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1.  Introduction

Patients suffering movement impairment that caused by
diseases like Motor Neuron Diseases (MND) or trauma
such as Spinal Cord Injury (SCI) and hand amputation
are having difficulties to control power wheelchair. Power
wheelchairs currently available in the market are driven
by a joystick. By moving the joystick with hand, a user
can control the movement of the wheelchair manually.
However, it was reported that approximately 40 percent
of patients who receive power wheelchair training find
it extremely difficult or impossible to manage steering
and manoeuvring tasks using existing power wheelchair
interface1.

Since the last few decades, researchers have been
dedicated to develop a hands-free interface to adapt the
usability of a power wheelchair by a broader range of
differentially enabled communities. The joystick controller 

is being replaced by various approaches such as voice
command, image processing on facial expression or eye
blinking or gesture recognition, bio-signal data recorded
using methods such as Electronystagmography (ENG),
Electroencephalogram (EEG) and Electromyography
(EMG) and many other control methods2-5. Among these
various methods, a brain-actuated power wheelchair
would be more suitable for all types of users as the control
action is based on the signal generated from the brain
activities.

Brain Computer Interface (BCI) is a communication
system where the user’s command “do not depend on the
brain’s normal output pathway of peripheral nerves and
muscles”6-7. It is a new communication link between the
functioning of human brain and the automation system8.
The BCI translates the brain signal into an equivalent
control signal that can be used to control devices
directly9. Thus it can be used by patients with severe 
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motor impairments to communicate with other persons 
and interact with the external environment10.

2.  Methodology

2.1 Data Acquisition and Preprocessing
The EEG signals were recorded using Mindset 24 
Topographic Neuro Mapping Instrument at a sampling 
rate of 256 Hz. A unipolar 19-channel EEG electrode cap 
was placed on the subject’s scalp based on the International 
10-20 system for electrode placement11. The reference 
electrode were attached on left and right mastoids.

Five healthy subjects aged 21-25 years were employed 
in this research (3 males and 2 females). None of them 
had history of neurological or other disease that might 
affect the experimental result. The subjects were requested 
to have enough rest the day before the experiment was 
conducted. A written consent was obtained from all five 
subjects after explaining the purpose of the experiment. 
The proposed protocol involves the imagination of 
moving 4 different body parts (left hand, right hand, left 
leg and right leg) as the classification of motor imagery 
tasks based on same body parts yielded lower accuracy12. 
This 4 Motor Imagery (MI) tasks were then associated 
to four different directions (forward, backward, left and 
right) and relax task for stopping condition. Each task was 
recorded for 15 seconds, followed by a relaxing period of 
10 seconds. The experiment was repeated for ten such 
trials. The recorded EEG signals were then normalized 
to zero mean and subsequently filtered using an elliptical 
band-stop filter at 50 Hz for removing the power line 
artifacts. 

2.2 Feature Extraction
As MI tasks involves in primary motor cortex, the EEG 
signals acquired from C3, C4 and Cz channels were used 
for feature extraction13. In this paper, Fractal Dimension 
(FD) features, Mel-Frequency Cepstral Coefficients 
(MFCCs) features and a combination of FD with MFCCs 
features were used for classification and their performance 
were evaluated.

The fractal dimension is a descriptive quantitative 
measure that provide statistical index of complexity of a 
time domain signal14, 15. The index calculated is a non-
integer value (fractional) and a more complex signal gives 
higher fractal dimension value and vice versa16. To 
calculate fractal dimension, the first and the last one 
second signals were removed and then the remaining 13 

second samples were segmented into 10 equal frames of 
frame size (N = 768 samples) with a overlap of 256 
samples. The segmented frame was then separated into k 
sets of time series m

kX  by using Equation (1).
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Using the mean length value Lk, the fractal dimension 
value Fd is computed by using Equation (3).
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By taking k = 2, 3, 4, 5 and 610, five fractal dimension 
values were obtained for each segmented frame. Thus a 
database of FD features consisting of 500 rows (10 frames 
x 10 trials x 5 tasks) and 15 columns (5 features per 
channel x 3 channels) was formulated and associated to 
the respective MI task.

