
Indian Journal of Science and Technology, Vol 8(20), DOI: 10.17485/ijst/2015/v8i20/78320, August 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1. Introduction

Microprocessor is a profound example of the Very Large
Scale Integration (VLSI) industry, which takes the input
data in the form of 0’s and 1’s and processes it according
to the instructions. It is expected to yield the output
according to the specified instruction at the maximally
possible speed. A set of instructions (program) or
group of programmes (software) are written to the
microprocessor, to perform the task and compute the
output1. A physical set of hardware modules accomplish
the said purpose. The primarily used such modules are
the Arithmetic Logic Unit (ALU), Control Unit, Registers
and Instruction Execution Unit. The design of an efficient
hardware architecture involves the capability to operate
with maximum performance even while consuming
lower power and reduced silicon area.

The emergence of the Reduced Instruction Set
Computing (RISC) processor was an evolution in the
computing research platform during the recent years2.
It has a very simple and defined architecture with fewer
fixed length instructions, as compared to the Complex
Instruction Set Computing (CISC) which, on the other

hand had complex architecture with more number of
instructions in the instruction set.

The RISC processor has the following special features:
•	 All the instructions are of fixed length
•	 All the instructions are executed in single clock cycle
•	 Microcode is not allowed and explicit instructions are

used
The Advanced RISC Machine (ARM) is one of the

Central Processing Unit (CPU) families based on the RISC
architecture. The ARM designs are majorly of 32 bit and
64 bit RISC processors for typical applications. The custom
design methodology of the processor offers many ways
to achieve low power and high speed. One such meth-
odology is by designing the functional blocks in different
CMOS logic styles in adaptation to the expected type of
arithmetic and logical operations, and integrating them
together. The focus of this paper is the design of a RISC
machine using custom design static CMOS logic style.

This paper is organized as follows. Section 2 elabor-
ates on the architecture of the RISC processor. Section 3
deals with the functional blocks employed in the pro-
cessor. Section 4 deals with the integration of processor
sub blocks

Abstract
Objectives: This paper presents the design of a 16 bit Reduced Instruction Set Computing (RISC) processor using the
custom design approach. Statistical Analysis: The type of processor employed in a system claims its efficiency. The
compressed instruction incorporated in the design reduces the area and power dissipation of the processor. Findings:
Various functional blocks of the processor such as the Control Unit, Instruction Decoder, Instruction Register unit and
Arithmetic and Logical Unit (ALU) are designed using the Cadence® Virtuoso tool and the simulations are carried out
using Cadence® ADE_L Tool using 180nm technology library from TSMC. The integration of the various functional bocks is
done based on the finite states arrived at, for the execution of each instruction. Conclusion: The RISC processor is found to
consume 68.9mW of power for the execution of the AND instruction with a delay of 1600ns. It consumes 77.6mW of power
dissipation for the execution of the ADD instruction with a delay of 1900ns.

Keywords: Data Driven Dynamic Logic (D3L), Domino Logic, Introduction, Low Power ALU, RISC Processor Custom
Design

Design of a 16 Bit RISC Processor

K. Vishnuvardhan Rao*, A. Anita Angeline and V. S. Kanchana Bhaaskaran

School of Electronics Engineering Department, VIT University Chennai, 632014, Tamil Nadu, India;
vishnu.vardhan2013@vit.ac.in, anitaangeline.a@vit.ac.in, kanchana.vs@vit.ac.in

Vol 8 (20) | August 2015 | www.indjst.org Indian Journal of Science and Technology2

Design of a 16 Bit RISC Processor

and cites the principal using the typical instructions AND
and ADD. Section 5 deals with the performance analysis
of the processor and discussion of the results. Section 6
concludes the paper.

2. Processor Architecture

The architecture of the 16 bit RISC processor as shown in
Figure 1 contains the Arithmetic and Logical Unit (ALU),
Instruction Register, Instruction Decoder and Controller
unit. It is based on the RISC machine architecture1.

Figure 1. Schematic of the 16 bit RISC processor.

