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Abstract
The study of magneto hydrodynamic flow and heat transfer analysis in a non–Newtonian Eyring–Powell fluid fluid past 
an isothermal sphere with thermal slip. The radiation effects also considered in the energy equation. The governing 
momentum and energy equations are transformed to nonlinear ordinary differential equations by the use of a non-
similarity transformation. These equations are solved by numerically subject to physical appropriate boundary conditions 
using the second order accurate implicit finite difference Keller-box technique. The effects of magnetic field, Eyring-Powell 
fluid parameter, Prandtl number, Slip parameter on velocity and temperature profiles as well as on the local skin friction 
coefficient and the local Nusselt number are calculated.

Terminology
a 	 Sphere of radius
c 	 Fluid parameter of the sphere
Gr 	 Grash of number
F	 dimensionless stream function
g 	 Acceleration due to gravity
Pr 	 Prandtl number
Cf	 coefficient of skin friction 
Nu	  Nusselt number
T	 Fluid Temperature 

,u v 	Dimensionless velocity Components along 	
	 x-and y- directions, respectively

x 	 Stream wise coordinate
y 	 Transverse coordinates
α 	 Thermal diffusivity
η 	 Radial co-ordinate dimensionless system
µ 	 Dynamic viscosity
υ 	 Kinematic viscosity

θ 	 The dimensionless parameter
ρ 	 Density of the fluid
ε 	 Eyring -Powell fluid parameter
ξ 	 Tangential coordinate with dimensionless system
ψ 	 Non dimensional stream function

Subscripts
W	 Conditions at the wall
∞ 	 Free stream conditions

1. Introduction
Inpresent days no      and polymer melt in the plastic pro-
cessing industries.Many authors has investigates so many 
decades1–6 and as well as many physical effects is also 
included.These flowshows up in a wide variety of engi-
neering  applications, and moreover, innumerous natural 
conditions, for example, geothermal extraction, storage, 
nuclear waste  material, oil refining strategies, ground 
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water, streamsetc., in this way the expertis exploring to 
examine its thermo physical properties.

Magneto hydrodynamic flows additionally emerge 
in rheological wire covering  processes7, MHD levitation 
control of the diamagnetic material manufacturer8. Each 
of these studies also  have an impact in flow variations.
Theheat and mass transfer on Magneto hydrodynamic 
flows in both non-permeable and permeable regimes 
have received considerable among engineering scientists.

A non-Newtonian fluid i.e.  eyring powell model 
has very important role in  Chemical engineering . The 
Eyring-Powell fluid model in non-Newtonian fluids is 
created for the study of Biological engineering structures. 
This model of rheology has definite advantages over the-
non-Newtonian definitions. Powell and Eyring9 examined 
the devices of reduction theory of viscosity. Several com-
munications using Eyring-Powell fluid model has been 
exhibited in the scientific Research. Islam et al.10 iden-
tifying the resulting homotopy perturbation solutions 
for slider behaviors lubricated with Eyering-Powell fluid 
model. Patel and Timol11 studied measurably inspected 
the stream of Eyring-Powell fluids from a two dimen-
sional wedge. Recently Malik et al.12 concentrated on 
mixed convection flow of MHD Eyring-Powell fluid over 
a stretching sheet. They found that rate of heat and mass 
transfer diminishes for all parameters. Abdul Gaffar et 
al.13 focused on the MHD free convection flow of Eyring-
Powell fluid from vertical surface in permeable media 
with hall/ion slip present and ohmic dissemination.

The main aim of the present study of MHD and heat 
transfer analysis in a non-Newtonian Eyring-Powell fluid 
from an isothermal sphere with thermal slip.   Keller-Box 
finite difference method is used to get  Numerical solu-
tions for the velocity and the temperature distribution. 
The graphs are plotted and examined variations of param-
eters.

2. Mathematical Analysis
Let’s take the two-dimensional, viscous, incompressible, 
lightness driven convection heat assignment flow from 
an Isothermal Sphere rooted in an Eyring Powell non-
Newtonian fluid. Figure 1demonstrates the flow model 
and physical coordinate system. Now x is taken along 
the external of the sphere and y is taken along normal to 
the surface, correspondingly, and the radiated space (r) is 
taken from symmetric axes to r =a sin(x/a) surface. ‘a’ is 
the domain of the radius. The gravity, g acting downwards 

and uniform magnetic field B0 is chosen the circular 
direction, i.e. Ordinary to the cylinder surface.   

Figure 1. Physical model and coordinate system.

The equivalent velocities in the x and y directions are 
u and v. The main equations can be given as follows:
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Where u and v are the velocity components in x and  
y directions and all the other terms are defined in the ter-
minology. At the surface and the edge of the boundary 
layer regime, the boundary conditions are prescribed, the 
following ways:
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Here T∞ stands for free stream temperature, k is the 
warm conductivity, hw is the convective thermal transfer 
coefficient, Tw conductive wall temperature of the fluid. 
We can define the stream function ψ  by
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y x
ψ ψ∂ ∂

= = −
∂ ∂

.