Mel-frequency cepstral coefficients is a feature 
extraction method originally used in speech recognition 
system17. It is being applied in EEG tasks classification 
recent years and achieved high classification accuracy up 
to 90 percent18, 19. MFCCs contain filter banks that models 
the ability of human ear to resolve frequencies non-
linearly across the audio spectrum20. To compute MFCCs, 
the first second of the clean EEG signals were removed 
and then the remaining samples were segmented into 
10 equal frames where each frame consists of 2 seconds 
signal (N=512 samples) with overlaps by 256 samples. 
The segmented frame was converted into frequency 
domain by using Fast Fourier Transform (FFT). Mel-
frequency cepstrum are then computed by mapping the 
FFT spectrum onto a mel scale based triangular band-
pass filter banks. Using Equation (4), 10 triangular filter 
banks which equally spaced along the mel scale that 
covered 0-100 Hz were designed. The frequency nodes 
for the created filter banks are located at [0, 8.6, 17.2, 26.0, 
34.8, 43.8, 52.9, 62.1, 71.4, 80.8, 90.4, 100.0] Hz. Each 
triangular filter bank was formed by three continuous 
frequency nodes, with overlapping of 50% as shown in 
Figure 1.
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Figure 1.    10 Mel filter banks across 0-100 Hz with 50% 
overlapping.

The Mel scaled output were then logarithmically 
transformed and Discrete Cosine Transform (DCT) was 
applied as represented in Equation (5). Thus a database of 
MFCCs features consisting of 500 rows (10 frames x 10 
trials x 5 tasks) and 30 columns (10 features per channel 
x 3 channels) and associated to the respective MI task was 
formulated.
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where Sk is the output of the filter bank, K is length of Sk  
and Cn are the cepstral coefficients. 

The third feature set was developed by combining 
FD features with the MFCCs features. Thus a database 
consisting 500 rows (10 frames x 10 trials x 5 tasks) and 
45 columns (5+10 features per channel x 3 channels) was 
formulated.

2.1.1 Classification
A Multilayer Perceptron (MLP) consists of an input 
layer, one or more hidden layers and an output layer. 
MLP basically can be divided into Feed Forward Neural 
Network (FFNN) and Recurrent Neural Network (RNN). 
RNN is a FFNN with the addition of layer recurrent 
connection. Figure 2 shows the basic structure of a 
FFNN and Figures 3 and 4 shows the basic structure of 
Elman network and nonlinear autoregressive exogenous 
(NARX) model respectively.

Figure 2.    Basic structure of Feedforward Neural Network 
(FFNN).

Figure 3.    Basic structure of Elman network, feedback loop 
from hidden layer.

Figure 4.    Basic structure of NARX network, feedback loop 
from output layer.

The feedback loop exhibits hysteretic behavior and 
therefore dynamic input-output relationship can be 
discovered. The main different between Elman network 
and NARX network is that Elman network’s architecture 
feedbacks from hidden layer while NARX network’s 
architecture feedbacks from output layer. The NARX 
network collects both delayed input-output and this 
enable the network to predict a time series value.

 The three Feature Databases (FD, MFCCs and 
FD+MFCCs) developed were normalized and then 
used to develop three different feed forward multi-layer 
perceptrons for each subject. The networks were trained 
using Levenberg-Marquardt Algorithm (LMA). The 
LMA is a combination of gradient descent method and 
Gauss-Newton Algorithm (GNA). LMA updates network 
weights with gradient descent method if damping factor, 
λ is large and uses GNA when λ is small.

 The features were evaluated in term of classification 
accuracy and the best performance feature was selected for 
further experiment. Elman network and NARX network 
were developed for each subject and their performance 
were compared with FFNN by using the selected features.

The maximum epoch was set to 1000 and the 
performance goal of the training was set to 1e-10. The 
training stops when the performance goal was met or 
the Mean Square Error (MSE) of the validation output 
continually increased for 6 time. Each model consists 
of 20 hidden neurons and 5 output neurons. The data 
samples were randomly divided and 65% of it were used 
for training, 10% for validating and 25% for testing 
the network model21 so that it possess generalization 
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capability. The classification was repeated by 10 times and 
the average classification accuracies were tabulated and 
shown in Table 1-5.

