
Abstract 
This paper describes the classification of navigational tasks to command a navigation system incorporated with a 
communication device using thought and visually evoked potentials. To develop a navigation system with communication 
aid for the neuromuscular disorder community, simple protocol using TEP and VEP responses has been introduced in 
this research work. The developed protocol has seven basic tasks such as forward, left, right, yes, no, help and relax; these 
basic seven task are used to control the wheel chair navigation system and also perform voice communication using an 
oddball paradigm. The proposed system records the brain wave signals using a wireless EEG amplifier from ten subjects 
while the subjects were imagining and visualizing the seven different visual tasks. For each subject, the recorded brain 
wave signals are pre-processed to extract the six Electroencephalography rhythmic activities and segmented into frames of 
equal samples. Then, this study presents the higher order spectra based features to categorize the TEP and VEP tasks using 
bispectrum estimation algorithm. Further, statistical features such as the mean and entropy of the bispectral magnitude 
are extracted and formed as a feature set. To develop a customized classification system for individual responses, the 
extracted feature sets are classified using Multi layer neural networks and from the results it is observed that the entropy of 
bispectral magnitude feature using VEP based NN model has the maximum classification accuracy of 99.29% and the mean 
of bispectral magnitude feature using TEP based NN model has the minimum classification accuracy of 72.14%.

Keywords: Bispectrum Estimation, Customized-Intelligent Robot Chair with Communication Aid, Multi Layer Neural 
Network, Thought Evoked Potentials

1.  Introduction
In daily life, every human being depends on their  
fundamental needs which includes moving around 
and communications with others to live a reasonable 
life. Neuromuscular Disorder (NMD) patients and dif-
ferentially enabled communities have their walking 
abnormalities due to postural instability and difficulty in 
communication with others due to loss of muscle con-
trol and speech1, 2. Over the last few years, researchers 
have found that it is possible to provide a navigation sys-
tem along with a communication aid for these patients 
using motor control and enable them to lead a normal 

life3-5. Hence, variety of Brain Machine Interface (BMI) 
applications have arisen and currently this research has 
been directed towards wheelchair navigation control 
and recognition of unspoken speech utterances without  
voluntary muscle functions 6-8.

Recently, several studies have examined Thought 
Evoked Perception (TEP) based design of robotic 
wheelchair control using human thoughts9, 10, and com-
munication systems using P300 speller and oddball 
paradigms11. Yet, the data acquisition protocols have 
shown a vital role in redefining the claimed action to com-
mand a navigation system or a communication system. 
The research work proposed by Kaufmann et al, involves 
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positioning of four tactile stimulators and delivers  
navigation by concentrating their considerations on the 
desired tactile stimulus in an oddball paradigm to control 
the wheelchair. The results were validated through the 
participants navigating a virtual wheelchair11. Theresa M. 
Vaughan, Jonathan S. Brumberg and Anne Porbadnigk 
have developed several alternative communication sys-
tems using the recent developments in personal computers 
and new prosthetic methods to provide communication 
and control channels to individuals with difficulties in 
communication8, 12, 13. Despite, none of the systems have 
produced an expanded utilization of the BMI technology 
to facilitate both navigation and communication through 
a customized brain activity recording protocol. Thus, in 
this study it is proposed to develop a customized thought 
controlled Intelligent Robot Chair with Communication 
aid (IRCC), as an initial step towards the possibility of 
navigation and speech production using a simple thought 
response based protocol. Figure 1. Depicts the block dia-
gram of the proposed customized classification system for 
robot chair control along with a communication aid.

The motivation towards this research is to establish 
a simple robot chair along with a communication aid, 
that can be used by an NMD, to control a wheel chair 
and to communicate their needs with others using TEP’s 
and VEP’s. A simple data acquisition protocol has been 
proposed to develop the thought and visually controlled 
custom-IRCC; the tasks (Forward, left, right, Yes, No 
and Relax) were initially simulated and the subjects were 
requested to imagine during the data acquisition process 
for TEP protocol and the subjects were requested to visu-
alized the depicted simulation for VEP protocol. Further, 
the subjects were taught to pronounce the word loudly 

