
Indian Journal of Science and Technology, Vol 8(20), DOI: 10.17485/ijst/2015/v8i20/78481, August 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1.  Introduction

A micro-grid is a collection of the Distributed Energy
Resources (DER) within the main grid, which can be used
in both stand-alone and grid-connected mode1 When the
DER are connected to the grid utility using a two-level
converter with a LCL filter, harmonics enter the system
at the Point of Common Coupling (PCC) from the grid
side due to low impedance provided by the LCL filter2

The harmonics are significant at the odd multiples of the
fundamental frequency (50Hz) and affect the system at
the resonance frequencies. Reducing the Total Harmonic
Distortion (THD) of the output current is the main
objective of the controller. A lot of work has been carried
out in this area3-13 but still requires detailed analysis and
alternative suitable controller.

There are two types of control systems (i) open-loop
and (ii) closed-loop. A simple stepper motor which
produces a certain torque in response to a certain
voltage applied at its stator is an open-loop system. The
Automatic Braking System (ABS) of a car is a closed-loop
system which has a certain output feedback with which it
compares the defined reference and attempts to minimize
the error using a certain control action.  

The limitation of conventional controllers like
proportional P and proportional integral PI controllers
is that they do not give good gain at the harmonic
frequencies along with accurate reference tracking for a
fast switching signal4. Our signal of interest is the grid
current, which has a value of 100A (peak) and oscillates at
a frequency of 50 Hz. We need a controller that has a very
fast response and can suppress the harmonics at the odd 
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frequencies, while simultaneously tracking the specified 
reference parameters5. In this regard, the performance of 
repetitive and the PR (Proportional Resonant) controllers 
have found to be more robust for real-time applications6. 

2.  Mathematical Modeling

We start the mathematical modeling of the three-phase 
two-level converter with a LCL filter at each phase. 
The system is complex so we start with a single-phase 
equivalent circuit of the two-level converter and derive its 
transfer function. We apply KVL to the two independent 
loops and KCL to the central node in Figure 1.

Figure 1.     Single-phase equivalent of a three-phase two-
level converter with LCL filter.

Here we have assumed that the ground-to-neutral 
voltage Vgn= (Van+Vbn+Vcn)/3 is equal to zero, because the 
capacitors are connected to the DC link. The three phase-
to-neutral voltages are Van ,Vbn and Vcn respectively. We 
manipulate the KVL and KCL equations and make use of 
the Laplace transform8 to get the output current I2 as
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We ignore the second part of this equation which is 
the disturbance injected into the system at the PCC, to 
derive the transfer function between the reference signal  
Vin(s) and the output signal I2(s). Henceforth, the open-
loop transfer function of this system is 

2
3

1 2 1 2

( ) 1( )
( ) ( )in

I s
G s

V s s L L C s L L
= =

+ +   (2)

Including an inner-loop gain Kc from Ic back to the 
summer provides a damping term and makes the system 
more stable7.

Figure 2.     Modified block diagram with two-loop 
feedback.

The output current I2 of the modified system Figure 2 is 
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G1(s), which is the closed-loop transfer function of 
the two-level converter with LCL filter including the 
capacitive feedback damping is as (4) 
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The utility disturbance is defined as (5)
2
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3.  Matlab Simulations

The model used for simulation is shown in Figure 3, which 
is a linear approximation of the single-phase equivalent of 
the two-level grid-connected converter.

Figure 3.     Simulink model of Two-Level Grid-Connected 
Converter.

The values of the components of the LCL filter are 
L1=350µH, L2=50µH and C=22.5µF8. Substituting these 
values into (2), we find the poles of the transfer function 
which lie at 0 and ± 3.1783i respectively. A system with a 
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pole at zero is a critically stable system. From Figure  4, it 
is clear that the system is critically stable and will become 
unstable when any input signal is given to it.

Figure 4.     Root locus diagram of open-loop system G(s).

Figure 5.     Root locus diagram of the closed-loop 
system G1(s).

From Figure 5, it is clear that the overshoot of our 
closed-loop system is less as compared to the open-
loop systems and also that the bandwidth of the system 
has been increased due to the inclusion of the controller 
within the loop. Also, the damping has increased so the 
settling time of the system has decreased implying that 
the system has become more stable.