3.  Result and Discussion

 The classification accuracies of the feedforward MLPNN 
models for the three different features extraction methods 
are presented in Table 1-5. The overall classification 
accuracy for the three features were summarized in Figure 
5. From the results, it can be observed that FD features 
have overall classification accuracy of 71.8-89.37% for 
all the 5 subjects. The classification accuracy was rather 
poor for subject 2, 3 and 4. The FD features have yielded a 
lower classification accuracy when compared to the other 
two features.

Further, it can be observed that the MFCCs features 
have higher overall classification accuracy of 87.80-
97.71% which is consistently higher than that of the 
classification performance obtained from the FD features. 

On top of that, it can be observed that the combined 
features of FD with MFCCs have yielded a highest 
classification accuracy among all the three feature sets 
(93.75-97.96%). Even though FD features and MFCCs 
features achieved lower classification accuracy for subject 
2, 3 and 4, the combined features of FD with MFCCs 
consistently remained high at classification accuracy over 
93.75%. This result shows that the combined features of 
FD with MFCCs is more suitable to classify the MI tasks.

The combined features of FD with MFCCs was 
selected as input features for comparing the performance 
of FFNN, Elman and NARX neural network. The 
classification accuracies of three different type of neural 
network classifiers are presented in Table 6-10 and the 
overall classification accuracy for the three different 
network classifiers were summarized in Figure 6. From 
the results, it can be observed that all the three classifiers 
have the overall classification accuracy above 90%, where 
FFNN achieved 93.75-97.96%, Elman network achieved 
98.98-100%, and NARX network achieved 95.55-98.98%.

The FFNN has the capability of reaching 100% 
accuracy for training session, while it gets lower accuracy 
for validation and testing session. For Elman network, all 
three training, validation and testing session had achieved 
very high classification accuracy. This result suggests 
that the feedback of the delayed hidden neuron output 
greatly helped on predicting the correct MI tasks. The 

performance of NARX network with delayed input and 
output neuron was very close to Elman network. NARX 
network had achieved very high classification accuracy for 
validation and testing session, but sometimes get slightly 
lower accuracy for training session. It is observed that the 
delayed input neuron might cause more misclassification 
at the point where change of next task occurs. Thus, 
the high classification accuracy of Elman network for 
training, validation and testing session suggests that it 
has great generalization capability and is suitable for 
classifying motor imagery tasks.

Figure 5.    Overall classification accuracy of FD, MFCCs, 
FD+MFCCs features using FFNN for subject 1-5.

Table 1.    Average classification performance of FD, 
MFCCs and FD+MFCCs features using FFNN for 
Subject 1
SUBJECT 1 FD MFCCs FD +MFCCs
Training 89.73 93.33 100.00
Validation 83.53 80.00 91.76
Testing 78.04 87.38 86.92
Overall 86.18 90.52 95.90

Accuracy of training, validation, testing and overall 
results shown in percentage value (percent) for subject 1.

Table 2.    Average classification performance of FD, 
MFCCs and FD+MFCCs features using FFNN for 
Subject 2
SUBJECT 2 FD MFCCs FD +MFCCs
Training 82.35 100.00 100.00
Validation 72.15 92.41 97.47
Testing 74.62 93.91 92.89
Overall 79.39 97.71 97.96

Accuracy of training, validation, testing and overall 
results shown in percentage value (percent) for subject 2.
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Table 3.    Average classification performance of FD, 
MFCCs and FD+MFCCs features using FFNN for 
Subject 3
SUBJECT 3 FD MFCCs FD +MFCCs
Training 73.00 93.19 100.00

Validation 71.21 77.27 86.36

Testing 68.90 79.88 80.49

Overall 71.80 88.26 93.75

Accuracy of training, validation, testing and overall 
results shown in percentage value (percent) for subject 3.

Table 4.    Average classification performance of FD, 
MFCCs and FD+MFCCs features using FFNN for 
Subject 4
SUBJECT 4 FD MFCCs FD +MFCCs
Training 80.30 92.73 99.39
Validation 76.47 78.43 84.31
Testing 70.87 78.74 84.25
Overall 77.56 87.80 94.09

Accuracy of training, validation, testing and overall 
results shown in percentage value (percent) for subject 4.