for the ‘Help’ task. The EEG signals are recorded for  
12 seconds for each trial per task and are trimmed to 10 
seconds during the pre-processing stage for uniformity. 
In the pre-processing, the recorded brain wave signals 
were band-passed filtered in the frequency range of 0.5 to 
100 Hz and segmented into six frequency bands Delta (δ), 
theta (θ), alpha (α), beta (β), Gamma 1 (γ1) and Gamma 
2 (γ2). Thus, frequency band signals are segmented into 
frame segments of 512 samples and used to extract the fea-
tures using Higher Order Spectra (HOS) technique. The 
general motivation behind the use of bispectrum estima-
tion is to detect and characterize the nonlinear properties 
of the navigational tasks, and they are potentially better to 
estimate the deviations from Gaussianness (normality)14. 
Thus, in this study, the third order statistics bispectrum 
based feature extraction method has been implemented 
to extract the features from each frame of frequency band 
signals over each electrode position and the features such 
as the Mean of bispectral magnitude (M) and the bispec-
tral entropy features (E) were extracted. The non-linear 
features were extracted and associated with the corre-
sponding TEP and VEP tasks. Then, the feature set of each 
subject modeled using a supervised learning-Multi Layer 
Neural Network (MLNN) classifier and the classification 
performance was validated. The research methodology 
and the developed model results are explained in the  
subsequent sections of this paper.

2. � IRCC Database and 
Preprocessing

In the development of custom-IRCC database, ten healthy 
participants (eight male, aged 21-30 years and two female, 
aged 24 years) were participated. The proposed study has 
been registered and approved from National Medical 
Research Registration (NMRR ID: NMRR-13-51-14570) 
and obtained Ethical approval from The Medical Research 
and Ethics Committee (MREC), Ministry of Health 
Malaysia. (Ref:(7)dlm.KKM/NIHSEC/800-2/2/2Jld2P13-
179). All the experiments were performed as per the 
obtained ethical procedures and the consent from all the 
10 subjects were obtained before performing the data 
acquisition procedures. Then, the subjects were requested 
to imagine these tasks during the data acquisition pro-
cess. The data recording sessions were implemented in 
the lab environments at school of Mechatronic engineer-
ing, University Malaysia Perlis. The following section 
describes the data acquisition protocol, principle of EEG 

Figure 1.  Block diagram of the proposed custom-IRCC 
using TEP and VEP response.
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recording and the formation of IRCC database to develop 
a customized classification system using Thought Evoked 
Potentials (TEP) and Visually Evoked Potential (VEP).

2.1  TEP, VEP Tasks and IRCC Database
In the experimental setup, ‘g-mobilab+’ 8-channel EEG 
data acquisition system was used to record the thought 
responsed brain wave signals15. The system consists of an 
electrode cap with nine differential screwable electrodes, 
a bio-signal amplifier and a wireless data acquisition 
system connected to the MATLAB® interactive program-
ming environment. In the data acquisition protocol, three 
primary tasks, such as Left, Forward and Right hand 
movement control are included to address the naviga-
tion control of the robot chair and also to categorize the 
isolated words in an oddball paradigm. Further, three 
additional tasks have been included to use in emergency 
circumstances and to address the basic needs of a human 
being, help, yes, no tasks. Relax signal has been used as 
the reference signal in this experiment. The EEG signals 
are recorded while the subject was settled comfortably 
and remained in totally static posture. No overt actions 
were made during the 12.0 seconds of the data acquisition 
process. Figure 2 and Figure 3 depicts the tasks that were 
implemented using the TEP responses and VEP responses 
to command an IRCC.

The system records the brain wave signals from the 
eight electrode positions such as Temporal (T3, T4), cen-
tral (C3, C4), parietal (P3, P4) and occipital (O1, O2) 
with one common electrode on the left ear lobe while the 
subjects were performing the seven different tasks respec-
tively. The specified electrode positions represent the area 
of the sensorimotor cortex region with different patterns 
of brain activation during navigational and conversational 
tasks. The proposed IRCC system captures the brain wave 
patterns in order to identify the rhythmic activity for 
the seven different thoughts of an individual. Thus, dur-
ing data collection, the EEG signals were recorded at a 
sampling rate of 256 Hz from a grid of 8 Ag/AgCl scalp 
electrodes which were placed on the scalp according to 
the international 10-20 lead system16. The electrodes are 
placed on the scalp of the selected locations and tested 
for level of impedance using g-tec impedance checker and 
maintained below 10 KΩ throughout the experiment. 

During the TEP data acquisition of each task, the sub-
jects were requested to view the simulation of the specific 
task on the LCD monitor as depicted in Figure 2(1) to 
Figure 2(7) for 10.0 seconds. The simulation depicts the 
movement of a wheelchair joystick using the left hand, 
both hands and right hand movement for the left, forward 
and right directions respectively. For the additional tasks 
like ‘yes’ and ‘no’, the visual presents a volunteer perform-
ing head movements up-down and left-right movements 
and for ‘help’ task, the subject was requested to pronounce 
imaginarily the word ‘help’ respectively. Then the LCD 
monitor is turned off and a blank screen was presented for 
2.0 s. Meanwhile, the subject was requested to perform 
the tasks asynchronously as shown in the simulation. 
During the VEP data acquisition of each task, the subjects 

Figure 3.  Representation of the tasks (12.0 s) for subject to 
conduct the VEP data acquisition process.