2.1 ALU
The ALU performs the 16 bit arithmetic operations, such
as the Addition, Subtraction, Multiplication and Division,
and 16 bit logical operations, such as AND, OR and
exclusive OR. The ALU consists of the following blocks.
•	 16 bit AND operation unit
•	 16 bit OR operation unit
•	 16 bit XOR operation unit
•	 16 bit Carry Look Ahead (CLA) unit
•	 16 bit Wallace Tree Multiplier unit
•	 16 bit Subtracterunit
•	 16 bit Barrel Shifter

2.2 Control Unit
The instruction register brings in the instruction, which
is decoded by the instruction decoder. The output of the
instruction decoder is fed to the control unit. The control
part of the processor asserts the necessary control signals
to the ALU and the appropriate registers and ports. It also
initiates the program counter to fetch the next instruction.

2.3 Instruction Decoder
The instruction decoder decodes the 32 bit instruction
and it enables the respective functional units for
execution3. There are three types of instructions,

namely, Data Transfer type, Data Processing type, and
Multiplication instructions. As a typical RISC processor,
the design employs the instructions of 32 bit word size.
On decoding, the category of instruction is identified. In
the instruction, the most significant 4-bits are formed to
identify the type of condition codes of the processor. It is
depicted in Figure 2 and Figure 3.

Figure 2. Data processing instruction format.

Figure 3. Multiply instruction format.

The following 4 bits (bit positions 27-24) represents
the op code and it determines the type of operation or
the data processing to be executed on the data, as listed
in Table 1.

Table 1. Data processing instructions
OPCODE Mnemonic Operation Execution

0000 AND Logical bit
wise AND

Rd←Rn AND
Operand2

0001 OR Logical bit
wise OR

Rd←Rn OR Op-
erand2

0010 EXOR Logical bit
wise XOR

Rd←Rn XOR
Operand2

0011 ADD Arithmetic
Addition

Rd←Rn + Oper-
and2

0100 RIGHTRO-
TATE

Logical
Right
Rotate

Rd←Rn >> N

0101 RIGHTSHIFT Logical
Right Shift

Rd←Rn >> N

0110 LEFTSHIFT Logical
Left Rotate

Rd←Rn << N

0111 LEFTROTATE Logical
Left Shift

Rd←Rn << N

1000 SBC Substract
with Carry

Rd←Rn – Oper-
and2 + Carry -1

1001 ADC Add with
Carry

Rd←Rn + Oper-
and2 + Carry

1010 SUB Substrac-
tion

Rd←Rn – Oper-
and2

K. Vishnuvardhan Rao, A. Anita Angeline and V. S. Kanchana Bhaaskaran

Vol 8 (20) | August 2015 | www.indjst.org Indian Journal of Science and Technology 3

The instruction format for the data Processing
instructions format is as shown in Figure 24. The operand
2 is shifted or rotated by N bits based on the 25th bit value.
If the 25th bit is 1 then the least significant 8 bits are rotated
according to bit positions 8 to 11. If the 25th bit is zero the
value in the Rm register is shifted by the value specified in
Rs. In this the Rd refers to the destination register, Rn refers
to the first source register and Rm refers to the second
source register. Thus, all the operations are executed in a
single clock cycle.

The format of the multiplication instruction is
shown in Figure 3. Similar to that of the data processing
instructions, the operand 2 is shifted or rotated based on
the 25th bit of the instruction. This operand value is then
multiplied with the value made available at the source
register Rs. Thus, the final result will be either a 32 bit value
or 16 bit value, which will be stored in the two registers
each of 16 bit width, viz., Rdlo and Rdhi. For the data transfer
instructions, such as the MOVE operations, the value in
the source register is copied into the destination register.

2.4 Registers
This processor accommodates 16 number of general
purpose registers, which are 16 bit wide. They are
identified as B, C, D, E, F, G and H1. These registers are
primarily used to store the data temporarily during the
execution of a program and are accessible to the user
through instructions. The last two registers can be made
to be employed as the program counter and the stack
pointer. Thus, a total of 14 registers are used to help for
the internal data operations. The instruction register
contains one write and one read port.