Consequently, the equation of continuity is spontaneously 
fulfilled. The dimensional fewer quantities are presented 
as,
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In the vision of the transformations clear in the above 
equations, the boundary layer eqns. Reduce to the follow-
ing third order system of dimensions, the momentum, 
and energy, PDE for the regime:

2 2 2 sin(1 ) (1 cot ) f ff ff f f f Mf f fξε ξ ξ εδξ θ ξ
ξ ξ ξ

′ ∂ ∂′′′ ′′ ′ ′′ ′′′ ′ ′ ′′+ + + − − − + = − ∂ ∂     (6)
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The converted dimensionless boundary conditions 
are as follows

0, 0, 0 , 1 (0)
, 0, 0

TAt f f S
As f
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′→∞ → → 	     (8)

Here primes indicate the derivative w. r. to η  and 
1
4w

T
ah

S Gr
k

= is the thermal slip parameter. The wall 

thermal boundary condition in (8) relates to convec-
tive cooling. The coefficient of skin friction and Nusselt 
number (rate of heat transfer) can be obtained by the 
conversions depicted in the above with the resulting 
expressions.
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3. Numerical Solution
We have applied the implicit effectual Keller-Box differ-
ence method to evaluate the flow model characterized 
by equations (6) – (7) with the boundary conditions (8), 
initially developed for low speed flowing boundary layers 
(produced by Keller14). This framework was developed by 
Cebeci and Bradshaw15. This strategy has been utilized in a 
various scope of modern physical fluid flow issues. These 
incorporate Casson slip boundary layer flows16,17. This 
technique remains among the most effective, adaptable and 
exact computational finite difference schemes employed in 
modern viscous fluid dynamics simulations. This method 
has been utilized broadly and effectively for more than three 
decades in a large spectrum of nonlinear fluid mechanics 
problems. Keller’s techniques provide unconditional stabil-
ity and rapid convergence for strongly non-linear flows. It 
includes four key stages, summarized below.

a) Reduction of the Nth order partial differential equation 
frame work with N initial order equations

b) Finite difference discretization of reduced equations
c) Quasi linearization of non-linear Keller mathematical 

equations
d) Block-tridiagonal elimination of linearized Keller 

mathematical equations 

4. Results and Discussion
Figure 2-5 gives the detailed solution. The mathe-
matical issues include double free variables (ξ,η), two 
dependent fluid dynamic variables (f, θ) and 4 thermo-
physical and body constrained control parameters, 
namely , , andTS Mε δ . The effect of Eyring-Powell 
fluid factor ε, on velocity and temperature as shown in 
the Figure 2a and 2b and observed that the increase in 
ε, the boundary layer flow is accelerated with increasing 
Eyring-Powell fluid constraint and controls and tempera-
ture contours are diminished through the boundary layer 
regime. 

Figure 2a. Influence of ɛ on velocity profiles.

Figure 3a and 3b depict the effects of radiation param-
eter F, if it is noticed the velocity and temperature profiles 
stay converged and close to the boundary layer when 
increasing the radiation parameter. The flow is acceler-
ated and velocity is increased. The temperature profiles 
also increase when increasing the radiation parameter. 
For various values of the magnetic parameter M the veloc-
ity and temperature profiles are plotted in Fig.4a and4b. 
Increases the magnetic parameter M when opposing the 
flow decreases and as well as enhanced the deceleration 
of the flow in this reason the velocity and temperature 
automatically decrease. Figure 5a and 5b illustrate the 
influence of the thermal slip 

TS  on the transient velocity 
and temperature. As 

TS  increases the velocity and tem-
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perature decreases. The cause the   temperature   buoyancy 
effects to decrease yielding a reduction in the fluid veloc-
ity. The increasing in the velocity and temperature profiles 
is accompanied by simultaneous decreases in velocity and 
temperature of the boundary layer.

Figure 2b. Influence of ɛ on temperature profiles.

Figure 3a. Influence of F on velocity profiles.

Figure 3b. Influence of F on temperature profiles.

Figure 4a. Influence of M on velocity profiles.

Figure 4b. Influence of M on temperature profiles.

Figure 5a. Influence of ST on velocity profiles.

Figure 5b. Influence of ST on temperature profiles.

5. Conclusion
We examined the steady boundary layer MHD stream 
and heat transfer analysis in an Eyring Powel fluid from 
an isothermal circle with thermal slip. Accurate model-
ling through equations of continuity and motion leads 
to a non-linear differential equation even after employ-
ing the boundary layer assumptions. This study, my 
knowledge, has not appeared in the technical literature. 
Mathematical solutions have been presented for the heat 
transfer of Eyring-Powell flow over an isothermal sphere. 
Keller box implicit finite difference method is efficiently 
useful to evaluate the transformed flow characteristics 
and fluid boundary layer equations. In this paper we have 
observed the points as shown below:
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(1) Cumulative the Eyring – Powell fluid parameter ( )ε , 
reduces the velocity and temperature in the boundary 
layer.

(2) When increasing the radiation parameter ( )F , veloc-
ity and temperature are increased.

(3) Accession the magnetic parameter ( )M , both the 
velocity and temperature are decreased. 
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