Figure 2.  Preliminary representation of the tasks (10.0 s) 
for subject to conduct the asynchronous data acquisition 
process.

Figure 4.  Experimental setup during the acquisition of 
tasks to comand custom-IRCC.
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were requested to view the simulation of the specific task 
on the LCD monitor as depicted in Figure 3(a) to Figure 
3(g) until recording all the trials. The additional tasks are 
repeated similarly as represented in the TEP tasks. Then, 
the subject performs a specified task and the EEG sig-
nals were recorded for 12.0 s from the specified electrode 
positions. Ground electrode and reference electrodes 
are placed in the Cz position and left earlobe locations 
of 10-20 system respectively. Figure 4 represents the  
experimental setup during the data acquisition process.

The recorded EEG signals are contaminated with 
unknown noise component lying within a 60 Hz frequency 
range. A simple first order IIR notch filter was designed for 
removing the power line noise from the recorded EEG sig-
nals. The center frequency of the filter, F0 was chosen to be 
at exactly 50 Hz and the bandwidth, ΔF was set as 4Hz17. 
The above acquisition process was repeated 10 times for 
each task and the subject was requested to take a rest break 
for ten minutes after completing each task. The same pro-
cedure was repeated by all the ten subjects and using the 
recorded signals a database named IRCC database was cre-
ated. The IRCC database consists of data pertaining to 10 
trials. Further, the IRCC database was validated through 
hypothesis testing using Analysis of Variance (ANOVA) 
technique performed by 10 subjects for 10 trials.

2.2 � Segmentation of EEG Rhythmic Activity 
and Frames

The 16-bit digitized signals with 256 Hz sampling  
frequency were trimmed to segregate the intermediate 
10s signals from 12s signal. The trimmed raw signals are 
filtered to remove the artifacts and EMG’s below 0.5 Hz 
and above 100 Hz using 6th order band pass filters17. The 
segmented brain waves are categorized into six traditional 
bands: Delta (δ) 0.1 – 4 Hz, Theta (θ) 4 – 8 Hz, Alpha (α) 
8 – 16 Hz, Beta (β) 16 – 32 Hz, Gamma 1, (γ1) (32-64 
Hz) and Gamma 2, (γ2) 64 – 100 Hz. Thus, each fre-
quency band signals are segmented into frames such that 
a frame length of 2s having 512 samples per frame along 
with an overlap of 1s (m = 256 samples). Thus, the first 
frame consists of n = 512 samples. The second frame was 
initiated after a lap of m–1 samples such that the second 
frame overlaps with the n–m samples of the first frame. 
This procedure was repeated until all the frequency band 
signals were counted. Then, each frame is considered as 
an input to extract the bispectral features also known as  
polyspectral representations of higher order statistics.

3. � Statistical Feature Extraction 
using Bispectrum Estimation

3.1  Bispectrum Estimation
In various BMI applications, EEG signals have been  
analyzed using power spectra in several distinctive fre-
quency bands. Power spectrum estimation provides the 
statistical descriptions of a Gaussian signal. In case of 
non-gaussianity or non-linear mechanisms, higher order 
spectra can be used to determine the higher order moments 
or complaints which provide additional information on 
the phase characteristics and realistic information of the 
EEG signal18, 19. In this paper, bispectrum B(f1, f2) analysis 
has been employed to study the brain wave patterns of 
the visual stimuli. The bispectrum estimation is particu-
larly the third-order statistics of a signal, which represents 
the Fourier transform of the third order correlation 
with highly interdependent frequency components19. 
The mathematical representation of the bispectrum  
estimation is expressed in Equation (1).

	
B f1, f2 E X f1 X f2 X * f1 f2( ) ( ) ( ) ( )



= + � (1)