2.5 Program Counter
The program counter keeps track of the instructions being
executed. It holds the address of the next instruction to
be executed. Once the current instruction execution is
started, the program counter gets incremented by one.
Thus, it is made to always point out to the next instruction
to be executed in order.

3. Design of Processor Subblocks

The processor comprises of an ALU unit which executes
various the arithmetic and logical operations. In order to
realize this, various sub blocks have been designed. The
remaining part of this section presents the modules.

3.1 Carry Look Ahead Adder (CLA)
Figure 4 shows the CLA block with input bits represented
by A0 to A15 and B0 to B15 respectively, as shown. The SUM
bits S0 to S15 with carry bit C15are made availble from the
CLA, The general form of computation using the equation
of a full adder is expressed by

Figure 4. Implementation of 16-bit CLA.

SUM = A ⊕ B ⊕ Cin
In place of the carry bit propagating from one stage to

another, with the time length of the process determined
by the number of bits of the addition process, the carry
bit of each stage is calculated separately by computing the
propagate and generate bits. These bits computations are
carried out as follows.
c(i + 1) = gi + (pi. ci)

Here, c(i + 1) refers to the carry output of ith stage. The
generate and propagate bits of the ith stage are computed
depending on the input Ai as given by,
gi = Ai. Bi
pi = Ai + Bi

This makes the CLA perform the addition in a faster
manner as the carry is computed quicker rather than
waiting for the carry to be propagated through the whole
length. Especially, while adding more number of bits
or larger words, the CLA computes the sum and carry
bits at a higher speed. It may however be noted that the
CLA incurs additional silicon area overhead due to the
redundant circuitry, which can by itself be an acceptable
trade-off.

3.2 Wallace Tree Multiplier
In a Wallace Tree Multiplier, the number of partial
products to be added is made available as intermediate
results which are then summed up. It comprises of half
adder and full adder structures to perform the summing
operation. Hence, this makes the computation time to get
reduced.

Vol 8 (20) | August 2015 | www.indjst.org Indian Journal of Science and Technology4

Design of a 16 Bit RISC Processor

3.3 Barrel Shifter Implementation
The shifting operations are performed by the barrel
shifter. The shifter is designed to support arithmetic rotate
and logical rotate operations of the processor. The shifting
could be done in two ways, namely, 1. Left Shifting (LS)
and 2. Right Shifting (RS). The various types of shifting
operations possible are tabulated in Table 2. Here, X refers
to the 8-bit data on which the shifting operation is to be
done and Y is the number, which represents the number
of bit positions by which the shifting is to be carried out.

Table 2. Shift and rotate examples for the data X =
a7a6a5a4a3a2a1a0 and Y = 3.

Operation Output
3-bit shift right logical 000 a7 a6 a5 a4 a3
3-bit shift right arithmetic a7 a7 a7 a7a6 a5 a4 a3

3-bit rotate right a2 a1 a0 a7 a6 a5 a4 a3

3-bit shift left logical a4 a3 a2 a1 a0 000
3-bit shift left arithmetic a7 a3 a 2 a1 a0 000
3-bit rotate left a4 a 3 a 2 a 1 a 0 a 7 a6 a5

Figure 5 shows an 8 bit Logical Right Shifter
implemented using layers of 2 X 1 multiplexers5,6. The
selection input bits S2, S1 and S0 identify the number
of bits to be shifted. The selection bits are defined by the
instruction bits 8 to 11. For example, for a Logical Right
implementation if the bit S2 is zero, and the next two bits
S1 = S0 = 1, then it indicates that the shifting operation by
3 bit positions is to be performed. This makes the first 3
MSBs of the data as zeros as shown in Table 2.

Figure 5. 8 Bit logical right implementation using 2X1
MUX.

On the other hand, note that for the Right Rotate
operation for the same selection input combinations, the
data will rotate right by 3 bits i.e. from LSB to the higher
bits of MSB. This makes the Barrel Shifter to perform
(N-1) bits shifts, in a single clock pulse duration7,8. The
advantage of the barrel shifter is its capability to perform
the logical/arithmetic operations in one clock cycle.

