2010) were considered. Articles predating 2010 
were considered if they were found the be a common 
reference of more than 1 article obtained in the initial 
search, and thus could be considered as seminal works for 
the specific area of MLNs. Articles were read, analyzed, 
and compared to distill a set of primary research direc-
tions, themes and computational techniques, and overall 
methodologies. Areas of application were recorded.  

3. Results
The original Markov Logic Network (MLN) was devel-
oped by 20. This network was created in order to represent 
a first-order knowledgebase using formulas (or clauses) 
to attach weights. Inference in this prototypical MLN was 
performed using Markov-Chain Monte-Carlo, or heu-
ristic sampling over a subset of initial conditions until a 
maximal probability of clauses result (i.e. until the correct 
first-order logical statement could be refined). This inno-
vation was a major step forward in soft computing, as it 
represented the marriage of a highly-efficient generative 
computational framework with an object representa-
tional structure of sufficient complexity to model human 
thought and speech. Since the development of MLNs, 
they have therefore often been applied to tasks requiring 
a human level of awareness, such as speech recogni-
tion, voice-based instruction, and awareness of human 
environments. Examples of these cases are elaborated 
further, below. An illustration of Hidden Markov Models 
(HMMs) is provided in Figure 2, The MLN is a form of 
HMM in which the transition and emission probabilities 
are derived from probabilistic reasoning applied to first-
order logic “worlds”. 

3.1 Areas of application for Markov Logic 
Networks (MLNs)
Since their original development 9 years ago20, MLNs 
have been applied to a variety of complex, human-level 
tasks. For example MLNs have been developed for the 
recognition of dementia-type activity in nursing homes. 
Healthcare systems in smart environments have employed 
MLNs to screen patients for signs of the onset, or wors-
ening, of dementia, using visual and auditory clues from 
surveillance devices21. The indicated model augmented 
the native logic of the MLN with “expert” knowledge 
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or common sense modules. The suitability of MLNs for 
the task of identifying dementia results from the nature 
of the affliction, which presents as abnormalities in the 
type of objects, the time, location, and duration of activity 
with regard to such objects. Maritime environments have 
also proved themselves amenable to analysis by MLNs. 
Because a large amount of the typical maritime environ-
ment is hidden from plain view (being underwater), the 
maritime environment is a natural fit for the kind of soft 
computing that MLNs allow, with their hidden states. 
Hidden states correspond to unseen underwater condi-
tions, and emitted states correspond to observed effects 
(wave size/frequency, undercurrent, hue, turbulence, 
etc.)22. Again, an advantage of using MLNs (as opposed 
to a traditional and simpler HMM) is that the resulting 
most probable set of states and transitions correspond to 
interpretable real-world scenarios. 

Figure 2. Overview of Hidden Markov Models (HMMs).

One fascinating and futuristic application of MLNs is 
for providing core speech recognition and environmen-
tal awareness in interactive or “smart” homes. If a user of 
such a home in the future gives the instruction “turn on 
the lights”, the response of the house is clearly dependent 
upon a variety of different environmental factors, such 
as whether it is night or day, for example. In the former 
case, illuminating a bedside lamp may be the appropriate 
response, but this is clearly insufficient in the latter case. 
23,24 show that MLNs can be used for the recognition of dif-
ferent types of activity within the house, giving the house 
the ability to perform concrete, first-order logical induc-
tion and respond accordingly. Smart homes of the future 
could be populated with pet robots. Already, autonomous 
robots are performing an increasingly variety of tasks, 
from street clean-up, to house clean-up, to driving, and 
ultimately even as retail clerks. Interacting with humans 
requires the ability to process human speech, the ability to 
process the environment and generate a logical awareness 
about it, and finally the ability to synthesize a response 

to this environment given the original spoken instruc-
tions. Instructing a house robot to “clean up” or “set the 
table” is likely to require a highly-sophisticated analysis 
and response system in the robot25. The system described 
by 25proposes a kind of “virtual knowledge base” wherein 
collections of knowledge pieces are not stored, but rather 
created “on the fly” by the robot’s internal data structures, 
perception system, and data from external sources. 