Where X(f) is the DFT at frequency samples x(nT). 
The frequency (f) may be normalized by the Nyquist  
frequency to lie between 0 and 1. X * f1 f2+( )  denotes 
the complex conjugate and therefore the bispectrum 
obtained using equation (1) is a complex valued func-
tion which represents the product of three Fourier 
co-efficients. In this feature extraction process, the non-
redundant region or the positive bispectrum sequence 
W( ) ( )= 0 2 1 1 + 2 1≤ ≤ ≤ ≤f f f f  was used to extract the 

mean and entropy features. 
Hence, the EEG signal acquired from each channel 

was used to extract the six frequency band signals, namely 
Delta (δ), theta (θ), alpha (α), beta (β), Gamma 1 (γ1) 
and Gamma 2 (γ2) and segmented into frames such that 
each frame has 512 samples. The positive fourier coeffi-
cients of B(f1, f2) was estimated using the ith frame of each 
channel. Thus, the bispectrum sequence for B f fij

d 1 2,( )  
was obtained from δ band, where i and j are the frame 
numbers and an electrode channel number respec-
tively. Similarly, the bispectrum sequence for B f fij

q 1 2,( ), 
B f fij

a 1 2,( ), B f fij
b 1 2,( ), B f fij

g1 1 2,( ) and B f fij
g2 1 2,( ) were 

also computed. 
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From the estimated sequences, two statistical features, 
namely, Mean of bispectral magnitude (M) and bispec-
tral entropy (E) features are computed to characterize 
the distribution of bispectrum sequence as represented 
in equation (2-5). Therefore, for eight channels we have 
48 (6 × 8) features per frame. The statistical features are 
extracted from all the trials and are used to form the fea-
ture set. Simultaneously, the features are derived from 
each task and the corresponding feature set consisting of 
700 samples are formulated and used to train and test the 
classifier models correspond to the TEP and VEP tasks.

	

M M f f M f f M f f

M f

ij ij ij ij

ij

= ( ) ( ) ( ){ , , , , , ,d q a

b

1 2 1 2 1 2

            11 2 1 1 2 2 1 2, , , , }f M f f and M f fij ij( ) ( ) ( )g g  � (2)

	

E E f f E f f E f f

E f f E

ij ij ij ij

ij ij

= ( ) ( ) ( )
( )

{ , , , , , ,

, ,
d q a

b g

1 2 1 2 1 2

1 2 1 ff f and E f fij
1 2 2 1 2, , }( ) ( ) g � (3)

where, M and E represents the mean and entropy (bispec-
tral magnitude of the (Ω) in the ith frame of the jth electrode 
channel position.

	 E pn pnn= − ∑ ( )log � (4)

where 

	

pn
B f f

B f f
region of the bispectral magnitude

=
( )

∑ ( )
=

1 2

1 2

,

,
,

W

Ω     � (5)

4. � Multilayer Neural Network 
Classifier for Classification of 
Seven Tasks

Multi layer neural networks are biologically inspired tools 
used for information processing and they are nonlinear 
in nature20. Classification of TEP and VEP responses to 
categorize the navigational tasks basically falls on pattern 
recognition problem. In this analysis, customized IRCC 
system has been developed for each individual using 
MLNN for Multi-class pattern classification. The fea-
ture vectors derived from each subject (700 × 48 feature 
vectors) using TEP responses were processed and then 
associated with the seven TEP classes and the feature vec-
tors derived from each subject (700 × 48 feature vectors) 
using VEP responses were processed and then associated 
with the seven VEP classes. Further, the feature vectors 

were normalized using binary normalization method and 
partitioned into training and testing sets21. The training 
set has 560 × 48 (90% of master data set) and the testing 
set has the remaining 140 samples for the classification of 
the motor-imagery vocabulary tasks accordingly. 

In this work, the MLNN models were organized with 
48 input neurons, 18 hidden neurons and three neurons 
in the output layer. As the logistic sigmoid function scales 
any range of values between 0.1 an 0.9, in the designed 
MLNN models, logistic sigmoidal function was used to 
activate the neurons in the hidden and output layer. The 
Mean Squared Error (MSE) tolerance of 0.1 was used for 
training the neural network. In order to improve the per-
formance rate, the learning rate, momentum factor and 
number of iterations were chosen based on the experi-
mental observations in different trials. The learning rate 
and momentum factor for the models were chosen as 0.1 
and 0.8 respectively. The generalization capability of the 
model was validated by performing 10 trials for training 
and testing method. The network models were trained 
using Levenburg Marquth Model. The MLNN model for 
spectral features were trained with ten trial weights for 
each subset. On the first subset, the network model was 
trained using 8/10 of the feature set and the classification 
rate was estimated using 2/10 subset of the remaining 
feature set. This process was repeated until all the 2/10 
subset are used for the validation set22. Further, the net-
work training parameters, mean classification rates are 
shown in are shown in Table 1 to Table 4.

5.  Result and Discussion
In this paper, the EEG brain wave signals were  
pre-processed and blocked into number of frames and 
the frequency band features, namely delta, theta, alpha, 
beta, gamma 1 and gamma 2 were extracted. A simple 
feature extraction algorithm based on bispectral esti-
mation was employed to extract the statistical features 
such as Mean and entropy of the bispectral magnitude 
and associated with one of the TEP tasks. The extracted 
features are classified using MLNN classifier for the cus-
tomized IRCC classification systems using TEP and VEP. 
The classification performance of the developed models 
are summarized in Table 1 and 2. 