4. �Integration of the Functional
Sub-blocks

The integration of the modules discussed above is
presented below in this section. The 32 bit binary
instruction is given as the input to the instruction
decoder. It decodes the instruction based on the binary
bit pattern. The decoded signals are given to the control
unit. The control unit initiates the states execution as per
the decoded signals. Starting from S0, based on the input,
the control unit enables the different units to perform
accordingly in each of the required states.

For example, consider the following instruction.
AL213A24B

The binary encoding for above instruction will result
in the bit combination shown below, with space between
each nibble for easier understanding.
1110 0010 0001 0011 1010 0010 0100 1011

As indicated in Figure 2, the op code 0000 (bits 21
to 24) signifies that the operation to be carried out is the
Logical AND and the bits 16 to 19 indicate that the value
present in the source register is to be ANDed with the
operand 2 as depicted by bits 0 to 11. Further, the 25th
bit being a 0, the 8 bit immediate value is rotated by the
value 0010 i.e., by 2. The value present in the first source
register and the rotated value being the two operands for
the AND operation, the Logical AND operation is carried
out by the execution of this instruction and the result is
stored in the destination register as indicated by the bits
1010.

Figure 6 demonstrates the AND instruction
execution flow as a flowchart. Before the execution of
the instruction, random values might be present in the
registers. Since these registers are to be employed while
executing these instructions, both the register data and
the instruction in the binary format are simultaneously
loaded and the initial state, S0 is made to identify enabling
of the register module. The next state S1 writes the data
into the destination register. In the state S2, based on the

K. Vishnuvardhan Rao, A. Anita Angeline and V. S. Kanchana Bhaaskaran

Vol 8 (20) | August 2015 | www.indjst.org Indian Journal of Science and Technology 5

instruction decoder output, the respective states in the
controller execute their conditions. The process continues
in a successive manner.

5. Performance Analysis

The basic gates, cells and modules to be used in the
processor are designed using the static CMOS logic
using Cadence® Virtuoso schematic tool. The 180 nm

technology library files from TSMC have been employed.
The power dissipation and the delay incurred while
operating each of the modules and various arithmetic and
logical operations are tabulated in Table 3.

The structure of barrel shifter is so designed to
perform the four operations, namely, 1. right shifting, 2.
left shifting, 3. right rotate and 4. left rotate. The power
dissipation, delay incurred in the execution of each of the
operations and the power delay product are represented
in the Table 3.

Table 3. Performance of various ALU blocks
Power(uW) Delay(pS) PDP

Control Unit
2:1MUX 42.56 77.32 3290
4:1 MUX 4.46 242.2 1080
8:1 MUX 8.88 325.7 2892.2
16:1MUX 19.12 373.9 7143.2
32:1MUX 39.41 504.6 19886.2
4:2 Encoder 1.24 113.6 140.86
8:3 Encoder 3.6 181.9 653.7
16:4 Encoder 5.1 168.5 859.35
32:5 Encoder 9.53 227 2163.3
3:8 Decoder 3.79 209.9 795.52
4:16 Decoder 110.05 369 40608
5:32 Decoder 142.5 367 52297
Full Adder 25.2 110 2772

Logical unit
NAND(2) 5.44 34.17 185.8
NAND(3) 4.77 61.64 294
NAND(4) 7.22 134.4 970.3
NAND(5) 2.55 72.92 185.9
AND (2) 20 93.36 1867
AND (3) 12.26 76.94 943.2
AND (4) 6.12 110.3 675.0
AND (5) 3.7 95.08 351.7
16 bit Logical Right Rotate 112.9 144.9 16359.21
16 bit Bitwise AND 3.37 62.71 211.332
16 bit Bitwise OR 5.84 106.7 623.12
16 bit Bitwise XOR 18.82 119.9 2256.518
16 bit Barrel Right shifting 79.97 276.9 22143.69
16 bit Barrel right rotation 112.9 144.9 16359.21
16 bit Barrel Left shifter 75.5 277.2 20928.6
16 bit Barrel Left rotation 113.2 231.7 26228.44