Table 5.    Average classification performance of FD, 
MFCCs and FD+MFCCs features using FFNN for 
Subject 5

SUBJECT 5 FD MFCCs FD +MFCCs
Training 96.48 100.00 100.00
Validation 75.00 87.50 100.00
Testing 76.77 84.85 86.87
Overall 89.37 94.94 96.71

Accuracy of training, validation, testing and overall 
results shown in percentage value (percent) for subject 5.

Table 6.    Average classification performance of 
FD+MFCCs features using FFNN, ELMAN and NARX 
for Subject 1
SUBJECT 1 FFNN ELMAN NARX
Training 100.00 100.00 94.95
Validation 91.76 100.00 95.29
Testing 86.92 98.59 97.18
Overall 95.90 99.65 95.55

Accuracy of training, validation, testing and overall 
results shown in percentage value (percent) for subject 1.

Table 7.    Average classification performance of FD, 
MFCCs and FD+MFCCs features using FFNN for 
Subject 4

SUBJECT 1 FFNN ELMAN NARX
Training 100.00 100.00 96.47
Validation 97.47 98.73 98.73
Testing 92.89 98.47 98.98
Overall 97.96 99.49 97.32

Accuracy of training, validation, testing and overall 
results shown in percentage value (percent) for subject 2.

Table 8.    Average classification performance of 
FD+MFCCs features using FFNN, ELMAN and NARX 
for Subject 3
SUBJECT 1 FFNN ELMAN NARX
Training 100.00 100.00 98.59
Validation 86.36 96.97 95.45
Testing 80.49 98.78 97.56
Overall 93.75 99.39 98.02

Accuracy of training, validation, testing and overall 
results shown in percentage value (percent) for subject 3.

Table 9.    Average classification performance of 
FD+MFCCs features using FFNN, ELMAN and NARX 
for Subject 4
SUBJECT 1 FFNN ELMAN NARX
Training 99.39 100.00 99.09

Validation 84.31 100.00 96.08

Testing 84.25 100.00 98.43

Overall 94.09 100.00 98.62

Accuracy of training, validation, testing and overall 
results shown in percentage value (percent) for subject 4.

Table 10.    Average classification performance of 
FD+MFCCs features using FFNN, ELMAN and NARX 
for Subject 5
SUBJECT 1 FFNN ELMAN NARX
Training 100.00 100.00 100.00
Validation 100.00 94.87 97.44
Testing 86.87 97.98 96.97
Overall 96.71 98.98 98.98
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Accuracy of training, validation, testing and overall 
results shown in percentage value (percent) for subject 5.

Figure 6.    Overall classification accuracy of FFNN, 
ELMAN, NARX using FD+MFCCs features for subject 1-5.

4.  Conclusion

 In this research, three different feature extraction methods 
were applied for the classification of five different MI 
tasks. The use of combined features of FD with MFCCs 
resulted consistently higher classification accuracy 
compared to FD features and MFCCs features. Further, 
the best feature, combined FD and MFCCs was used for 
three different classifier. The Elman network performed 
better than the feedforward network and NARX network. 
This result suggests that Elman network and combined 
features of FD with MFCCs can be used as a promising 
pattern recognition method in motor imagery based BCI.

5.  Acknowledgement 

The authors would like to thank Y. Bhg. Kol. Prof. Dato’ 
Dr. Kamarudin B. Hussin, Vice Chancellor, University 
Malaysia Perlis for his constant encouragement. 

6.  References
1.	 Fehr L, Langbein WE, Skaar SB. Adecuacy of power wheel-

chair control interfaces for persons with severe disabilities: 
a clinical survey. Journal of Rehabilitation Research and 
Development. 2000; 37(3): 353–60.

2.	 Arai K,  Mardiyanto R. Eyes based eletric wheel chair con-
trol system. IJACSA. 2011; 2(12):95–105.

3.	 Mittal R, Srivastava P, George A, Mukherjee A. Autono-
mous robot control using facial expressions. International 
Journal of Computer Theory and Engineering. 2012 Aug; 
4(4):631–5.

4.	 Pires G  Nunes U. A wheelchair steered through voice 
commands and assisted by a reactive fuzzy-logic control-

ler. Journal of Intelligent and Robotic Systems. 2002 Jul; 
34(3):301–14.