From Table 1, the results obtained using TEP responses 
shows that the network model has a minimum classifica-
tion accuracy of 72.14%, 82.14%, 82.86%, 77.14%, 87.14%, 
73.57%, 85.71%, 87.86%, 80.00% and 88.57% for the  
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Table 1.  Mean classification performance for the IRCC system using MLNN classifier with the mean of bispectral 
magnitude using TEP response

MLNN Classification results using mean of bispectral magnitude features
No. of training 

Samples
560

No. of hidden 
neurons

12
Output 

Neurons
3

Training Tolerance 0.001

No. of testing 
Samples

140 Input Neurons 48 Testing tolerance 0.1

Trial 
Number

Subjects
Subject I 

(%)
Subject II 

(%)
Subject 
III (%)

Subject 
IV (%)

Subject V 
(%)

Subject 
VI (%)

Subject 
VII (%)

Subject 
VIII (%)

Subject 
IX (%)

Subject X 
(%)

1 81.43 82.14 86.43 77.14 88.57 85.00 85.71 90.00 80.00 92.14
2 80.00 85.71 86.43 83.57 87.14 81.43 87.14 87.86 85.71 88.57
3 73.57 85.00 89.29 84.29 95.71 78.57 90.00 94.29 87.86 95.71
4 80.71 89.29 82.86 90.00 92.86 87.14 95.71 89.29 92.14 95.00
5 79.29 86.43 91.43 84.29 92.14 80.00 87.14 92.14 87.14 92.86
6 72.14 85.71 92.14 85.71 92.86 73.57 87.14 93.57 87.86 94.29
7 80.71 87.14 87.14 82.14 92.86 82.86 89.29 89.29 85.71 95.00
8 80.00 85.71 87.86 86.43 95.71 83.57 89.29 91.43 88.57 95.71
9 85.71 87.14 88.57 86.43 94.29 90.00 91.43 92.86 89.29 95.00

10 75.71 82.14 82.86 86.43 90.71 81.43 87.86 88.57 88.57 95.71
Min % 72.14 82.14 82.86 77.14 87.14 73.57 85.71 87.86 80.00 88.57

Mean % 78.93 85.64 87.50 84.64 92.29 82.36 89.07 90.93 87.29 94.00
Max % 85.71 89.29 92.14 90.00 95.71 90.00 95.71 94.29 92.14 95.71

Table 2.  Mean classification performance for the IRCC system using MLNN classifier with the entropy of 
bispectral magnitude using TEP response

MLNN Classification results using entropy of bispectral magnitude features
No. of training 

Samples
630

No. of hidden 
neurons

18
Output 

Neurons
3

Training Tolerance 0.0001

No. of testing 
Samples

70 Input Neurons 48 Testing tolerance 0.1

Trial 
Number

Subjects
Subject I 

(%)
Subject II 

(%)
Subject 
III (%)

Subject 
IV (%)

Subject V 
(%)

Subject 
VI (%)

Subject 
VII (%)

Subject 
VIII (%)

Subject 
IX (%)

Subject X 
(%)

1 82.86 83.57 87.86 78.57 90.00 86.43 87.14 91.43 81.43 93.57
2 81.43 87.14 87.86 85.00 88.57 82.86 88.57 89.29 87.14 90.00
3 75.00 86.43 90.71 85.71 97.14 80.00 91.43 95.71 89.29 97.86
4 82.14 90.71 84.29 91.43 94.29 88.57 94.29 90.71 93.57 97.14
5 80.71 87.86 92.86 85.71 93.57 81.43 88.57 93.57 88.57 94.29
6 73.57 87.14 93.57 87.14 94.29 75.00 88.57 95.00 89.29 95.71
7 82.14 88.57 88.57 83.57 94.29 84.29 90.71 90.71 87.14 96.43
8 81.43 87.14 89.29 87.86 97.14 85.00 90.71 92.86 90.00 97.14
9 87.14 88.57 90.00 87.86 95.71 91.43 92.86 94.29 90.71 95.00

10 77.14 83.57 84.29 87.86 92.14 82.86 89.29 90.00 90.00 93.57
Min % 73.57 83.57 84.29 78.57 88.57 75.00 87.14 89.29 81.43 90.00

Mean % 80.36 87.07 88.93 86.07 93.71 83.79 90.21 92.36 88.71 95.07
Max % 87.14 90.71 93.57 91.43 97.14 91.43 94.29 95.71 93.57 97.86
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Table 3.  Mean classification performance for the IRCC system using MLNN classifier with the mean of bispectral 
magnitude using VEP response