3.2 Recent advances in Markov Logic 
Network Design
One of the biggest problems with Markov Logic Networks 
(MLNs) and with Markov models in general is the prob-
lem is low residuals. In order to arrive at the most probable 
path of state transitions through the Markov Model, with 
respect to the observations, it is often necessary to mul-
tiple a great numbers of very small probabilities. Thus, the 
final probability becomes extremely small. This causes a 
problem for a number of reasons, not least that many 
computers round down infinitesimally small float or dou-
ble data types to zero. In addition, one faces the problem 
of small residuals – differences in probability between two 
different paths become extremely large as a proportion of 
the total probability of the smaller one, resulting in cha-
otic convergence behavior (i.e. “noise” leading to infinite 
loops at the later stages of the convergence algorithm). In 
addition, the collection of all paths that the optimization 
routine runs through often are divergent, i.e. they do not 
all sum up to 1.

This has to do with the time slice problem or the fact 
that a time slice of defined length is used to increment 
the algorithm (data collection, recalculating of transition 
and emissions probabilities, etc.). While the problem of 
small residuals remains largely unsolved, recent research 
has advanced a possible solution for the problem of diver-
gent residuals. This problem is exacerbated by the fact 
that the marginal probabilities of truth assignments can 
change if the domains of first-order logic predicates (pre-
viously-introduced subjects or objects) is altered, either 
by extending it or reducing it.26 Proposes a modification 
the MLNs that fix this problem by normalizing the MLNs 
across each time “slice”. In brief, this simply means that 
all of the existing residuals are normalized such that their 
sum is, in fact, 1. This is accomplished not simply by up- 
or down-weighting all of the probabilities, but by creating 
an internal Markov Logic Network to model influences 
between variables that do not have a direct causal effect 
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on each other. This approach appears to be tractable and 
scalable to online applications. 

Another problem with MLNs is that they are so time-
consuming, despite being NP-complete, as to make them 
impractical for a number of applications. The main limi-
tation is scalability. One solution for speeding up MLNs 
is to “lift”, or borrow similar MLN states at different times 
during the running of the MLN. Properties of a calculated 
MLN may be generally similar, if the overall states and 
state relationships are very similar. One remaining limita-
tion of MLN state “lifting” is that the number of possible 
matches can balloon quite dramatically, making the situ-
ation even worse rather than better shown in Figure 3. 

Figure 3. Lifting Structural Motifs from Similar Markov 
Logic Networks (MLNs).

In27 Motifs extracted from ground hyper graphs 
(unrolled MLN, top) for History and Physics classes, 
involving book, student, and professor objects linked 
probabilistically by actions (buy, teach) appear to be 
rather similar (bottom). Thus, transitional probabilities 
between the two MLNs are likely to be rather similar and 
one can be lifted from the other (not shown). Thus, there 
remains an issue of granularity of predictions, since even 
with normalization by time slice and lifting of structural 
motifs trade-offs are still necessary in order to maintain 
tractability with the complex, rich probabilistic reasoning 
routines used in transition probability / emissions prob-
ability calculation. One possible solution has to do with 
coarse-to-fine grain lifting, or lifting of major structural 
features initially, followed by lifting of finer features later 
on17. This prevents the problem of ballooning complexity 
of lifted structural motifs, and allows the MLN to become 

convergent28. Other approaches towards making lifting 
tractable include lifting by symmetry (this would help 
accelerate the earlier, coarse-grained stages of the afore-
mentioned coarse-to-fine-grained approach). Finally, 
certain domains of first-order logical semantics can be 
orderly into hierarchical relationships, such that the 
searches for possible “worlds” can more easily converge, 
i.e. by moving down the tree form general principles 
and semantic relationships to more specific ones. This 
effort has led to the development of a so-called “tractable 
Markov language”, or TML.  

4. Conclusion
Soft computing has already revolutionized a number of 
fields, including artificial intelligence, robotics, voice rec-
ognition, and areas of biomedicine. It has the potential to 
continue doing so, but this future success depends heav-
ily on making more ambitious soft-computing algorithms 
tractable and scalable to Big Data – sized problems. One 
promising technique that has come to the forefront of soft 
computing research in recent years is the heavily proba-
bilistic-reasoning-based Markov Logic Network (MLNs). 
MLNs combine the efficiency of the Markov Model 
with the power of first-order logical reasoning. MLNs 
have already proven themselves adept at such futuristic 
implementation as smart homes, voice recognition, situ-
ations awareness, prediction of marine phenomena, and 
weather assessment. In order to make MLNs more trac-
table, research has recently turned towards normalizing 
progressively by time-slice to assure convergence, and 
“lifting” structural motifs from similar, already-computed 
networks. Progressive efforts in these areas should deliver 
a next-generation of situation awareness in “smart” elec-
tronics and predictive tools, one more step towards true 
artificial intelligence. 
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