5.	 Hwang HJ, Kwon K, Im CH. Neurofeedback-based mo-
tor imagery training for Brain–Computer Interface (BCI). 
Journal of Neuroscience Methods. 2009 Apr; 179(1):150–6.

6.	 Yuksel BF, Donnerer M, Tompkin J, Steed A. Novel P300 
BCI interfaces to directly select physical and virtual objects. 
2011. p. 1–4.

7.	 Wolpawa JR, Birbaumer N, McFarland DJ, Pfurtscheller  
G, Vaughan TM. Brain–computer interfaces for commu-
nication and control. Clinical Neurophysiology. 2002 Jun; 
113(6):767–91.

8.	 Kewate P, Suryawanshi P. Brain machine interface automa-
tion system: A review. International Journal of Scientific 
and Technology, Research. 2014 Mar; 3(3):64–7.

9.	 Hema CR, Paulraj MP, Yaacob S, Adom AH, Nagarajan R. 
An analysis of the effect of EEG frequency bands on the 
classification of motor imagery signals. Biomedical Soft 
Computing and Human Sciences. 2010; 16(1):121–6.

10.	 Anupama HS, Cauvery NK, Lingaraju GM. Brain comput-
er interface and its types – A study. International Journal 
of Advances in Engineering and Technology. 2012 May; 
3(2):739–45.

11.	 Jasper H. The ten twenty electrode system of the interna-
tional federation. Electroencephalographic and Clinical 
Neurophysiology. 1958; 10:371–5.

12.	 Sun A, Fan B, Jia J. Motor imagery EEG-based online con-
trol system for upper artificial limb. International Confer-
ence on Transportation, Mechanical and Electrical Engi-
neering (TMEE); Changchun, China. 2011 Dec 16-18. p. 
1646–9.

13.	 Neuper C, Scherer R, Reiner M, Pfurtscheller G. Imagery 
of motor actions: differential effects of kinesthetic and vi-
sualmotor mode of imagery in single-trial EEG. Brain Res 
Cogn Brain Res. 2005 Dec; 25(3):668–77.

14.	 Paulraj MP, Yaacob S, Yogesh CK. Fractal feature based 
detection of muscular and ocular artifacts in EEG signals. 
Biomedical Engineering and Sciences (IECBES). 2014 IEEE 
Conference; Kuala Lumpur. 2014 Dec 8-10. p. 916–21.

15.	 Paulraj MP, Yaacob S,  Adom AH, Subramaniam K, Hema 
CR. EEG based hearing threshold classification using frac-
tal feature and neural network. Research and Development 
(SCOReD). 2012 IEEE Student Conference; Pulau Pinang. 
2012 Dec 5-6. p. 38–41.

16.	 Wang Q, Sourina O, Nguyen M. Fractal dimension based 
neurofeedback in serious games. The Visual Computer. 
2011 Apr; 27(4):299–309.

17.	  Muda L, Begam M, Elamvazuthi I. Voice recognition algo-
rithms using Mel Frequency Cepstral Coefficient (MFCC) 
and Dynamic Time Warping (DTW) techniques. Journal of 
Computing. 2010 Mar; 2(3):138–143.

18.	 Yorozu Y, Hirano M, Oka K, Tagawa Y. MFCC for robust 
emotion detection using EEG. 2009 IEEE 9th Malaysia In-
ternational Conference Communications (MICC); Kuala 
Lumpur. 2009 Dec 15-17. p. 98–101.

19.	 Abdul W, Wong JW. Cortical activities pattern recognition 
for the limbs motor action. Intelligent Environments, 2008 



Jackie Teh and M. P. Paulraj

Vol 8 (20) | August 2015 | www.indjst.org Indian Journal of Science and Technology 7

IET 4th International Conference; Seattle, WA. 2008 Jul 21-
22. p. 1–7. 

20.	 Nguyen P, Tran D, Huang X, Sharma D. A proposed feature 
extraction method for EEG-based person identification.  
Proceedings of the 2012 International Conference on Ar-

tificial Intelligence (ICAI 2012), WORLDCOMP’12; 2012 
Jul 16-19. p. 826–31.

21.	 Poh HL. A neural network approach for marketing strat-
egies research and decision support [PhD dissertation]. 
Stanford: Stanford University; 1991.