MLNN Classification results using mean of bispectral magnitude features
No. of training 

Samples
560

No. of hidden 
neurons

12
Output 

Neurons
3

Training Tolerance 0.001

No. of testing 
Samples

140 Input Neurons 48 Testing tolerance 0.1

Trial 
Number

Subjects

Subject I 
(%)

Subject 
II (%)

Subject 
III (%)

Subject 
IV (%)

Subject V 
(%)

Subject 
VI (%)

Subject 
VII (%)

Subject 
VIII (%)

Subject 
IX (%)

Subject X 
(%)

1 83.57 84.29 88.57 79.29 86.43 87.14 87.86 89.29 82.86 91.43
2 77.86 90.00 88.57 85.71 89.29 83.57 89.29 90.00 85.71 91.43
3 75.71 87.14 91.43 86.43 92.14 80.71 92.14 96.43 89.29 91.43
4 82.86 91.43 85.00 93.57 95.00 82.14 97.86 91.43 95.00 91.43
5 75.71 88.57 93.57 82.14 94.29 81.43 89.29 94.29 89.29 90.71
6 74.29 87.86 94.29 87.86 89.29 75.71 89.29 90.00 90.00 96.43
7 82.86 89.29 89.29 84.29 95.00 85.00 91.43 93.57 87.86 93.57
8 82.14 87.86 90.00 88.57 97.86 80.00 91.43 93.57 90.71 95.71
9 87.86 89.29 86.43 88.57 96.43 82.14 93.57 95.00 91.43 97.14

10 79.29 84.29 85.00 88.57 92.86 83.57 90.00 90.71 90.71 96.43
Min % 74.29 84.29 85.00 79.29 86.43 75.71 87.86 89.29 82.86 90.71

Mean % 80.71 88.21 88.93 87.14 93.57 82.14 90.71 92.50 89.64 92.50
Max % 87.86 91.43 94.29 93.57 97.86 87.14 97.86 96.43 95.00 97.14

Table 4.  Mean classification performance for the IRCC system using MLNN classifier with the entropy of 
bispectral magnitude using VEP response

MLNN Classification results using entropy of bispectral magnitude features
No. of training 

Samples
560

No. of hidden 
neurons

12
Output 

Neurons
3

Training Tolerance 0.001

No. of testing 
Samples

140 Input Neurons 48 Testing tolerance 0.1

Trial 
Number

Subjects

Subject I 
(%)

Subject 
II (%)

Subject 
III (%)

Subject 
IV (%)

Subject V 
(%)

Subject 
VI (%)

Subject 
VII (%)

Subject 
VIII (%)

Subject 
IX (%)

Subject X 
(%)

1 85.00 85.71 90.00 80.71 87.86 88.57 89.29 90.71 84.29 92.86
2 79.29 91.43 90.00 87.14 90.71 87.14 90.71 91.43 87.14 92.86
3 77.14 88.57 92.86 87.86 93.57 82.14 93.57 97.86 90.71 97.86
4 84.29 92.86 86.43 95.00 96.43 83.57 94.29 92.86 96.43 97.14
5 77.14 90.00 95.00 83.57 95.71 82.86 90.71 95.71 90.71 92.14
6 75.71 89.29 95.71 89.29 90.71 77.14 90.71 91.43 91.43 97.86
7 84.29 90.71 90.71 85.71 96.43 86.43 92.86 95.00 89.29 95.00
8 83.57 89.29 91.43 90.00 99.29 81.43 92.86 95.00 92.14 97.14
9 89.29 90.71 87.86 90.00 99.29 83.57 95.00 96.43 92.86 95.00

10 80.71 85.71 86.43 90.00 94.29 85.00 91.43 92.14 92.14 93.57
Min % 75.71 85.71 86.43 80.71 87.86 77.14 89.29 90.71 84.29 92.14

Mean % 82.14 89.64 90.36 88.57 95.00 83.57 92.14 93.93 91.07 95.00
Max % 89.29 92.86 95.71 95.00 99.29 88.57 95.00 97.86 96.43 97.86
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subject I to X respectively. It is also observed that the  
network model has the maximum classification accuracy 
of 85.71%, 89.29%, 92.14%, 90.00%, 95.71%, 90.00%, 
95.71%, 94.29%, 92.14% and 95.71% for the subject I to X 
respectively. The overall maximum classification accuracy 
of 95.71% has been obtained from the customized model 
for Subject V, VII and X and the overall minimum classifi-
cation accuracy of 72.14% has been obtained for subject I 
using the mean of the bispectral magnitude features.