Arithmetic Unit
16 bit CLA 62.44 143.7 8972.6
16 bit Wallace tree Multiplier 515.5 1600 824800
16 bit Subtracter 86.06 439.3 37806.16
Instruction Register Unit 10.36mW 90 932400
Instruction Decoder 12.91mW 77 994070

Vol 8 (20) | August 2015 | www.indjst.org Indian Journal of Science and Technology6

Design of a 16 Bit RISC Processor

In the arithmetic unit of the processor, the CLA is found
to consume 62.44 uW and the Wallace tree multiplier
consumes 515.5uW of power. As the instruction decoder
comprises of D Flip flops and multiplexers, it is found to
incur increased power dissipation. To achieve sufficient
driving strength of the signals, buffers are inserted at
different stages.

Table 4 shows the processor performance
specifications while executing the instructions AND and
ADD considered for example. The power consumption
of indicated include those values incurred by various
sub blocks enabled during the execution of the above

instructions. To cite a typical case under consideration,
for the execution of the ADD instruction, the CLA had
been enabled. Hence, the power contributed by the CLA
is the primary component of total power during the
execution of the ADD instruction.

Table 4. Processor performance on execution of
instruction
Instruction Power (mW) Delay (nS)
AND instruction 68.9 1.2
ADD instruction 77.6 1.9

Figure 6. Logical AND instruction execution flow.

K. Vishnuvardhan Rao, A. Anita Angeline and V. S. Kanchana Bhaaskaran

Vol 8 (20) | August 2015 | www.indjst.org Indian Journal of Science and Technology 7

6. Conclusion

The design of a 16 bit RISC processor using the static
CMOS logic is presented. The processor is designed
using various functional blocks which are controlled
sequentially by a control unit, according to the states
as realized for each of the instructions. The processor
handles 32 bit instruction format and execution of
various arithmetic and logical operations have been
tested exhaustively. For aset of typical cases of logical
and arithmetic operations, the AND instruction has been
found to consume a power of 68.9 mW incurring a delay
of 1.2ns and the ADD instruction consumes a power of
77.6 mW incurring a delay of 1.9ns. The processor has
been custom designed and the use of appropriate logic
styles for various functional blocks can also be attempted,
while striving for low power operation for the processor.

7. References
1.	 Gaonkar R. Microprocessor architecture, programming

and applications with the 8085. PENRAM International
Publishing Pvt Ltd; 2010.

2.	 Hohl W, Hinds C. ARM assembly language fundamentals
and techniques. CRC Press; 2014.

3.	 Saambhavi VB, Kanchana VSB. A 16-bit RISC micropro-
cessor using DCPAL circuits. International Journal of Ad-
vanced Engineering Technology (IJAET). 2011 Jan–Mar;
2(1):1–9.

4.	 Furber S. ARM System-on-chip Architecture. Pearson Ed-
ucation Limited; 2000.

5.	 Pillmeier MR, Schulte MJ, Walters EG. Design alternatives
for barrel shifters. Proceedings of the SPIE; 2002 Dec; USA:
Lehigh University Bethlehem, PA 18015. 4791: 436–47.

6.	 Acken KP, Irwin MJ, Owens RM. Power comparisons for
barrel shifters. International Symposium on Low Power
Electronics and Design. IEEE Conference Publications;
1996 Aug 12-14; Monterey, CA; p. 209–12.

7.	 Mandal P, Malani S, Gudepkar Y, Singhi S, Palsodkar P
M. VLSI implementation of a barrel shifter. Proceedings
of SPIT-IEEE Colloquium and International Conference;
Mumbai, India. 2. p. 150–4.

8.	 Neema V, Gupta P. Design strategy for barrel shifter us-
ing mux at 180nm technology node. International Journal
of Science and Modern Engineering (IJISME). 2013 July;
1(8):7–11. ISSN: 2319-6386.