4.  Proportional Controller

4.1  Effect of Inner-loop Gain Kc on System 
Performance

The inner-loop gain Kc is varied and the resulting plots 
are recorded for a proportional controller (Figures 6,7), 
while the proportional gain Kp is kept constant at a value 
of 1.63. The reference tracking capabilities are increasing 
as the value of inner-loop gain Kc is increased from 0 - 1.4. 
From 1.6 - 3, we are getting the best possible results and 

onward from 3, the THD in the output signal is increased 
although it still maintains good reference tracking. The 
THD injected into the system at PCC is 2.494%. For 
inner-loop gain Kc = 0 our system is unstable. For inner-
loop gain Kc = 1.4 the system is stable but after 0.04 
seconds, it starts getting unstable and THD in the signal 
is increasing. From Table 1, at inner-loop gain Kc equal 
to 1.6 we have reached our optimal performance as far as 
reference tracking is concerned.

Figure 6.     Plot of I (t) vs t, inner-loop gain Kc = 3.

At the value of inner-loop gain Kc equal to 3, we are 
getting the optimal phase margins and the gains margins 
along with a reduced value of THD. Figure 8, shows the 
bode plot of output current with respect to the reference 
current for the best controller gain at which the gain 
margins and phase margins are optimal. The results of our 
findings have been mentioned in Table 1.

Figure 7.     Bode plot of I2  w.r.t.  Iref for optimal gain i.e., 
inner-loop gain Kc=3.

Table 1.    Effect of variation of inner-loop gain kc on 
system performance
S. No Kc THD G.M (dB) P.M    

( ° )
Stable

1 0 3804 undefined -90 No
2 1.4 64.93 -0.161 -5.96 No
3 1.6 4.512 0.998 88.9 Yes
4 3 4.544 6.46 88 Yes
5 20 5.815 22.9 77 Yes
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5.   Proportional Integral 
Controller

This is basically the implementation of the Table 2 given 
in the paper8. We are varying the value of proportional 
gain Kp and integral gains KI taking the inner-loop gain 
Kc = 3. With the increase in the value of the proportional 
gains Kp and integral gains KI   beyond the value of 1, the 
gain margins and phase margins are diminishing. The 
best performance of the controller is found at the value of 
1.65. The bode diagram is shown in Figure 9.

Table 2.    Effect of variation of proportional KP and 
integral KI gains on thd 
S.No Kp KI Gain 

Margin
Phase 

Margin (°)
THD Stable

1 1 1 10.7 88.8 2.965 Yes
2 2 2 4.68 87.4 6.027 Yes
3 3 3 1.16 85.9 29.65 Yes
4 3.4 4 0.0726 1.92 45.81 Yes
5 3.5 4 -0.179 -3.9 18150 No
6 2.8 2.8 1.76 86.2 16.95 Yes
7 1.65 1.65 6.35 87.9 4.606 Yes

For proportional gain KP = integral gain KI = 1, the output 
is under-damped and I2 is over-exceeding the value of 
the reference current. The value of THD is less so the 
disturbance rejection is good. For proportional gain KP 
= integral gain KI = 2, the output signal is over-damped 
and the THD has increased. For proportional gain KP = 
integral gain KI = 3, the controller is able to follow the 
reference for the first cycle, but when a higher order 
disturbance enters the system at the beginning of the 
second cycle, the controller totally fails. For proportional 
gain KP = 3.4, integral gain KI  = 3, we have reached the 
upper limit for the gains and should work within this 
range rather than trying to go beyond. 

Figure 8.     Output current w.r.t reference current for 
optimal gains.

Figure 9.     Bode plot showing the response of I2 w.r.t Iref 
for the optimal gains Kp = KI = 1.65.

6.   Conclusion and Future Work 
Include THD Output using FFT 
Analysis

We can use the proportional and proportional integral 
controllers to give the desired performance under utility 
THD below 5% for certain gains. But even in the range 
of gains that has been explored in this text, the controller 
performance is limited. PI controller is not a very good 
controller in the sense that it is not very effective at tracking 
a high frequency reference signal. The frequencies of our 
system and the controller to be used should be given 
special importance when choosing a particular controller 
and also its bandwidth. 

We can control the d-q currents rather than the output 
current and compare their performances to establish 
which is more effective. The Repetitive Controller (RC) 
can be used to control the current either in simulation or 
by using a DSP based hardware platform. Also the study 
of RC by varying the grid frequency is also an interesting 
prospect for future work. The practical application of 
this model is in a Photo-Voltaic (PV) panels and in 
wind turbines which are connected to the grid through a 
suitable converter. 
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