From Table 2, the results obtained using TEP responses 
shows that the network model has a minimum classi-
fication accuracy of 73.57%, 83.57%, 84.29%, 78.57%, 
88.57%, 75.00%, 87.14%, 89.29%, 81.43% and 90.00% for 
the subject I to X respectively. It is also observed that the 
network model has the maximum classification accuracy 
of 87.14%, 90.71%, 93.57%, 91.43%, 97.14%, 91.43%, 
94.29%, 95.71%, 93.57% and 97.86% for the subject I to X 
respectively. The overall maximum classification accuracy 
of 97.86% has been obtained from the customized model 
using Subject X and the overall minimum classification 
accuracy of 73.57% has been obtained for subject I using 
the entropy of the bispectral magnitude features.

From Table 3, the results obtained using VEP 
responses shows that the network model has a mini-
mum classification accuracy of 74.29%, 84.29%, 85.00%, 
79.29%, 86.43%, 75.71%, 87.86%, 89.29%, 82.86%, 90.71% 
for the subject I to X respectively. It is also observed that 
the network model has the maximum classification accu-
racy of 87.86%, 91.43%, 94.29%, 93.57%, 97.86%, 87.14%, 
97.86%, 96.43%, 95.00%, 97.14% for the subject I to X 
respectively. The overall maximum classification accuracy 
of 97.86% has been obtained from the customized model 
using Subject V and VII and the overall minimum classi-
fication accuracy of 74.29% has been obtained for subject 
I using the mean of the bispectral magnitude features.

From Table 4, the results obtained using VEP 
responses shows that the network model has a mini-
mum classification accuracy of 75.71%, 85.71%, 86.43%, 
80.71%, 87.86%, 77.14%, 89.29%, 90.71%, 84.29%, 92.14% 
for the subject I to X respectively. It is also observed that 
the network model has the maximum classification accu-
racy of 89.29%, 92.86%, 95.71%, 95.00%, 99.29%, 88.57%, 
95.00%, 97.86%, 96.43%, 97.86% for the subject I to X 
respectively. The overall maximum classification accuracy 
of 99.29% has been obtained from the customized model 
using Subject V and the overall minimum classification 
accuracy of 75.71% has been obtained for subject I using 
the entropy of the bispectral magnitude features.

From the results, it is observed that Subject V has the 
maximum classification accuracy of 99.29% using VEP 
based MLNN and entropy of the bispectral magnitude 
features and Subject I has the minimum classification 
accuracy of 72.14% using TEP based MLNN and mean 
of the bispectral magnitude features. The following sec-
tion presents the comparison study on mean classification 
performance, training time and number of epochs for the 
developed MLNN models.

5.1 �Comparison of Mean Classification 
Accuracy

From Figure 5, it can be inferred that the network model 
using TEP responses has an average mean classification 
accuracy of 78.93%, 85.64%, 87.50%, 84.64%, 92.29%, 
82.36%, 89.07%, 90.93%, 87.29% and 94.00% for the sub-
ject I to X using MLNN with Mean of bispectral entropy 
based classifier. It is also observed that the network model 
using TEP responses has an average mean classification 
accuracy of 80.36%, 87.07%, 88.93%, 86.07%, 93.71%, 
83.79%, 90.21%, 92.36%, 88.71% and 95.07% for the 
subject I to X using MLNN entropy of the bispectral mag-
nitude based classifier. Further, it can be also inferred that 
the network model using VEP responses has an average 
mean classification accuracy of 80.71%, 88.21%, 88.93%, 
87.14%, 93.57%, 82.14%, 90.71%, 92.50%, 89.64%, 92.50% 
for the subject I to X using MLNN with Mean of bispec-
tral entropy based classifier. It is also observed that the 
network model using VEP responses has an average 
mean classification accuracy of 82.14%, 89.64%, 90.36%, 
88.57%, 95.00%, 83.57%, 92.14%, 93.93%, 91.07%, 95.00% 
for the subject I to X using MLNN entropy of the bispec-
tral magnitude based classifier. Further, the overall mean 
maximum classification accuracy of 95.07% has been 
obtained with MLNN based on Mean features for Subject 

Figure 5.  Comparison of mean classification accuracy for 
the MLNN using mean and entropy features.
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V and X and the overall mean minimum classification 
accuracy of 78.93% has been obtained with MLNN based 
on entropy features for Subject I. From the results, it is 
inferred that MLNN entropy features based classifier has 
better classification accuracy for TEP and VEP responses 
and subject I has less performed during the thought 
evoked data acquisition of IRCC.

5.2  Comparison of Mean Training Time
From Figure 6, it can be inferred that the network model 
using TEP responses has an average mean training time 
of 71 seconds, 84 seconds, 88 seconds, 82 seconds, 97 
seconds, 74 seconds, 91 seconds, 94 seconds, 87 sec-
onds and 98 seconds for the subject I to X using MLNN 
mean based classifier. It is also observed that the net-
work model using TEP responses has an average mean 
training time of 80 seconds, 95 seconds, 99 seconds, 93 
seconds, 109 seconds, 84 seconds, 102 seconds, 106 sec-
onds, 98 seconds and 112 seconds for the subject I to 
X using MLNN entropy based classifier. It can be also 
inferred that the network model using VEP responses 
has an average mean training time of 74 seconds, 90 sec-
onds, 90 seconds, 83 seconds, 98 seconds, 77 seconds, 
93 seconds, 96 seconds, 91 seconds and 102 seconds 
for the subject I to X using MLNN mean based classi-
fier. It is also observed that the network model using 
VEP responses has an average mean training time of 
87 seconds, 99 seconds, 101 seconds, 96 seconds, 112 
seconds, 88 seconds, 105 seconds, 107 seconds, 101 
seconds and 114 seconds for the subject I to X using 
MLNN entropy based classifier. Further, the overall 
mean maximum training time of 114 seconds has been 
obtained with VEP-MLNN entropy based classifier 
for Subject X and the overall mean minimum training 

Figure 6.  Comparison of mean training time for the 
MLNN using mean and entropy features.

time of 71 seconds has been obtained with TEP-MLNN 
mean based classifier for Subject I. From the results, it 
is inferred that MLNN mean based classifier has less  
training time for all the ten subjects.

From Figure 7, it can be inferred that the TEP based 
network model has an average mean training epochs of 
142 epochs, 161 epochs, 167 epochs, 159 epochs, 180 
epochs, 139 epochs, 171 epochs, 176 epochs, 166 epochs 
and 182 epochs for the subject I to X using MLNN mean 
based classifier. It is also observed that the TEP based net-
work model has an average mean training epochs of 157 
epochs, 177 epochs, 183 epochs, 174 epochs, 212 epochs, 
161 epochs, 186 epochs, 192 epochs, 181 epochs and 201 
epochs for the subject I to X using MLNN entropy based 
classifier.

5.3 � Comparison of Mean Number Of 
Epochs

It can be inferred that the VEP based network model 
has an average mean training epochs of 142 epochs, 167 
epochs, 170 epochs, 165 epochs, 184 epochs, 142 epochs, 
174 epochs, 179 epochs, 169 epochs and 189 epochs for 
the subject I to X using MLNN mean based classifier. It 
is also observed that the VEP based network model has 
an average mean training epochs of 164 epochs, 184 
epochs, 190 epochs, 182 epochs, 214 epochs, 169 epochs, 
195 epochs, 199 epochs, 188 epochs and 208 epochs for 
the subject I to X using MLNN entropy based classifier. 
Further, the overall mean maximum training epochs of 
212 epochs has been obtained with TEP-MLNN entropy 
based classifier for Subject V. The overall mean mini-
mum training epochs of 139 epochs has been obtained 

Figure 7.  Comparison of mean number of epochs for the 
MLNN using mean and entropy features.
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with TEP-MLNN mean based classifier for Subject VI. 
From the results, it is inferred that MLNN mean based 
classifier has less number of epoch iterations for all the 
ten subjects.

6.  Conclusions
The regards to the objective of this study, a customized 
robot chair with communication aid (IRCC) has been 
developed using higher order spectral algorithm and 
Multi layer neural network using TEP and VEP responses. 
The proposed system uses the TEP based task signals 
recorded from ten subjects and are blocked into frames 
of equal samples. Six frequency band has been chosen to 
study the spectral representation of the mental tasks and 
the features were extracted. The extracted feature vectors 
based on bispectral estimations are distinguished easily. 
The feature vectors are associated with the corresponding 
output targets and are classified using, MLNN classifiers 
in customized modes. 

The test results obtained from this analysis open 
many possible areas of applications and improvements in 
thought controlled robot chair navigation and commu-
nication system for differentially enabled communities. 
The network parameters and the study on mean training 
time shows the proposed IRCC system can be developed 
for an NMD patient with simple experimental setup. In 
the future analysis, non-linear feature extraction algo-
rithms, classification algorithms and online training 
sessions so as to be used to improve the recognition 
accuracy of the IRCC system. Further, it is propitious 
to explore useful characteristics of brain wave pat-
tern signals based on effective feature extraction and  
classification methods.
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